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ABSTRACT
The formal representation and capturing of uncertainty knowledge
are always essential but difficult. Typically, the uncertainties due
to incompleteness and inaccuracies of model information in engi-
neering design necessitate the designing of robust decision work-
flows to improve the quality of process/product in variations. This
requests extending a designer’s abilities in managing various uncer-
tainties in system design and making decisions that are robust,
flexible, and comprehensive. To enable the management of vari-
ous uncertainties, in this paper, we propose an ontology for robust
design and a template-based ontological method that is employed
to design decision workflows. We achieve the aforementioned goals
through the identification of: (1) procedural knowledge – defin-
ing a procedure of designing robust decision workflows, including
the sequence of activities, to determine the right combination of
design information for a specific type of uncertainty, and (2) declar-
ative knowledge – developing a frame-based ontology for the for-
mal representation of tacit knowledge to capture and document
the re-usable information of a robust design by utilising the pro-
cess templates. We demonstrate the efficacy by carrying out the
robust design of the hot rod rolling process based on the analy-
sis and synthesis of the processing-microstructure (cooling mod-
ule) and the microstructure-mechanical (rod module) simulation
models.
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1. Introduction

Due to the limited information and knowledge in the early stages of design, a human
designer has to deal with different types of uncertainty, which is ubiquitous in any engi-
neering systems (Yang and Calmet 2005; Allen et al. 2006; Sinha et al. 2011; Morse et al.
2018). It is necessary for a human designer to understand the effects of uncertainty and
implement rational mitigation measures in the design processes chain. This depends on
the uncertainty management in the designing of decision workflow, that is, the manage-
ment of uncertainty information flows in decision process from one task to subsequent
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tasks through a graph topology with decision steps at certain graph nodes (Wang et al.
20192018a). Thus, the realisation of complex engineered systems using decision models
and analysis models that are typically incomplete, inaccurate, and not of equal fidelity
requires an understanding and prediction of process behaviours in design via managing
the uncertainties in decision workflows (Wang et al. 2018a).

Two challenges are involved in managing the uncertainties associated with the model-
based realisation of complex engineered systems (Wang et al. 2018b): (1) the challenge
of creating knowledge about the complex engineered systems, and (2) the challenge of
capturing and reusing tacit knowledge, building the ability to learn from data and cases,
and developing knowledge-based methods for guided assistance in decision-making. In
response to the above challenges, numerous research studies have focused on increasing
design knowledge to facilitate making decisions more comprehensive under uncertain-
ties, i.e. robust design (Ullman 2001; Park et al. 2006), which is a set of methods for
minimising the effects of uncertainties on product performance. For example, a domain-
independent and systematic robust design approach - Robust Concept ExplorationMethod
(RCEM) is presented by Wei Chen et al. (1996a) to maintain design freedom and enhance
the design productivity in the early stages of design, and some related works have been
employed successfully on various design problems (Allen et al. 2006). Accordingly, Design
Capability Indices (DCI) are proposed as a set of metrics for assessing the capability of a
ranged set of design specifications and they are also incorporated in the RCEM frame-
work (Chen et al. 1999). By extending the types of uncertainty and the corresponding
robust design, Choi et al. (2005) present amathematical construct, namely the Error Margin
Index (EMI) based on the DCI. Additionally, accounting for the characteristics of uncer-
tainty in multiscale materials design, an Inductive Design Exploration Method (IDEM) is
presented to find sets of design specifications that define a feasible solution space and
communicate these sets in a top-down manner, maintaining ‘design freedom’ as much
as possible (Choi et al. 2008b). More research works that are used to create knowledge
related to different types of robust design are introduced and categorised in detail by Allen
et al. (2006).

In terms of knowledge formal representation and reuse, uncertainty as an inevitable fea-
ture is attractingmore attention and significant research efforts for managing probabilistic
uncertainty, possibilistic uncertainty, and vagueness for the Semantic Web (Lukasiewicz
and Straccia 2008). For example, BayesOWL (Ding, Peng, and Pan 2005) and PR-OWL (Costa,
Laskey, and Laskey 2008) were defined in order to expand the capability of capturing prob-
abilistic knowledge about concepts, properties and relations in domains via an ontology-
based Bayesian network (Fenz 2012). However, less attention has been given to the ontol-
ogy of uncertainty management and robust design for complex systems (Efatmaneshnik
and Reidsema 2007).

To tackle the challenge of demands of knowledge archiving and reuse in decision-based
design, a Knowledge-Based Platform for Decision Support in the Design of Engineering
Systems (PDSIDES) (Ming et al. 2018) has been proposed based on the software systemDIS-
DES (Decision Support in the Design of Engineering Systems) (Mistree, Hughes, and Bras
1993). The platform PDSIDES provides well-managed design collaboration, rapid design
decision making, and effective design knowledgemanagement. In the context of platform
PDSIDES, a Design Guidance System (DGS) is proposed in order to enhance the design
automation and the intelligent support for the designing of decision workflows through
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the management of complexity and uncertainty (Wang et al. 2018b). Typical requirements
for enabling the uncertainty management in decision workflows include:

• How to model and account for variability in design process chain?
• How to handle uncertainty to ensure the design’s robustness, flexibility, and comprehen-

siveness?
• How to extend a designer’s abilities in order to understand and predict the process

behaviours in robust design?

To address the above requirements, the designing of robust decision workflows necessi-
tates integrating useful information from designers working at multiple length and time
scales, particularly for the integration of uncertainty information. Thus, the primary contri-
bution of this paper is a template-based ontological method for designing robust decision
workflows, which involves the identification of the procedural knowledge – define the pro-
cedure for design robust decision workflows, and the declarative knowledge – develop
an ontology for robust decision process template. Using the proposed method, a human
designer can determine the right combinations of design information via the creation and
reuse of decision workflows, and accommodate uncertainties in input parameters, simula-
tion models, and the process chain. An ontology-based robust decision process template
will improve the ability to communicate and to understand the process behaviours in the
collaborative exploration of system-level design space.

The remainder of this paper is organised as follows. In Section 2, we survey the knowl-
edge of uncertainties in design and the robust design, as well as provide a brief of the Deci-
sion Support Problem Technique, ontology-based uncertainty knowledge modelling, and
foundation of some previous relevant research. In Section 3, we propose an approach for
the designing of robust decisionworkflows. Section 4 is devoted to developing anontology
that represents the underlying knowledge related to the identified robust design process
template, aswell as the instantiation approach consistentwith theprocess templatemodel.
The efficacy of this method is illustrated by carrying out the robust design of the hot rod
rolling process based on the analysis and synthesis of processing-microstructure (cooling
module) and microstructure-mechanical (rod module) simulation models in Section 5, and
we end with the closing remarks in Section 6.

2. Frame of reference

This section summarises the related work and research foundations of this paper. As
shown in Table 1, the paper reviews the literature on knowledge of decision-making
and uncertainty management in design from four aspects: decision, uncertainty, robust-
ness, and ontology, which facilitates the understanding of contribution in this work. In
the first subsection, the classification of uncertainties and robust design approaches are
introduced, which draw forth the necessity of formal representation of capturing ontology-
based uncertainty knowledge in engineering design. In the second subsection, the related
researchwork in theDecisionSupport ProblemTechnique (DSPT) is explained, andprevious
work would be beneficial to understand the background of this study. In addition, the defi-
ciency of ontology-based uncertainty knowledge representation in the field of engineering
design is clarified, and based on that, we could identify the primary contribution
of this paper.
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Table 1. Overview of the knowledge of decision-making and uncertainty management.

Decision Uncertainty Robustness Ontology

Bras and Mistree
1993

Compromise decision Noise factors Compromise DSP
with signal to
noise ratio

*

Chen et al. 1996a Compromise decision Variations in noise
factors and control
factors

RCEM *

Simpson et al. 1997 Compromise decision Variations in noise
factors and control
factors

DCI *

Chen et al. 1999 Compromise decision Variations in noise
factors and control
factors

RCEM-DCI *

Ullman 2001 Selection decision Noise factors 12 steps for robust
decision-making

*

Sim and Duffy 2003 General design
evaluation

Vagueness,
imprecision,
etc.

* Ontology of generic
engineering design

Gurnani and Lewis
2005

Multi-attribute
selection decision

Imprecise or risky
attribute values

RASM *

Ding, Peng, and
Pan 2005

* Semantic uncertainty Bayesian network BayesOWL

Yang and Calmet
2005

* Semantic uncertainty Bayesian network OntoBayes

Choi et al. 2005 Compromise decision System response
variability and
parameter
uncertainty

RCEM-EMI *

Choi et al.2008b Compromise decision Model structure
uncertainty

IDEM *

Costa, Laskey, and
Laskey 2008

* Probabilistic
knowledge

Multi-entity Bayesian
networks

PR-OWL

Hasenkamp,
Arvidsson, and
Gremyr 2009

* Variation Robust design
methodology

*

Dubois and Prade
2009

General decision
theories

Possibility * *

Rockwell et al. 2009 General collaborative
design decision

* * Decision support
ontology

Lim, Ying, and Han
2012

* User preference
uncertainty

Bayesian network Product family design
ontology

Noor, Salcic, and
Wang 2016

Activity recognition
decision

Data, comprehension,
projection

* Ontology of activity
recognition

Ming et al. 2016 Compromise decision * * Ontology of
compromise
DSP

Ming et al. 2017 Selection decision * * Ontology of utility-
based selection
DSP

Howard et al. 2017 * Variation Variation man-
agement
framework

*

Wang et al. 2018a Compromise decision * Post-solution
analysis

Ontology of design
space exploration

Morse et al. 2018 * Ambiguity, epistemic,
aleatory, interaction

Tolerancing Uncertainty taxonomy

Singh et al. 2019 Supply chain resilience
decision

Supply chain network
interruption

Hybrid particle
swarm optimisa-
tion – differential
evolution

Ontology of resilience

Wang et al. 2019 Selection and
compromise
decision

* * Ontology of PEI-X
diagram
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2.1. Uncertainties in the design process and robust design

In the model-based realisation of engineered systems, especially in simulation-based
design, due to simplifying assumptions and idealizations, non-deterministic simulations,
and limited experimental data considering computations and cost, etc., the design of engi-
neered systems with hierarchical, heterogeneous, and multiscale complex characteristics
faces the intellectual challenges in uncertainty management (Allen et al. 2006; Sinha et al.
2011). Uncertainty is ubiquitous in engineering design, and it could be classified depending
on their causes (Morse et al. 2018). Simpsonet al. (1997) define the typeof uncertaintybased
on the source of variation for the performance, such as the variabilities in the design param-
eters, design variables, and constraints. Isukapalli, Roy, andGeorgopoulos (1998) divide the
uncertainties into three categories, namely the inherent randomness or unpredictability
of the physical system, the approximations and simplifications in the model formulation,
as well as the incomplete knowledge of the model parameters/inputs due to insufficient
or inaccurate data. Based on above classification, Choi et al. (2008b) defined the following
four types of uncertainty in engineering design: Natural Uncertainty (NU), Model Parameter
Uncertainty (MPU), Model Structure Uncertainty (MSU), and Propagated Uncertainty (PU).
Morse et al. (2018) identify a more detailed uncertainty taxonomy from the perspective of
manufacturing tolerance and uncertainty management in design.

Generally, it is expensive or even impossible to remove the sources of uncertainty, but
they can have a profound impact on the prediction of the system model and the perfor-
mance of the final system. As George Box said, ‘essentially, all models are wrong but some
are useful’ (1976), decision and analysis models used for the design synthesis are typically
incomplete and inaccurate, and the designers have to look for ways to somehow optimise
the design given the input variation. Sincemultiplying safety factors in an adhocmanner is
no longer plausible for design reliability (Choi et al. 2008a), the current research has shifted
attention to handling the uncertainty that is different according to the modelling of the
variabilities in design, such as, Gurnani and Lewis (2005) model the imprecise of design
alternatives attribute values and inabilities of the decision-maker, so as to investigate
the multiple, conflicting, and uncertain criteria in robust multi-attribute decision making.
Dubois and Prade (2009) have given their suggestions for the formal representation of
uncertainty knowledge from the perspective of Decision Theory and Artificial Intelligence.
Often in engineering design, the uncertainty can bemodelled with interval sets, fuzzy sets,
and probability distributions (Simpson et al. 1997). For example, in the Taguchi method
(Taguchi and Clausing 1990), the variation of the system response caused by the noise fac-
tors is described as the quality loss function, and the signal-to-noise ratios combine the
mean response and the standard deviation, which is used to measure the overall quality of
the system. Chen, Allen, and Mistree (1997) further develop the Taguchi method and use
normal distributions to model the variability in the design parameters by considering the
variation of the design variables. Choi et al. (2005) model the unparameterizable variability
as intervals in the parameters of a metamodel.

Two primary approaches are available to minimise the uncertainty impact on prod-
uct performance: one is mitigating or eliminating uncertainty, and the other is managing
uncertainty (Allen et al. 2006; Choi et al. 2008a). The former is attainable by developing a
‘perfect’ model with a larger amount of data and system knowledge, e.g. Monte Carlo Anal-
ysis (Choi et al. 2008b), an assessment of the various factors using fuzzy sets (Gurnani and
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Lewis 2005). Obviously, it is not the focus of this paper, our purpose of managing uncer-
tainty is to design a system that is relatively insensitive to uncertainties without removing
the sources, namely robust design. Some methods and tools of robust design have been
developed to the management of uncertainty and variation (Ullman 2001; Park et al. 2006;
Howard et al. 2017), and they are effective in improving product reliability and reducing
design risk. However, it is a universal awareness that robust design methods do not expe-
rience widespread success in the industry (Howard et al. 2017), and one reason for this is
the lack of a coherent robust process (Göhler, Ebro, and Howard 2017). There are many
interestingdesign approaches andapplications used to formulate a strategy for uncertainty
management and facilitate the exploration of a broad design space via the integration of
statistical experimentation and approximate models, robust design techniques, multidis-
ciplinary analyses, and multi-objective decisions (Allen et al. 2006; Hasenkamp, Arvidsson,
and Gremyr 2009).

2.2. Decision support problem technique

The philosophy of Decision-BasedDesign (DBD) holds the perspective that the primary role
of designers is tomake robust design decisions given the uncertainties associated with the
system and models (Ullman 2001). The Decision Support Problem Technique (DSPT) is a
framework for a systemdesign in viewof theDBDmindset (Mistree, Hughes, andBras 1993).
In the DSPT, the compromise Decision Support Problem (cDSP) is a generic mathematical
formulation of a decision construct (as shown in Figure 1), which is based onmathematical
programming and goal programming (Mistree, Hughes, and Bras 1993), and it assists the
designers in carrying out trade-offs among multiple conflicting goals. By using the cDSP,
the designers’ goal is to find satisfying solutions for the desired system performance rather
than optimum solutions that are valid only in a narrow range of conditions. In the context
of the DSPT, the apparent strength of the cDSP is the handling of highly constrained envi-
ronments (Murphy, Tsui, and Allen 2005), and also been verified to achieve robust design
(Bras and Mistree 1993). Many extensions of the cDSP that enable it to be strengthened
and/or specialised through augmentation are defined. The most relevant to this paper is
the robust design decision formulations of the cDSP and their corresponding integrated
computational approaches, such as the Robust Concept ExplorationMethod (RCEM) (Chen
et al. 1996a), RCEM – Design Capability Indices (DCI) (Chen et al. 1999), RCEM – ErrorMargin
Index (EMI) (Choi et al. 2005), and Inductive Design Exploration Method (IDEM) (Choi et al.
2008b).

In the approach proposed by Chen et al. (1999), a cDSP-DCI based computational pro-
cedure in RCEM that generates multidisciplinary design solutions for probability-based
robust design and also defines a design process as either a robust design Type I or Type
II. Building on that work, Choi et al. (2005) propose a cDSP-EMI for robust design Type III (as
shown in Figure 1), where the EMI is capable of indicating the location of the mean system
performance and the spread of the performance considering the variabilities in both the
design variables and the systemmodels. Taking into account the propagation of the above
three types of uncertainty (Allen et al. 2006), especially in a multiscale material design,
Choi et al. (2008b) propose a multi-level and robust design method – IDEM, which effec-
tively facilitates the robust design for the analysis and design chain of the models with the
presence of the MSU in the hierarchical design of the multiscale systems.
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Figure 1. Mathematical formulations of baseline cDSP and cDSP-DCI/EMI for robust design.

In the context ofDSPT, various design activities related todecision-making are organised
as a domain-dependent process (Mistree, Smith, and Bras 1993), then formulated as deci-
sionworkflows via using thePEI-X (Phase-Event-Information – X) diagram. Furthermore, the
PEI-X diagram is used to achieve the designing of decision workflows from a perspective
of event-based time, where the X can be identified as Decision, Task, System, Knowledge,
as well as other essential elements that enable to extend a designer’s ability of decision-
making (Wanget al. 2019 ). As anuniform representation schemesofmeta-design, theDSPT
palette entities are used to modelling the design processes in PEI-X diagram, as shown in
Figure 2, which enables the designers to plan the Support Problems (SPs) and order the
various information aspects of the design problem.

As a meta-level of designing systems/processes, meta-design includes the partitioning
of a design problem, the decomposing of the design processes into a set of decisions
and the planning of the sequence of decision-making activities (Wang et al. 2019). Com-
pared with the traditional process models, such as the Business Process Modeling Notation
(BPMN), IDEF0, Design Structure Matrix (DSM), and Event-driven Process Chain (EPC), the
Decision-Based Design (DBD) puts more emphasis on the partnership between humans
and computers, and its guiding philosophy is emphasising the core role of designers in
the computer design environment is the decision makers (Mistree, Smith, and Bras 1993).
The PEI-X diagram enables the visualisation of the decision-centric design process and the
decision-makingproblem formation (Schönberg andMesser 2018), where the decisions are
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Figure 2. The DSPT palette entities for decision process modelling (Mistree, Smith, and Bras 1993).

categorised in two main types of DSP, i.e. selection decision and compromise decision.
In this paper, we will expand the capability of the PEI-X diagram in designing of robust
decision workflows.

2.3. Ontology-based uncertainty knowledge representation

In the computational environment, the modelling of design process is used as a template
in order to facilitate the reusability and executability of the domain-dependent information
via the separation of the declarative knowledge (i.e. problem-specific information) from
the procedural knowledge (i.e. process-specific information) (Panchal et al. 2004; Panchal
et al. 2009; Schönberg andMesser 2018). A template-based approach formodelling various
design decisions and uniform representation of specific mathematical models is presented
and validated in different application cases (Panchal et al. 2004; Ming et al. 2016; Ming et al.
2017), and it provides modular support for human judgment in system design bymeans of
the structured decision information content. Decision templates are created by developing
a set of ExtensibleMarkup Language (XML) schemaswhich provides a convenient and stan-
dardised means of capturing information (Panchal et al. 2009). However, the consistency
and inherent structure of the manner in which the reusable information is used necessi-
tates the formalisation and representation of knowledge in the decision-making process.
As specifications of conceptualisation, ontologies provide common vocabularies or terms,
aswell as their relationships, to enable the formal representation of domain-specific knowl-
edge (Noy and McGuinness 2001), which can used to facilitate the creation and reuse of
decision templates.

Ontologies have been widely used in various application areas such as information inte-
gration, semantic retrieval, knowledge exchange, management, etc. (Torga, Andreasen,
and Marjanoviä 2010), which benefit from their characteristics of flexibility, intelligent
behaviour, semantic interoperability, and expressiveness (Wang et al. 2018b). Some valu-
able design information will be captured and archived in a general way, along with a set
of concepts describing an area of knowledge that can be shared and reused among teams
and even software agents in a distributed design environment (Moon et al. 2009). Such as,
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Rockwell et al. (2009) develop a Decision Support Ontology (DSO) to support the informa-
tion communicationof decisionmakingwithin collaborative design. Noor, Salcic, andWang
(2016) illustrate the significant value and benefits of ontology in the activity identification
under uncertainty.

Meanwhile, a series of ontologies also are developed to facilitate the efficiency and
effectiveness of a human designer who uses a DGS in PDSIDES to design the decision
workflows. These ontologies include a PEI-X ontology for meta-design process hierarchies
that integrates the information related problem, product, and process in the decision-
making processes (Wang et al. 2019), ontologies for compromising DSP template (Ming
et al. 2016) and the utility-based selection DSP template (Ming et al. 2017) that repre-
sent and document the knowledge of the decision-solving model, and an ontology for
systematic design space exploration that integrates the decision-centric design problem-
solving process (Wang et al. 2018a). Additionally, based on the corresponding ontologies,
the template-based ontological method is validated effectively in terms of capturing and
reusing the information of decision support in various design problem applications, such
as the adaptive design of cylindrical pressure vessel, a rapid prototyping resource selection
problem, the design of a shell and tube heat exchanger, and a hot rod rolling process chain.

Numerously published research in the semantic community is focused on the extension
of the ontologies’ capability to facilitate the formal representation of uncertain knowledge
and to support reasoning with inaccurate information (Yang and Calmet 2005; Ding, Peng,
and Pan 2005; Costa, Laskey, and Laskey 2008). The primary idea of these work augments
and supplements the Web Ontology Language (OWL) as an underlying ontology mod-
elling language with uncertainty and annotates it with Bayesian networks (also referred
to as probabilistic networks), which facilitate the ability to express and assess probabilis-
tic knowledge (Yang and Calmet 2005; Fenz 2012). For example, the customer preference
uncertainty in the product family design is modelled as a feature preference probabil-
ity towards certain product attributes using the customer preference survey data, and
the propagation and the impact of the preference uncertainty are evaluated quantita-
tively through the ontology-based Bayesian network (Lim, Ying, and Han 2012). Further,
Costa et al. (2012) define an ontology reference model developed as part of the uncer-
tainty representation and reasoning evaluation framework (URREF), which is being carried
out by the Evaluation of Technologies for Uncertainty Representation Working Group
(ETURWG). Also, PR-OWL (ProbabilisticWebOntology Language) is developed as a Bayesian
ontology language to serve as a supporting tool for applications (Costa, Laskey, and
Laskey 2008).

However, some practical limitations have also been realised with regards to industrial
implementations, especially in terms of robust design for model-based complex engi-
neered systems, the attention to the representing and capturing process-related knowl-
edge that refers to the uncertainty management is still not enough. Sim and Duffy (2003)
identify an ontology of generic engineering design activities, where the ambiguity and
uncertainty are integrated into the activity of defining. Singh et al. (2019) developed a deci-
sion support ontology to enhance the resilience of the supply chain with the uncertainty
of disruptions. In the context of DSPT, the most previous work related to decision-making
knowledge representation has been focused on the information under the case of certainty
in design, nevertheless, uncertainty is a more commonly encountered factor during the
engineering design process. Thus, the typical requirements of uncertainty management
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identified in Section 1 are addressed in this paper, and it enables the users of PDSIDES to
design the decision workflows with uncertainty.

3. Uncertainty management approach in designing of decision workflows

3.1. Requirements for uncertaintymanagement in decision workflows

Since leveraging the knowledge related to the design process has become crucial to
improving enterprise agility, the strategic methods for the effective management of enter-
prise intellectual capital also have drawn more attention (Wang et al. 2019). Most of the
designprocesses for complexengineered systemsare structured in anad-hoc fashionbased
on previous design experience (Panchal et al. 2009). Therefore, we have realised that the
quality of processes for systemsdesignshave agreat influenceon cost anddesignefficiency
(Wang et al. 2018a). As Herbert Simon pointed out ‘design process strategies can affect not
only the efficiency with which resources for designing are used but also the nature of final
design as well’ (Simon 1996). Hence designing the design processes, namely, meta-design,
is an essential component in the systems-based design strategy for designing complex sys-
tems, particularly for multiscale systems with high degrees of nonlinearity and uncertainty
(Panchal et al. 2007).

Due to the coexistence of various uncertainties in design, from the perspective of a
model-based realisation of complex engineered systems, the application of existing pro-
cesses, methods, and tools in the management of various uncertainties necessitates a
computational environment that enable the system model to integrate the associated
information of robust design (Wang et al. 2018b). Since the semantic interoperability of
ontology in the computer environment, a template-based ontologicalmethod is employed
in Section4 to represent andcapture theuncertain knowledge in engineeringdesignon the
foundation of Decision Support Problem Technique (DSPT) introduced below. The devel-
oped ontology for the robust decision process will enable human designers to understand
and predict the process behaviours in decision-making.

In the context of DSPT, robust decision-making refers to a particular set of methods aim-
ing to help human designers identify potential robust strategies under the conditions of
complexity and uncertainty. A decision-centricmeta-design for the complex systemdesign
requires the information flows of the decision processes to be effectively organised and
combined, which will assist a human designer in accommodating uncertainty and making
a robust decision in design. The traditional designprocessmodels, such as the IDEF0, BPMN,
and EPC, are unsuitable for describing the information of the existence of uncertainty in the
process chain. Phadke (1989) proposes a P-Diagram to represent the quality characteristics
of a process/product that is useful for describing a robust design task based on a semantic
graphical representation. From the perspective of DBD, the PEI-X diagram has the ability
to visualise hierarchical decision processes, which provides a basis for the graphical repre-
sentation of robust design information between decision-making activities. However, it is
difficult to use the P-Diagram and PEI-X diagram to express a series of activities associated
with the robust design and the impact of theuncertainty on thedecision-makingprocesses.
Therefore, it is necessary to use a hierarchical process model with a stronger semanti-
cally graphical expression to explicitly depict the value of the parameters interlinked with
individual subsystems and the propagation characteristics of the uncertainty in the model
and the process chain.
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3.2. Procedure for designing robust decision workflows

In this paper, a domain-independent approach is proposed to assist the designers in
defining and creating the reusable and computational decision workflows that involve
experimental design, statistical analysis, and decision-making. The approach includes the
following steps:

3.2.1. STEP 1: identify the types of uncertainty
Numerous research studies have clarified and verified that variations in the early design
phase will have a significant impact on the quality and performance of the subsequent
design. Thus, the most important part of implementing the effective management of the
various uncertainties in design is the identification of the uncertainty types, which involves
determiningwhether the uncertainty is quantifiable. Therefore, the primary task of specify-
ing the design problem is to distinguish the attribute types and numeric types of the design
parameters. There are four attribute types defined for the parameters of the simulation
model, which cover control factors, noise factors, the response, and the fixed parameter.
Additionally, the numeric types of parameters need to be specifically described as intervals
or discrete values. The influence of uncertainty on the system itself is considered, namely
the attribute types of the simulation model that need to be defined. To assist the design-
ers in completing the above work, a graphical expression for designing the hierarchies of
a robust design is defined, which uses strong semantics to represent the features of each
element in the robust design model layer. As shown in Table 2, a revised graphical expres-
sion adopted by (Choi 2005) is used to capture three semantic information items of the
model entity, the data attribute, and the composite pattern. The graphical representation
of the robust design process facilitates the identification of uncertaintymanagement types.
Furthermore, the robust design hierarchy is represented explicitly in the form of graphics,
whichwill also increase the understanding of the relationship between the elements of the
simulation model and the propagation of uncertainty between them.

Table 2. Graphical expression for the hierarchies in robust decision workflows.

Entity Symbols Semantics

Rhombus box Control factors, noise factors,
the response, and the fixed
parameter

Pentagon box Certain model

Hexagon box Uncertain model

Arrow Line Symbols Semantics

Single solid line Discrete & certain
Single dotted line Discrete & uncertain
Double solid line Ranged & certain
Double dotted line Ranged & uncertain

Composite Pattern Symbols Semantics

Arrow from the left into the box Given value/parameter

Arrow from the top into the box Goal/required response
Arrow out of the box to the right Determined variable

Arrow out of the box to the bottom Output response
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For quantifiable sources of uncertainty, we define three variations based on the proba-
bility distributions of the parameters of a system, namely certain mean (μ), variance (σ 2),
and deviation (�x). The acquisition of these quantifiable variation values will be used to
determine the estimationof the system response,whichwill bemanagedwith twodifferent
methods.

• Onemethod is themanagement of the Input Parameter Uncertainty (IPU), whichmeans
handling the uncertainty that is caused by the variability of input parameters (i.e. noise
factors and control factors) in the system model. This method also ensures that the
obtained solutions are relatively insensitive to the variation generated by the input
parameters. The corresponding robust design for this type of uncertainty management
type is Type I (for noise factors) or Type II (for control factors).

• Another method is the management of the Model Parameter Uncertainty (MPU), which
means handling the uncertainty that is caused by the unparameterisable variability in
the systemmodel. The corresponding robust design is Type III, and it is used to identify
a ranged set of solutions that are relatively insensitive to the variabilitywithin the system
model.

Due to the limited knowledge of the system, there are some assumptions and simplifica-
tions in the simulation, which will cause the propagated uncertainty in a chain of models.
This type of uncertainty source is unquantifiable, which is managed by the method of
Model Structure Uncertainty (MSU). MSU belongs to the Type IV robust design, which may
include two other types of uncertaintymanagement. Various types of robust designwill be
performed in Step 3.

3.2.2. STEP 2: design the hierarchical decision workflows
20192019The robust design problem is modelled structurally with the graphical expres-
sion defined in Step 1. Most of the information used to describe the specific problem will
be organised in a displayablemanner. The remaining issue is how to use this information to
solve the design problem through a reasonable process. In the context of the DSPT, various
sequences of the computational tasks related decision-making are organised in the deci-
sion workflows. The process granularity of the different levels is partitioned and planned
in order to form the meta-design hierarchy of decision workflows. According to the identi-
fied methods of uncertainty management and the types of robust design, the hierarchical
decision workflows are further defined to provide the executable processes that can be
used to obtain solutions that satisfy the design requirement in the given design space.
To increase the efficiency and effectiveness of the meta-design for decision workflows, a
graphical decision-making process is modelled on the format of PEI-X diagram process lan-
guage. Depending on the focus of the functional goals, the decision workflows consists
of five types of process templates, namely ‘Design’, ‘Phase’, ‘Event’, ‘Decision’, and ‘Task’
(Wang et al. 2019). The iteration of the specific activities is implemented in each executable
process template via the embedded computable module. The generated information will
be used for the uncertainty management in Step 1.

3.2.3. STEP 3: Execute the sequential computability routines
The partitioning and planning of the executable design activities are implemented in
Step 2. To obtain the solution that meets defined design requirements, the sequential
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computability routines embedded in the process template need to be executed. The
definition of the computability routines in the decision workflows is relevant to the goals
of the design activities. Some of the goals associated with design space exploration have
been described in (Wang et al. 2018a), such as the response surfacemodelling in theDesign
of Experiments module and the design preferences exploring in the Post-Solution Analysis
(PSA) module. In this paper, we focus on other computability routines associated with the
three types of uncertainty management identified in Step 1.

• The computability routines for the IPU management. In the IPU management, the formu-
lations of the mean and the variance of the response defined in (Chen et al. 1996b) are
employed in the robust designs Type I and Type II. The solutions that satisfy a set of per-
formance requirement targets are foundby taking into account the systemperformance
deviation that resulted from the variation of noise factors and control factors. TheDesign
Capability Indices (DCI) also need to be calculated in the robust design Type III, since the
design variables can be identified as adjustable ranges rather than a single value. This
means that the solutions satisfy a ranged set of performance requirements (Simpson
et al. 1997).

• The computability routines for the MPU management. In the robust design Type III, the
premise of the above design scenario is that the simulation model is certain. When
the simulation model is identified as uncertain in Step 1, the Error Margin Index (EMI)
needs to be calculated based on the formulation of the variability interval in the sys-
tem response. The approach for estimating the lower/upper response bound function is
developed by Choi et al. (2005).

• The computability routines for theMSUmanagement. All of above computability routines
may appear in the robust design Type IV because of the identification of the uncer-
tainty type for each model in the chain of simulation models. To find the adjustable
ranges for the given design space under the uncertainty propagation, the design-
ers need to evaluate discrete points in the simulation model. The most important
part of the evolution processes is searching the feasible region for the interdepen-
dent space between two models, based on the hyper-dimensional EMI (HD-EMI) and
using the discrete points generated from the mean, minimum, and maximum response
functions. The detailed calculation procedure is developed in the IDEM (Choi et al.
2008b).

4. Ontology development for robust design decision process

Following the requirements of uncertainty management presented in Section 1, a modu-
lar template for the robust design decision process is defined in order to achieve the goals
of reusability and executability. Further, a frame-based ontology is developed based on the
module elements embedded in the robust design template, which enhances the designer’s
understanding of process behaviour. Then the instantiation procedure of the ontology-
based template is elaborated in keeping with the design approach of the robust decision
workflows. Insteadof using visual tools (e.g.OWL-VisMod) todisplay theontology structure,
the visualisation ofmeta-design in robust decisionworkflows is achieved via a graph-based
editing tool in Protégé1 (Garcíapeñalvo et al. 2014).
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4.1. Themodular template for the robust design

In the computational environment, a modular-based design approach enables a designer
to construct reconfigurable and executable process templates, which can implement flexi-
ble configurations for the different types of uncertainty management identified in the pro-
posedmethod in Section 3. Thus, amodular-based template for robust design is developed
for enhancing the capabilities of reusability and executability.

As shown in Figure 32019, the robust design template is visualised as a structure similar
to a printed board assembly having some electronic components, where the elements are
represented by ‘chips’ and the procedure for achieving the design of robust decision work-
flows is representedby the ‘breadboard’. Three reuse scenarios defined in (Wanget al. 2019)
and some modules and templates developed by (Wang et al.2019 ; Wang et al. 2018a),
which are reused in order to capture the information of the decision process and related
problemmodel in the robust design. The Process Template for integrating the meta-design
ofdecisionworkflows is reused in the formof anassembly, and the instantiatedProcessTem-
platewith specific information corresponding to the ‘chips’ (e.g. the Support Problemsor the
cDSP template) is used to populate the related property Slots of the robust template. For
example, the parameter information of the factors (i.e. the control factor or the noise fac-
tor), responses, and fixed parameters for the simulationmode is captured and documented
by the module of the Response Surface Model developed in the design space exploration
ontology. In this paper, wewill define other newmodules associatedwith uncertaintyman-
agement, which include the Response Function, Variation, and Uncertainty. The functions of
each module are described in detail in Section 4.2.

4.2. Definition of Classes and Slots

A frame-basedontology for the robust designdecisionprocess template is developedusing
Protégé 3.5,2 which has ability to capture and document the re-usability information in
the robust design and support the integrated management of uncertainty in design. The
robust design decision ontology consists of the Classes and Slots, and by mapping
to the robust design template, the ‘chips’ embedded in the ‘breadboard’ identify the main
Classes of the ontology. Meanwhile, somesub-classes are also identified to increase
the semantic richness and integrity of the robust design template ontology. Here, we focus

Figure 3. The modular template for the robust design.
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Table 3. Classes of the robust design process ontology.

Class Definition

Robust_Template A formulation that integrates all the associated modules and represents the
information structure of the robust design

Uncertainty A class that represents the different management types under the various source of
the types of uncertainty

ResponseFunction A class that represents the functional relationship of the system performance response
under uncertainty

Variation A class that represents the quantitative degree of variation of the factors in the
uncertainty

InputParameterUncertainty A sub-class of ‘Uncertainty’ that represents the management of the robust design
information due to the uncertainty from the system input parameters (i.e. ‘control
factors’ and ‘noise factors’)

ModelParameterUncertainty A sub-class of ‘Uncertainty’ that represents the management of robust design
information due to the uncertainty from the system simulation model parameters
(i.e. the unparameterizable variability of the model)

ModelStructureUncertainty A sub-class of ‘Uncertainty’ that represents the management of the robust design
information due to the uncertainty from the system model structure formulation
(i.e. the approximations and simplifications in a model)

MeanResponseFunction A sub-class of ‘ResponseFunction’ that represents the mean function of the response
under different types of uncertainty

VarianceResponseFunction A sub-class of ‘ResponseFunction’ that represents the variance function of the response
LowerResponseBoundFunction A sub-class of ‘ResponseFunction’ that represents the lower deviation function of the

response
UpperResponseBoundFunction A sub-class of ‘ResponseFunction’ that represents the upper deviation function of the

response
Mean A sub-class of ‘Variation’ that represents the givenmean value of the factors (including

the control factors and noise factors)
Variance A sub-class of ‘Variation’ that represents the given variance value of the factors

(including the control factors and noise factors)
Deviation A sub-class of ‘Variation’ that represents the given variance value of the control factors

on the definition of theClasses: ResponseFunction, Variation, andUncertainty, the seman-
tic relationships captured using Slots among those Classes. There are two types of
Slots – data slots and object slots. Data slots are used to link the classes to the end data,
while object slots are used to link the classes to the other classes. The detailed definitions of
the Classes and Slots are shown in Tables 3–5. Some Classes and Slots that reuse
the previously developed ontologies (Ming et al. 2016; Wang et al. 2019; Wang et al. 2018a)
are not described here, such as Process_Template, hasParameter, name, value, etc.

4.3. Instantiation procedure of the robust decision process template

According to the design method for robust decision workflows defined in Section 3, the
robust design template is assembled by the following modules and templates: Response
Surface Model, Variation, Uncertainty, and Process Template, as shown in Figure 4. In the
instantiation procedure of the robust design template, one of the important aspects is to
create a PEI-X process template with the appropriate granularity, which is used to solve
the defined design problem under uncertainty. The approach for creating and populat-
ing the property slots in the process template is explained in (Wang et al. 2019). Here, we
focus on the designing of robust decision workflows and achieving uncertainty manage-
ment through the reuse of Instances Information that is created in the Process_Template.
Basedon thedevelopedontology, the instantiationprocedureof robust decisionworkflows
involves three key steps:
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Table 4. Object slots of the robust design process ontology.

Class Definition Type

robustDesignType Specifies the type of the robust design Instance
hasSM Specifies the surrogate model instance of the Robust_Template Instance
hasTEM Specifies the theoretical empirical model instance of the

Robust_Template
Instance

hasCFs Specifies the control factor instance of the Robust_Template Instance
hasNFs Specifies the noise factor instance of the Robust_Template Instance
hasUncertainty Specifies the type of uncertainty instance of the Robust_Template Instance
hasMeanResponseFunction Specifies the MeanResponseFunction instance of the

InputParameterUncertainty and theModelParameterUncertainty
Instance

hasVarianceResponseFunction Specifies the VarianceResponseFunction instance of the
InputParameterUncertainty and theModelParameterUncertainty

Instance

hasUpperResponseBoundFunction Specifies the UpperResponseBoundFunction instance of the
InputParameterUncertainty and theModelParameterUncertainty

Instance

hasLowerResponseBoundFunction Specifies the LowerResponseBoundFunction instance of the
InputParameterUncertainty and theModelParameterUncertainty

Instance

MeanOfCF Specifies theMean instance for the control factor Instance
MeanOfNF Specifies theMean instance for the noise factor Instance
VarianceOfCF Specifies the Variance instance for the control factor Instance
VarianceOfNF Specifies the Variance instance for the noise factor Instance
deviationOfCF Specifies the Deviation instance for the control factor Instance
designSpace Specifies the generated discrete points for the defined design variables

instance in the design space
Instance

interdependentSpace Specifies the generated discrete points for the defined design variables
instance in the interdependent space

Instance

Table 5. Data slots of the robust design process ontology.

Class Definition Type

lowerRequirementLimit The value of the lower requirement limit for the system performance design
requirement

Float

upperRequirementLimit The value of the upper requirement limit for the system performance design
requirement

Float

targetForDCI The target value for the design capability index Float
targetForEMI The target value for the error margin index Float
targetForHD-EMI The target value for the hyper-dimensional errormargin index used to estimate

interdependent space
Float

valueOfHD-EMI The value of the hyper-dimensional errormargin index used to estimate design
space

Float

CL(1-α) The value of the confidence level used to predict the interval estimation with
the Student t-distribution

Float

numOfPredictors The number of predictors in an approximatemodel used to predict the interval
estimation with the Student t-distribution

Integer

numOfSamples The number of samples used to predict the interval estimation with the
Student t-distribution

Integer

decisionCriterion The decision preference used to indicate the location of the system response String

(1) Create the Instance of Robust_Template and the associated modules (i.e. Response-
Function, Variation, and Uncertainty). Based on the characteristics of the parameters in
the defined design problem (i.e. the variation of parameters in the simulation model),
the designer selects and edits the relevant box, arrow line, and composite pattern to
depict the graphical hierarchies for the simulation model using the graphical expres-
siondefined in Step 1 (see the Section 3.2). Thiswill facilitate the identification of robust
design types and the uncertainty management involved.

(2) Create theInstance of Process_Template and the associatedmodules (i.e. SPs_Entity,
Sys_Entity, cDSP_Template, Information, GeneralDesign_Knowledge, and Interface).
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Figure 4. Instantiation procedure of the robust design template.

Based on the identified robust design type, the designers select and edit the relevant
process entity, information, and interface in order to depict the graphical hierarchical
decision workflows, whichmainly refer to the partitioning and planning of the support
problems.

(3) Run the executable modules that are embedded into the defined decision workflows,
and populate the property Slots in the Instance of Robust_Template by reusing
the created Instance of Information. In the Instance of Process_Template, the
executable computing modules (e.g. developing the response surface model, calcu-
lating the functions of DCI/EMI, solving the cDSP-DCI/EMI model) will be embedded
in the process templates at different levels in the format of knowledge. Through
invoking and instantiating these modules, the generated information is reused and
populated into the property Slots of Uncertainty and ResponseFunction in the
robust design template, such as determining the information instances of response
function by the instantiating the designing of experiments or reusing empirical
models.

5. Case study

In this section, the utility of robust decision process template ontology is illustrated via
a hot rod rolling (HRR) process design problem – an integrated design of product, mate-
rial and associated manufacturing processes that calls for a series of hierarchical decisions
to manage the uncertainties involved. The goal of designer (decision-maker) is to identify
the material structures and processing paths that achieve/satisfy certain required product
and manufacturing process-level properties and performances (Nellippallil et al. 2018b).
Some model-based methods for the realisation of engineered products, materials, and
associated manufacturing processes are presented to couple the material processing-
structure–property-performance spaces (Olson 1997; Sinha et al. 2011). Here, the robust
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decision process chain of hot rod rolling simulation models are explained and the uncer-
tainty knowledge of robust design for simulation models is represented and captured by
using the developed ontology in this paper.

5.1. Hot rod rolling process design problem

In steel manufacture process, the products (e.g. rod, bar) involve a series of unit operations
like continuous casting, reheating, rolling, cooling, etc. Integrating vertical and horizontal
information flows for hot rod rolling process chain problem is achieved by carrying out the
modelling ofmaterial behaviours at different scaleswithin different unit operations (Nellip-
pallil et al. 2017). The development of steels with high-quality performance and a range of
properties are pursued by manufacturing designers, and the steel products’ performance
andmechanical property could be improved bymanaging thematerial processing and tai-
loring the microstructure of steel material generated (Wang et al. 2018a). In this way, the
designer has to deal with the highly complex decision process chain to identify the pro-
cess parameters, system variables, constraints and bounds, conflicting goals, etc., because
of a large amount of information for the sequential manufacturing process and material
processing flows.

Traditional plant trials are usually expensive and time-consuming, thus simulation-
supported that involve by exploiting the computational modelling at different scales are
carried out to obtain the desiredmechanical performance andproperties for the steel prod-
ucts. The showcase simulation model chain of HRR in Figure 5, Nellippallil et al. (2017,
2018b) define the forward information flows of twomanufacturing stages in hot rod rolling
process, namely hot rolling and cooling. The rod as the end product is measured by the
identified mechanical property space, i.e. yield strength (YS), tensile strength (TS), and
hardness (HV), which dependent on the final microstructure after cooling like the phase
fractions of ferrite (Xf ) and pearlite (Xp), ferrite grain size after the transformation of austen-
ite to ferrite and pearlite (FGS, Dα), the pearlite interlamellar spacing (So) and the chemical
composition of the material (e.g. silicon [Si], nitrogen [N], manganese [Mn], etc.). Hence
the microstructure space is generated during the cooling state of HRR process, where the
inputs involve the final austenite grain size (AGS, D), the cooling rate (CR), and the chem-
ical composition of after rolling stage process. The integrated design of hot rolling and
cooling processes completes the forward material workflow for the HRR we are address-
ing and establishes the process-structure–property-performance hierarchy for thematerial
system.

Many have highlighted the challenges associated with the simulation-based multiscale
material design (Sinha et al. 2011; McDowell 2018), among these are the challenges aris-
ing: (1) uncertain material models (that includes input factors, parameters, responses, etc.)
due to simplification/idealization or a lack of complete knowledge, and (2) the propaga-
tion of uncertainty due to hierarchical information dependence in amultiscalemodel chain
or in Olson’s relationship of processing-structure–property-performance. To find the sat-
isfying robustness solution for specific design requirements, the vertical and horizontal
integration of simulation model chain for HRR design problem further ask for the designer
to carry out the decision-based robust design exploration of the manufacturing process
chain. Hence the uncertainty management in designing robust decision workflows is crit-
ical. This requests the designer to determine the sequence of activities needed for the
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Figure 5. The simulation model chain of hot rod rolling process.

systematic exploration of design space under uncertainty and ensure the determination
of the right combination of robust design information that meets the various conflict-
ing goals and constraints. To illustrate the uncertainty management of designing decision
workflows, our focus in this work is to demonstrate how a designer can capture, repre-
sent, and document the re-usability information in the hot rod rolling problem and thereby
support the designers to explore the design space via using the robust decision process
template.

5.2. Robust decision process for the processing-microstructure simulationmodels

In the cooling stage of HRR process, the process designer needs to initially determine
the basic elements of the problem model before he/she creates the processes of solving
and exploring the problem identified. That is the purposes of the robust design template
are to allow the designer to define the initial robust design space of the problem to be
solved, which refers to factors (i.e. signal factor, control factor, and noise factor), response,
fixed parameter, and the process/product model. As shown in Figure 6, an instance of
the robust template for the cooling module is created based on Step 1 of the approach
defined in Section 3, where a graphical expression for designing the hierarchies of robust
design is displayed. Further, the integrated information of uncertaintymanagement and its
associated robust decision process also should be captured and documented to support
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Figure 6. Instance of the robust design template for cooling module in HRR process.

the process designer in find the robust solution. For the cooling module of HRR problem
addressed in this paper, the Instance of Robust_Template ‘HRR_RD_CoolingModule’ is
created and the Slots are populated by the corresponding instances. Here we showcase
the same using Figure 5, the designer is adopting the empirical models for processing-
microstructure simulation chain (Nellippallil et al. 2018a), where the responses (i.e. ferrite
fraction Xf , ferrite grain size Dα , and pearlite interlamellar spacing So) are defined as the
function of the control factors (inputs of microstructure space) and some related fixed
parameters. Meanwhile, the details of this information are identified in the Instance of
PEI-X process template ‘HRR_RD_Event_ CoolingModule’ embedded in the robust design
template.

As shown in Figure 7, the hierarchical decision workflows are created based on the Step
2 of the approach defined in Section 3. According to the definition of the different types of
process templates in (Wang et al. 2019), the Instance ‘HRR_RD_Event_CoolingModule’
is an ‘Event’ process template. The prime function of event process template is to par-
tition the design problem into some decision support problem and associated task
support problem, then plan their execution sequences. Also, the design object along
with its attribute information of the design decision and task, as well as the necessary
knowledge reused in the design activities are populated. In the case of cooling mod-
ule, the inputs of the event instance are constituted of the embedded Instances
‘HRR_RD_Cooling_DesignRequirement’ and ‘HRR_RD_Cooling_DesignSpace’, and the out-
puts is ‘HRR_RD_Cooling_Solution’. And the instance of event support problem is divided
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Figure 7. Instance of the hierarchical decision workflow embedded in the robust template for cooling
module.

into three related tasks and one decision activities, where the Instances ‘T2#1:
ClarifyingTask’, ‘T2#2: EstimatingUncertainty’, ‘D1#1: compromiseDSP’, and ‘T2#3: Explor-
ingSolutionSpace’ are created and populated, the detailed procedure and slots for each
template instance have been illustrated in (Wang et al. 2018a) and (Ming et al. 2016). The
information flows among those support problem entities are represented via the interface
Instances like ‘Interface: E1-T1#1’, ‘Interface: 1#1-2’, etc, the detailed description of the
interface for the process template is explained in (Ming et al. 2017).

The different activity modules in the process template focus on identifying and pro-
cessing related attributes, the main information embedded in the event process template
instance is shown in Table 6. For example, the information instance for design require-
ment and design space are populated to capture and document the given problem state-
ment of the cooling module in HRR process and relevant target and boundary like upper
requirement limit (URL) for signal factors. This attribute information will be beneficial for
the designer to identify and clarify the basic elements of the problem/process model in
‘Task1#1’, which is extremely important for the instantiation of the robust design template
mentioned above.More critical is to identify the type of uncertaintymanagement based on
this information and to estimate the associated uncertainty in subsequent tasks. Here the
Instance ‘Task1#2’ is performed following the Type II of robust design, the DCIs as met-
ric for systemperformance and robustness are calculated by usingmean response function
and response variation function.

Based on the aforementioned tasks and attribute information, the uncertainty manage-
ment module in the robust design template can be determined accordingly. For example,
the management instances of input parameter uncertainty for each response in the prod-
uct/processmodel for coolingmodule are populated. As shown thewindow ‘ 1©’ in Figure 8,
the Instance ‘HRR_RD_Cooling_Xf ’ is created and the embedded instances of variance
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Table 6. Main attribute content of the information embedded in the event process template for cooling
module.

Information Main attribute content

HRR_PM_Design
Requirement

• Achieving the lower value of the Microstructure Space (Xf , Ferrite Fraction; Dα , Ferrite Grain
Size; So , Pearlite Interlamellar Spacing)

• URL, Xf = 0.75; URL, Dα = 30 μm; URL, So = ï£¡ï£¡0.2 μm
• DCItarget, Xf = 10; DCItarget, Dα = 10; DCItarget, So = 10

HRR_PM_Design
Space

• x1, Cooling Rate (CR)
• x2, Austenite Grain Size (D)

• x1 = [11, 100] (K/min)
• x2 = [30, 100] (μm)

• �x1 = ± 10 (K/min)
• �x2 = ± 10 (μm)

HRR_PM_Solution
Space

• System Constraints: DCIXf , DCIDα , DCISo• System Goals: Xf , Dα , So
• System Variables: CR, D

Information2#1 • Factor (control factors: CR, D; signal factors: Xf , Dα , So)
• Response
• Variation (deviation:�x)
• Fixed Parameter ([C], [Mn], εr )
• Response Model

Information2#2 • The Type of Robust Design (Type II)
• Response Functions (mean response function and response variation function)
• The DCI for each response

Information2#3 • The results of robust cDSP model with different design preference
Information2#4 • The satisfying robust solution

Figure 8. Instances of the uncertaintymanagement (IPU) embedded in the robust template for cooling
module.

response function and deviation of control factor are presented in the window ‘ 2©’ and
‘ 3©’, respectively. The essential information involved in a specific design problem for robust
design is captured by the Slots in these template modules.

The ultimate goal of uncertainty management is to assist the designer to determine
the right combination of robust design information that meets the various conflicting
goals and constraints. Thus, the cDSP template for microstructure space (the Instance
‘D1#1: compromiseDSP’) is formulatedwithDCI goals that capturesmicrostructure require-
ments identified under uncertainty, see (Ming et al. 2016) and (Nellippalli et al. 2018a).
The solution space formed based on the results of cDSP-DCI model with different design
preference can be explored by the designer in task Instance ‘T1#3: ExploringSolution-
Space’ mentioned in Figure 7. The weight sensitivity analysis embedded in the instance
of solution space exploration is shown in Figure 9, and here the superimposed ternary
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Figure 9. Task Instance of the solution space exploration for cooling module.

plot (microstructure solution space) with all the solution spaces of interest is used to iden-
tify the satisficing robust solution regions for the multiple conflicting goals. For cooling
module, the designer defines a region with DCIXf ≥ 7, DCIDα ≥ 9.5, and DCISo ≥ 150 on
account of requirements for each goal and decision criterion. Also, to analyse further and
assist the decision-making we select 3 solution points (A, B, C) from the region identified,
which lie within the region that satisfies all the robust design goals in the best possi-
ble manner. The details of solution space exploration template are introduced in (Wang
et al. 2018a).

5.3. Robust decision process for themicrostructure-mechanical simulationmodels

In Section 5.2, a robust design template for cooling module in HRR is created by instanti-
ating the embedded PEI-X process template and uncertainty management template, and
the re-usability information of robust decision workflows is populated. In that case, the
adopted response functions are defined based on the empirical models, which are usu-
ally response surface model developed through the design of experiments, thus there
are uncertainties of the response model in some sense. The process designer has suffi-
cient confidence to ignore the impact of this uncertainty, and only manage the variations
of control factors (IPU) mentioned in Section 5.2. In this section, another case that here
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Figure 10. Instance of the robust template for rod module in HRR process.

there is a situation that the uncertainty derived from the response model is discussed via
instantiating the robust design template of rod module in HRR process chain, as shown
in Figure 10.

In the HRR problem defined in Section 5.1, the subsequent simulationmodel chain after
microstructure correlation calculation (cooling module) is the rod module for predicting
the mechanical properties, which are identified as yield strength (YS), tensile strength (TS),
and hardness (HV). Also similar to the above mentioned, the design requirements for the
rod module are shown in Table 7, and based on this information, the basic elements of
robust design like control factors, signal factors, responses, and fixed parameters are popu-
lated. The difference is that the process/product model Instance ‘HRR_RD_Model_Rod’
is created in the robust design template instance by taking into account the uncertainty of
the response function itself. The designer can organise these robust design elements with
a graphical hierarchy, while also identifying robust design type based on attribute infor-
mation for each element. For example, in the case of rod module, there are two types of
robust design (Type II and Type III) due to the uncertainty sources from input parameters
andmodel parameters (i.e. IPU andMPU). Also, the hierarchical decision workflows are cre-
ated to address the corresponding robust design. Here, the designer can reuse the PEI-X
process template created for the cooling module.

As mentioned, the Instance ‘HRR_RD_MPU_Rod_YS’ is used to manage the model
parameter uncertainty for response yield strength (YS). During the carrying out of the
instance of estimating uncertainty task, the detailed information attributes will be created
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Table 7. Main information embedded in the robust design template for rod module.

Item Main information

Design requirement • Achieving the larger value of the mechanical property space (YS, Yield Strength; TS, Tensile
Strength; HV, Hardness)

• LRLYS = 200MPa; LRLTS = 450MPa; LRLHV = 130
• EMItarget, YS = 3; DCItarget, TS = 8; DCItarget, HV = 8

Control factors • x1, Ferrite Grain Size (Dα )
• x2, Ferrite Fraction (Xf )
• x3, Pearlite Interlamellar

Spacing (So)
• x4, Manganese concentration

after cooling ([Mn])

• x1 = [5, 25] (μm)
• x2 = [0.1, 1]
• x3 = [0.15, 0.25] (μm)
• x4 = [0.7, 1.5] (%)

• �x1 = ± 3 (μm)
• �x2 = ± 0.1
• �x3 = ± 0.01 (μm)
• �x4 = ± 0.01

cDSP-EMI/DCI • System Variables: Dα , Xf , So , [Mn]
• System Goals: Maximize EMI for YS, Maximize DCI for TS, Maximize DCI for HV
• System Constraints: EMIYS ≥ 1, DCITS ≥ 1, DCIHV ≥ 1

and populated by executing the related sequential computability routines based on Step
3 in Section 3. As shown in Figure 11, the variation of the model response (YS) is depicted
in term of the mean response function and the maximum/minimum prediction intervals
functions (i.e. lower/upper uncertainty bound function). Using these mathematical func-
tions, the designer can calculate the upper and lower deviation of response, thenobtain the
EMI according to the decision criterion. For the simulation model of rod module, the deci-
sion criterion for the EMI/DCI is ‘Larger is Better’, which signifies that the mean responses
(i.e. YS, TS, HV) need to be located further from the defined lower requirement limit (LRL)
and as close as possible to the defined target for the EMI/DCI. The objective of the cDSP

Figure 11. Instance of the uncertainty management (MPU) embedded in the robust template for
cooling module.
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formulation for the EMI/DCI is to find the mean value of the control factors (x1 ∼ x4) that
satisfies the given performance goals and bounds.

Through the solving of cDSP-EMI/DCI model with different design preference, the
designer obtains the values of system goals under the identified uncertainties, namely
EMIYS, DCITS, and DCIHV . To achieve high EMI and DCI for the model response YS, TS, and
HV, the designer is interested in defining satisficing robust solution regions for themultiple
conflicting goals. In Figure 12, a common robust solution region (light-yellow region) with
EMIYS ≥ 1.5, DCITS ≥ 6, and DCIHV ≥ 7 is identified in the task instance of exploring solu-
tion space, which satisfices the robust design requirements identified for the conflicting
mechanical property goals. Also, here we highlight three solution points (A, B, C) to assist
the designer’s decision-making. The point A is the most robust region for YSwith high EMI
but lowest for TS and HV with low DCIs. Similarly, the point B is the most robust region
for TS with high DCITS but lowest for YS with low EMI. In contrast, the point C lying inside
the satisficing robust solution regions achieves the highest DCIHV and is the most robust
region forHV goal satisficing the robust design requirements of other goals. Thus, the point

Figure 12. Task instance of the solution space exploration for rod module.



752 R. WANG ET AL.

C has the most potential to be selected as the recommended solution to the subsequent
manufacturing operations.

5.4. Summary andDiscussion

Using an analysis and synthesis simulation model chain identified in the HRR design prob-
lem, we instantiate two ontology-based templates of robust design by capturing and
populating the re-usability information for the uncertainty management and the corre-
sponding decision processes. Meanwhile, the graphical hierarchies for their simulation
models are depicted. In the robust design for processing-microstructure simulation mod-
els, the robust design template for the cooling module is created in Section 5.2, and it
provides a combination of the right information for IPUmanagement and the correspond-
ing decision processes. In this case, the control factor variability of process/product model
is taken into account, and the robust system responses with sets of design specification
are obtained by the implementation of a series of design activities, namely clarifying task,
estimating uncertainty, formulating cDSP-DCI model, and exploring solution space. In the
robust design for microstructure-mechanical simulation models, the robust design tem-
plate for the rod module is created in Section 5.3, In this case, two types of uncertainty
management are populated tomanage the uncertainty sources from input parameters and
response mode. Further, as for the PEI-X process template embedded in the robust design
instance of rodmodule, the designer reuses the decision processes created in the previous
instanceof coolingmodule,which reflects the flexibility and configurability of theproposed
ontology-based template in designing of robust decision workflows.

Since most of the decisions in the engineering design problem refer to the rigid con-
straints and bounds on the system variables, which are quantified using analysis-based
‘hard’, while some insight-based ‘soft’ information can be modelled as a multiobjective,

Figure 13. Comparison of solution obtained for yield strength using different formulations.
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nonlinear optimisation problem. In this work, we prefer to suggest a designer find ‘satisfy-
ing’ robust solutions,whichmeans designing aprocess/product that is relatively insensitive
to uncertainties without removing the sources. To further illustrate the effectiveness of
the proposed robust decision workflow design method for specific design problems, we
compare three different formulations using the response Yield Strength for the Property-
Performance space. The results associated with this comparative study are plotted in
Figure 13with ferrite fraction and ferrite grain size as the input factors for the yield strength
model. We see that: (1) the value of solution point with EMI is less than using DCI formula-
tion because the DCI formulation overlooks the uncertainty associated with themodel and
thus achieve a lower EMI value for the design solutions, (2) the optimal solution predicts
the highest response but the value of DCI and EMI are low, which means that the optimal
solution points obtained are susceptible to the uncertainties derived from input parame-
ters and model parameter, namely are less robust. On the other hand, we use the same
design problem to verify the effectiveness of the proposed method in this paper and pre-
vious research work, see Ref. (Wang et al. 2018a), which would be useful to understand the
comparison between the baseline model of cDSP and the robust model (cDSP-DCI/EMI).

6. Closure

It is always essential but difficult to represent and capture the uncertainty knowledge, some
practical limitations have also been realised with regards to industrial implementations,
especially in the context of knowledge-intensive complex engineered systems. In view of
DBD, system design involves a sequence of decision-making, that is decision workflows,
which require a combination of analytical models and a way to synthesise the information
generated by decisionmodels. Typically, the uncertainties due to the incompleteness, inac-
curacies, and not of equal fidelity in engineering design necessitate the robust design of
decision workflows. In this paper, we focus on the knowledge reuse of uncertainty man-
agement to minimise the uncertainty impact on systems’ performance and to expand the
human designers’ ability of understanding and prediction of process behaviour in decision
workflows. Therefore, a template-basedontologicalmethod for robust design is introduced
that supports the designing of decision workflows to ensure decision-making with the
features of robustness, feasibility, and comprehensiveness, taking account of the goals of
enhancing the design automation and intelligence in designing of decision workflows.

In the proposed method, the designing of robust decision workflows refers to a partic-
ular set of procedures aiming to help human designers identify potential robust strategies
under the conditions of complexity and uncertainty. A hierarchical process model with a
stronger semantically rich graphical expression and an executable template-based flexible
decisionprocess configurationwill facilitate themeta-designofdecisionworkflows. In addi-
tion, a frame-based ontology is developed in order to integrate the management of varied
uncertainty information and improve the ability to communicate and to understand the
process behaviours in the collaborative exploration of a system-level design space. Finally,
we demonstrate the efficacy of this template-based ontological method for designing the
robust decision workflows by carrying out the robust design of Hot Rod Rolling (HRR) pro-
cessbasedon theanalysis and synthesis of processing-microstructure (coolingmodule) and
microstructure-mechanical (rod module) simulation models.
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The research foundation of this paper mainly focuses on the DSPT, and the uncertainty
knowledge involves the identified four types of robust design. Furthermore, there are some
other uncertainties in engineering design that need to be captured and reused, such as
the designers’ preference and fuzzy epistemic, which will be an extension of this work.
Although, the template-based ontological method for robust decision workflows effec-
tively facilitates the improvement of the quality of products/processes in variations, and
maintains semantic associativity and consistency of relevant robust design information and
data in decision workflows.

Notes

1. Graph Widget of Protégé, Stanford University, http://protegewiki.stanford.edu/wiki/Graph_
Widget_Tutorial_OWL, Accessed on 1 February 2016.

2. https://protege.stanford.edu/.
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