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An Inverse, Decision-Based
Design Method for Robust
Concept Exploration
In this paper, we extend our previous work on a goal-oriented inverse design method to
carry out inverse robust design by managing the uncertainty involved. The extension
embodies the introduction of specific robust design goals and new robust solution con-
straints anchored in the mathematical constructs of Error Margin Indices (EMIs) and
Design Capability Indices (DCIs) to determine “satisficing” robust design specifications
across analytical model-based process chains. Contributions in this paper include the
designer’s ability to explore satisficing robust solution regions when multiple conflicting
goals and multiple sources of uncertainty are present. Using the goal-oriented inverse
design method, robust solutions are propagated in an inverse manner. We demonstrate
the efficacy of the method and the associated robust design functionalities using an indus-
try-inspired hot rolling and cooling process chain example problem for the production of a
steel rod. In this example, we showcase the formulation of multiple mechanical property
goals for the end product using the robustness metrics and the exploration of satisficing
robust solutions for material microstructure after the cooling process using the robust solu-
tion constraints. The robust solutions thus identified are communicated in an inverse
manner using the design method to explore satisficing robust solutions for the microstruc-
ture generated after the hot rolling process. Using the example, we demonstrate the robust
co-design of material, product, and associated manufacturing processes. The method and
the associated design constructs are generic and support the formulation and inverse
robust design exploration under uncertainty of similar problems involving a sequential,
analytical model-based flow of information across process chains.
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1 Frame of Reference
In practice, design involved the selection of a suitable material

for a given application [1–4]. The discovery of new materials
has always been arduous, fortuitous, and instinctive for the
people in this domain. A materials design revolution is underway
in the recent past. The focus here is to design the material micro-
structure and processing paths to achieve multiple property or per-
formance requirements that are often in conflict in a “top-down”
(goal-oriented) manner as advocated by Olson [5]. To realize the
same at the early stages of design, we seek top-down (goal-oriented
or inverse) methods to carry out design exploration of the process-
ing paths and material microstructures that meets a set of specified
property/performance requirements. The words “goal-oriented” and
“inverse” here are used to denote our approach of top-down systems
design where the focus is to design the system and sub-systems
starting from some end performance goals in an inverse manner.
Many have highlighted the challenges associated with the
top-down (goal-oriented/inverse) approach of materials design,
see Refs. [6–9]. Among these are the challenges arising due to (i)
uncertain material models (that includes input factors, parameters,
responses, etc.) due to simplification/idealization or a lack of

complete knowledge, (ii) the propagation of uncertainty from differ-
ent sources as information flows from one to model to another, and
(iii) the lack of domain-independent design “exploration” methods
and tools for the early stages of design. An effective inverse
approach for materials design must address the uncertainty of
models and experiments at each scale, as well as uncertainty prop-
agation through a chain of models and/or experiments at different
levels of hierarchy with the ability to provide decision support
through rapid design space exploration [8]. We address each of
these challenges next.
The sources of uncertainty could be the following [6]: the natural

uncertainty inherent in a system, the uncertainty associated with
model parameters, the uncertainty inherent in models, and the prop-
agation of all these information flows from one model to another.
Two approaches are typically followed in dealing with these
sources of uncertainty—(i) mitigating uncertainty and (ii) managing
uncertainty. In the first approach, the focus is to reduce/mitigate the
uncertainty by seeking “perfect” models, collecting more data and
developing improved methods to model, calculate, and quantify
uncertainty through expensive computations. There are several
recent works in this vein using Bayesian networks (see Refs. [10–
13]) and modern data science methods and microstructure informat-
ics (see [14–17]). However, McDowell [8] observes that quantify-
ing uncertainty in schemes for linking models at different lengths
and timescales is still an immature field, and formal mathematical
approaches for doing this are largely undeveloped. This demands
the need for the second approach of managing uncertainty by
designing the system to be insensitive to the sources without reduc-
ing or eliminating them. This is done by exploring the solution
space and studying the sensitivity of responses to variations in
noise, control factors, and models and understanding the trade-offs
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required with various compromises, defined as a robust design and
classified into mainly three categories [6]: (i) Type I robust design
where designers seek to design insensitive to variation due to noise
factors, (ii) Type II robust design where designers seek to design
insensitive to variation due to control factors, (iii) Type III robust
design where designers seek to design insensitive to variation due
to uncertainty inherent in models.
In Fig. 1, different sources of uncertainty (dashed ellipses) and

corresponding robust designs in the model-based realization of
complex systems are shown. The focus on the robust design is
not on extensive optimization searches at individual levels and do
not necessarily involve a large number of iterations [18]. The prac-
tical interest here is for a ranged set of satisficing solutions that
showcase good performance under variability rather than single-
point solutions that are valid for a narrow range of conditions
while performing poorly when the conditions are changed slightly.
The term satisficing used in this context is coined by Simon [19] and
is foundational to our approach to decision-based design. As part of
the “satisficing” community, our intention in this paper from the
design side is to satisfice (satisfy and suffice) a set of conflicting
goals and explore robust solutions, defined as “satisficing robust
solutions,” in an inverse manner by managing uncertainty.
Given the requirement of managing uncertainty, we next address

the issue of inverse design exploration using domain-independent
design methods and tools. Materials design using inverse methods
is gaining a lot of attention in the recent past. There are several
recent efforts toward this. Adams et al. [20] propose a framework
and utilize highly efficient spectral representations to arrive at invert-
ible linkages between material structure, its properties, and their cor-
responding processing paths. Kalidindi et al. [21,22] propose the
Material Knowledge Systems approach and showcase the advances
in rapid inverse design to estimate local responses. These inverse
design approaches, however, demand considerable knowledge and
insight into mechanisms, material hierarchy, and information flow
and are mostly suited for detailed design and not for “design explo-
ration” [8]. We recognize that approaches to pursue inverse design
exploration using system-based design especially at early stages of
design are limited and need further evaluations to address hierarchi-
cal material design problems with the consideration of robustness.
Choi et al. [23] propose the compromise Decision Support
Problem formulation with Error Margin Index (EMI) for Types I,
II, and III robust design. However, their work is limited as they
address only: (i) a single-objective case and not when multiple
design objectives/goals are present, (ii) a single robust design formu-
lation using EMIwhen all sources of uncertainty classified exists in a
problem formulation, which is typically not the case when multiple
goals exists. The inductive design exploration method (IDEM) pro-
posed by Choi et al. [24] is another multi-level, top-down, robust
design exploration method that considers the propagation of
model parameter and model structure uncertainty across process
chains. However, there are certain limitations to IDEM. These
include limitations in terms of (i) errors due to discretization of
design space resulting in the inability to capture the feasible

boundary accurately that leads to loss of information, (ii) highly
computationally expensive IDEM runs if the accuracy is increased,
(iii) the number of design variables (impossible beyond nine vari-
ables) that can be studied thereby limiting the problem size, (iv)
exploration and visualization as IDEM involves a three-dimensional
visualization space using HD-EMI metric for exploration where
only a maximum of three design variables can be studied at a time
with the others variables taking defined values, and (v) flexibility
in the design as IDEM does not allow designers to incorporate
new goals or requirements at different levels during the design
process as the method is based on mapping to feasible spaces. Nel-
lippallil et al. [25] propose an inverse, decision-based designmethod
known as goal-oriented inverse design (GoID) addressing some of
these limitations. The GoID method offers (i) an increase in
problem size as there are no limitations in the number of design var-
iables and goals to be studied, (ii) improved flexibility in the design
of the various processes involved as individual design spaces are for-
mulated at each level allowing designers to incorporate new design
goals and requirements, and (iii) the capability to visualize and
explore “satisficing” solutions for multiple conflicting goals.
However, the idea of robustness under uncertainty is not captured
in the GoID in its current form as defined in Ref. [25] and is, there-
fore, a limitation.
In this paper, we extend the existing goal-oriented inverse design

method proposed by Nellippallil et al. [25] to bring in robustness for
multiple goals from the standpoint of Types I to III robust design
across process chains. The extension embodies the introduction of
specific robust design goals, constraints, and metrics to determine
“satisficing robust design” specifications for given performance
requirement ranges using the goal-oriented, inverse design
method. The primary mathematical construct used in the extended
inverse method is the compromise Decision Support Problem
with Error Margin Index [23] and Design Capability Index [26]
(compromise Design Support Problem(cDSP) with EMI–DCI) sup-
ported by the Concept Exploration Framework (CEF) to generate
satisficing Types I, II, and III robust design solutions across
process chains. We hypothesize that the EMIs and DCIs, when
used together in search algorithms, are capable of helping the
designer in designing the system robust to both model parameter
and model structure uncertainty. Contributions in this paper
include the designer’s ability to explore “satisficing robust solution”
regions when multiple conflicting goals and multiple sources of
uncertainty are present. The extended method and robust design
constructs are suitable for problems in which clearly defined analyt-
ical models/functions are either available or can be developed to
capture the problem-specific information. In this paper, an
industry-inspired example problem, namely the design of a hot
rolling and cooling process chain for the production of a steel rod
is used as an example to demonstrate the efficacy of the method
and the associated robust design constructs for the inverse robust
design under uncertainty of the material, product, and manufactur-
ing processes. In Sec. 2, we describe the CEF and the cDSP-EMI–
DCI construct for the robust concept exploration.

Fig. 1 The sources of uncertainty and corresponding robust designs in complex material, product, and process
systems
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2 The Concept Exploration Framework For Types I, II,
and III Robust Design

The Concept Exploration Framework is a mathematical frame-
work that includes systematic steps to generate design alternatives
by exploring the solution space and identify satisficing design
specifications.
We recognize that a framework that supports robust concept

exploration in integrated material, product, and process design
should satisfy three requirements: (i) computational efficiency, (ii)
generic enough to be applicable to various levels of material
design hierarchy, and (iii) incorporation of Type I, II, and III
robust design formulations for multiple conflicting goals. In this
paper, we update the CEF to include the compromise Decision
Support Problem with Error Margin Index and Design Capability
Index together in a single formulation to take into account
complex material and product design problems that require combi-
nations of Type I, II, and III robust designs. In Fig. 2, we show the
modified CEF with the incorporation of robust design goals and
constraints in the cDSP using the EMIs and DCIs. The systematic
steps associated with the CEF to generate satisficing design specifi-
cations remains the same as defined in Ref. [25] and are not repeated
here. The eight processors (A, B1, B2, D, E, F, G, and H) and simu-
lation programs (C) defined in the CEF support systematic problem
formulation, systematic solution space exploration and thereby

provide decision support for any complex systems problem. In
this paper, we address robust concept exploration for instantiating
Type I, II, and III robust designs and therefore focus on processors
A, F, and H of the CEF shown in Fig. 2. The formulation of a cDSP
with EMI and DCI using the CEF involve (a) quantification of var-
iability and model parameter uncertainty, (b) formulation of error
margin indices and design capability indices and incorporating
them in the cDSP, and (c) robust decision-making by exploration
of solution space by executing the cDSP with EMI–DCI. Choi
et al. [23] explain in detail on quantifying variability and model
parameter uncertainty. They use response modeling approach for
quantifying response variability due to parameterizable noise
factors and location and dispersion modeling approach for quantify-
ing unparameterizable variability. However, we observe that for
problems related to complex manufacturing processes involving
materials and products like hot rolling and cooling, several
studies are already carried out and different models defining mate-
rial/process behavior are available in the literature [27–33]. These
models are either based on natural laws or based on experiments/
modeling. Such available theoretical and empirical models when
directly used to formulate the cDSP do not require the response
modeling–based approach followed by Choi and coauthors as the
variability can be assessed directly using the functional relations.
In the approach proposed using the CEF, one major assumption is
that models (mean models and their variabilities) in the form of

Fig. 2 The modified Concept Exploration Framework for Types I, II, and III robust design
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analytical functions are either available or can be developed by
carefully planned design experiments. One major limitation there-
fore of the proposed approach is its inapplicability when models
in the form of analytical equations are not available. Next, we
discuss the formulation of EMI and DCI using functional relations
and information available.

2.1 Formulation of Design Capability Indices and Error
Margin Indices. Design Capability Indices and Error Margin
Indices are metrics for system performance and robustness.
Design Capability Indices represent the amount of safety margin
against system failure due to uncertainty in the system variables
while EMIs represent the margin against failure due to uncertainty
in both model and design variables. Both are dimensionless. The
EMIs support Types I, II, and III robust designs while DCIs
support Type I and II robust designs. We briefly describe the
steps involved in formulating and calculating DCIs and EMIs for
two types of systems, respectively.

2.1.1 Design Capability Indices for Systems Having Variability
in Design Variables Only. Step 1: Using the first-order Taylor
series expansion, estimate the response variation due to variation
in the design variable vector x= {x1, x2, …, xn}. The response var-
iation (ΔY ) for small variations in design variables is

ΔY =
∑n
i=1

∂f
∂xi

∣∣∣∣
∣∣∣∣ · Δxi (1)

Step 2: Using the mean response (μy) obtained from the mean
response model (f0(x)) and the response variation due to variation
in design variables (ΔY), calculate the DCIs. For a “Larger is
Better” case, the DCI is calculated as

DCI =
μy − LRL

ΔY
(2)

where LRL is the lower requirement limit. A DCI≥ 1 means that the
ranged set of design specifications satisfies a ranged set of design
requirements and the system is robust against model parameter
uncertainty. Higher the value of DCI, higher is the measure of
safety against failure due to model parameter uncertainty.

2.1.2 Error Margin Indices for Systems Having Variability in
Both Models and Design Variables. Step 1: Assuming a system
model has k uncertainty bounds, calculate the response variation
(ΔYj) for each of them for a small variation in design variables as

ΔYj =
∑n
i=1

∂fj
∂xi

∣∣∣∣
∣∣∣∣Δxi (3)

where j= 0, 1, 2, …, k (number of uncertainty bounds).
In Fig. 3(a), we show a mean response model (solid curve) with

two uncertainty bounds (the dotted curves). In the left side of
Fig. 3(a), we show the response variations of mean function and
uncertainty bound functions with respect to the variations in
design variables.
Step 2: After evaluating the multiple response variations of mean

response function and the k uncertainty bound functions for varia-
tions in design variables, calculate the minimum and maximum
responses by considering the variability in design variables and
uncertainty bounds around the mean response as

Ymax =Max[ fj(x) + ΔYj] and (4)

Ymin =Min[ fj(x) − ΔYj] (5)

where j= 0, 1, 2, …, k (number of uncertainty bounds), f0(x) is the
mean response function, and f1(x)… fk(x) are the uncertainty bound
functions

Step 3: Calculate the upper and lower deviations of response
at x as

ΔYupper = Ymax − fo(x) and (6)

ΔYlower = fo(x) − Ymin (7)

Step 4: Using the mean response (μy) obtained from the mean
response model (f0(x)) and the upper and lower deviations
(ΔYupper and ΔYlower), calculate the EMIs. For a “Larger is
Better” case, the EMI is calculated as

EMI =
μy − LRL

ΔYlower
(8)

The EMI thus calculated for “Larger is Better” case will be larger
when the location of μy is farther away from the LRL and/or when
ΔYlower gets smaller, as shown in Fig. 4. An EMI= 1 means that the
uncertainty bound just meets the requirements limit. An EMI≤ 1
means that the requirement limit may get violated due to the uncer-
tainty in the model and design variables. The same can be derived
from other cases shown in Fig. 3(b) for both EMI and DCI.

2.2 The compromise Design Support Problem With Error
Margin Indices–Design Compatibility Indices for Robust
Design Types I, II, and III. Core to the CEF is the foundational
mathematical construct—the compromise Decision Support
Problem (cDSP). The cDSP construct is anchored in the robust
design paradigm first proposed by Taguchi and Clausing [34].
The fundamental assumption here is that the models are not com-
plete, accurate, and of equal fidelity [35]. The cDSP is a hybrid
of mathematical programming and goal programming. Target
values for each of the goals are defined in the cDSP, and the empha-
sis of the designer is to satisfice these target goals as closely as pos-
sible. This is achieved by seeking multiple solutions through
trade-offs among multiple conflicting goals. The solutions obtained
are further evaluated by solution space exploration to identify solu-
tion regions that best satisfice the requirements identified. There are
four keywords in the cDSP—Given, Find, Satisfy, and Minimize.
The overall goal of the designer using the cDSP is to minimize a
deviation function—a function formulated using the deviations
(captured using deviation variables) that exists from the goal
targets. The details regarding formulating and solving the cDSP
are available [35] and are not explained here. The mathematical for-
mulation of the cDSP with EMI and DCI goals and constraints to
achieve robust design Types I, II and III is shown in Table 1.
In the cDSP formulation, mean response functions for different

multiple performance goals f0,i(x), the upper and lower uncertainty
bound functions for those goals with model uncertainty, f1,i(x) and
f2,i(x) are captured. System constraints and goals in terms of EMI
andDCI are formulated in the cDSP to capture the designer’s require-
ments and the functionalities desired in the material-product system.
The lower requirement limits (LRLs) and upper requirement limits
(URLs) are defined for the system. The uncertain system constraints
are captured as EMI constraints,i (x) or DCIconstraints,i (x)≥ 1 using
gi(x) functions depending on the type of variability. We propose
new constraints, defined as robust solution constraints in our cDSP
formulation to ensure the identification of robust solutions always
when preferences are changed for the different goals. These con-
straints ensure both EMI and DCI are greater than or equal to 1 for
all design scenarios during solution space exploration (in order to
identify robust solutions). In this paper, we address multiple conflict-
ing goals and there could be situations where when achieving EMI
and/or DCI greater than 1 for one goal could result in EMI and/or
DCI less than 1 for the other goal. To prevent this, we introduce
the EMI, DCI constraints for the goal functions. This approach will
result in a solution space of only robust solutions to be explored
we define it as “robust solution space exploration” for multiple con-
flicting goals. From these robust solutions, the designer chooses the
range of solutions that best satisfices his/her interest. We define this

081703-4 / Vol. 142, AUGUST 2020 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/8/081703/6483750/m
d_142_8_081703.pdf by M

ississippi State U
niversity user on 25 February 2020



as “satisficing robust solutions” for multiple conflicting goals under
uncertainty. A designer’s interest in the cDSP formulation is to min-
imize the deviation between the targets and what we can achieve for
the multiple conflicting goals that best satisfices the individual goal
requirements. The goal target values in the robust design cDSP pro-
posed in this paper are target values for EMI and DCI for each goal.
This is defined by assigning a value greater than 1 that a designer
strives to achieve for each goal but cannot fully meet. A designer
can estimate the targets for the EMI and DCI goals by varying the
design variables between their limits and checking EMI/DCI
responses. This gives a rough estimate. A value higher than that
can be defined as a target.

3 The Inverse Decision-Based Design Method for
Robust Design Across Process Chains
We define a workflow as a sequence of computational tasks in

which information flow from one process/space to another. For

Fig. 3 (a) Uncertainty bound formulation for variability in design variable and model; (b) mathematical constructs of EMIs and
DCIs (adapted from Ref. [23])

Fig. 4 Achieving a larger value of EMI and DCI
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the integrated design of materials, products, and associated manu-
facturing processes, we define two types of workflow, namely,
the workflow associated with simulating the behavior of the mate-
rial through processing–structure–property–performance hierarchy
(material workflow) and the workflow associated with the process
of design in an inverse manner across process chains (inverse deci-
sion workflow). Our focus in this paper is on the uncertainty asso-
ciated with the inverse decision workflow and the analysis models
embodied therein. In Fig. 5, the robust solution space exploration
across the process chain considering model structure and model

parameter uncertainty is shown. The method involves two generic
steps. To demonstrate the generic nature of the method, we are
naming the different sequential spaces as “Space X,” “Space Y,”
and “Space Z,” and the decision support constructs as “cDSP i”
and “cDSP i+ 1.”
Step 1: Establish forward modeling and information flow across

Spaces X, Y, and Z
In Step 1, the designer establishes a proper forward flow of infor-

mation as models are connected across different “Spaces,” thus gen-
erating a rough design space. These spaces X, Y, and Z could be the
processing–microstructure–property–performance spaces from the
materials design standpoint or any sequential model-based transfor-
mation of information across spaces/levels in a generic sense. Math-
ematical models are either identified or developed to establish the
information flow. In Fig. 5, Step 1 we see that the output of space
serves as the input to the next space and this is repeated to spaces
that follow. Thus, Space X (processing space) generates output
that serves as an input for Space Y (the microstructure space).
The output of Space Y (the microstructure identified) serves as
the input for Space Z. The output of Space Z defines the property
space, and this directly defines the final performance characteristics
of the end product. From a design standpoint, the input to space is
design variables and the output response from the space serves as
input variables to the next space.
Step 2: Robust solution space exploration across the process

chain in an inverse manner (inverse decision workflow)
Step 2.1: Formulate cDSP i for Space Z and carry out solution

space exploration
In Step 2, we start the exploration from the rough design space for

Space Z (property–performance). In the rough design space, we for-
mulate the decision-based design space for Space Z using the cDSP
construct supported by the CEF. This is done in Step 2.1 by formu-
lating cDSP i, see Fig. 5. The decision-based design space thus for-
mulated is represented as the light blue region in Space Z. On
exercising cDSP i for the different conflicting goals by assigning
preferences, we obtain different solution regions that satisfice indi-
vidual goals identified by the three circles in Space Z, Fig. 5. If the
cDSP is formulated with the robust solution constraint defined in
Sec. 2.2.1 (EMIi (x)≥ 1 and DCIi (x)≥ 1), then the regions inside
the circle denote the regions with EMI and/or DCI greater than 1
depending on the type of goal formulation. Any region inside the
circle satisfices the robust design requirements of that particular
goal, and there will be regions with high robustness (high EMI
and/or DCI values away from (1) and low robustness (low EMI
and/or DCI values that are nearer to (1) within the circle. The
designer can pick solutions that achieve maximum robustness for
the goal from the solutions. Since the cDSP is formulated with
the defined robust solution constraints, such a solution is never
reached that gives a high value of EMI and/or DCI for one goal
but an EMI and/or DCI less than 1 for another goal, thus ensuring

Table 1 The mathematical form of the cDSP with EMI–DCI

cDSP with EMI–DCI for RD Types I, II, III for multiple goals

Given
n, the number of system variables
m, the total number of system goals
m1, the number of system goals for robust design Type I, II, and III
m2, the number of system goals for robust design Type I and II
m=m1+m2
q, the number of inequality constraints
f0,i(x), multiple mean response functions
f1,i(x), multiple upper uncertainty bound functions
f2,i(x), multiple lower uncertainty bound functions
g0,i(x), multiple mean constraint functions
g1,i(x), multiple upper constraint bound functions
g2,i(x), multiple lower constraint bound functions
URLi and LRLi, performance requirements
Δx, deviations of system variables
EMITarget,i, EMITargets
DCITarget,i, DCITargets

Find
µx (mean of system variables)
d+i ,d

−
i (deviation variables)

Satisfy
System constraints:

EMIconstraints,i (x) or DCIconstraints,i (x)≥ 1 i= 1,…,q
EMIi (x)≥ 1 i= 1, …, m1 Robust solution constraints: New constraints
defined to ensure
DCIi (x)≥ 1 i= 1,…,m2 robust solutions under multiple conflicting goals
System goals:

EMIi(x)/EMITarget,i + d−i −d+i =1 i = 1, . . . , m1
DCIi(x)/DCITarget,i + d−i −d+i =1 i = 1, . . . , m2
(assuming there will be at least one goal for EMI and DCI)
Bounds:

xmin
i ≤ xi ≤ xmax

i i = 1, . . . , n
d−i , d

+
i ≥ 0 and d+i ·d−i =0 i = 1, . . . , m

Minimize
Z = [ f1(d−i , d

+
i ), . . . , fk(d−i , d

+
i )] Preemptive

Z =
∑

Wi(d−i +d
+
i ),

∑
Wi = 1 Archimedean

Fig. 5 Robust solution space exploration across the process chain in an inverse manner using
the inverse design method

081703-6 / Vol. 142, AUGUST 2020 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/8/081703/6483750/m
d_142_8_081703.pdf by M

ississippi State U
niversity user on 25 February 2020



a robust solution space for all the goals. The designer can then
explore the robust solution space of all the conflicting goals and
identify common robust regions that best satisfice all the goals—
satisficing robust solution region for all goals if it exists. This
region is identified as the region inside the three circles in Space
Z, see Fig. 5. The criteria followed to select the best satisficing
robust solution and how this solution is propagated is explained
next using the illustration in Fig. 6.
While evaluating the inverse solutions, suppose there exists two

design candidates, Design A and Design B, as shown in Fig. 6, for
which the corresponding performance spaces in Space Z are either
closely similar or exactly identical, then which design should the
designer select? Three criteria listed below are used by the designer
in this situation and a decision is made based on the evaluation of
each of these criteria.
Criterion 1:Which design among Designs A and B best satisfices

the designer’s preferences in Space Z?
Criterion 2:Which design among Designs A and B best satisfices

the designer’s preferences for Space Y if such a preference exists?
Criterion 3:Which design among Designs A and B best satisfice

the designer’s preference for managing the potential uncertainty in
the design problem?
Criterion 1 is used when both the designs result in closely similar

outcomes but not exactly identical. Criterion 1 is not used when the
performance space in Space Z is exactly identical to both the
designs as there is no difference in the design outcomes. Criterion
2 is used when the designer has a preference among the solutions
A and B as the solutions are further propagated in an inverse
manner. Both Criteria 1 and 2 are evaluated based on the designer’s
preference for the goals, constraints, and design variable values
defined for the problem. Criterion 3 is used to compare the achieved
EMI and/or DCI values for both the designs A and B and then eval-
uate the most robust solution among those. Solutions with higher
EMI and/or DCI values are better in terms of management of poten-
tial uncertainty in the design problem. All these criteria are evalu-
ated by the designer, and a decision is made among Designs A
and B that best meets the designer’s requirements. Once the
design for Space Y is identified, a new cDSP (cDSP i+ 1) is formu-
lated in Space Y to achieve the identified design targets as closely as
possible.
Step 2.2: Formulate cDSP i+ 1 for Space Y and carry out solu-

tion space exploration
Once cDSP i is executed and satisficing robust solution region is

identified, cDSP i+ 1 for Space Y is formulated. This cDSP is for-
mulated with design variable values identified from first cDSP as
the Space Y goal requirements and is formulated in terms of EMI
and/or DCI depending on the type of uncertainty present (the
circle with the green region in Space Y represents the region iden-
tified from the previous cDSP and is the design space for the new
cDSP, see Fig. 5). On solving the cDSP with EMI–DCI for Space
Y and exploring the solution space, we obtain the robust solution
regions that satisfice each goal (represented by the three circles
inside the green region in Space Y, see Fig. 5). From these robust
solutions, the designer identifies the satisficing robust region for
all the goals—the blue region within the circles. The values of the
Space X design variables that give this robust satisficing Space Y
region are identified based on the cDSP i+ 1 results (the blue
region in the Space X, see Fig. 5).

Thus, using this proposed method, the designer is able to carry
out decision-based robust design exploration of Spaces X, Y, and
Z in an inverse manner. An application as discussed could be the
identification of material processing paths and microstructure to
satisfice a ranged set of product-level performance requirements.
However, the method is generic and can be applied to other
complex system problems involving sequential model-based flow
of information under uncertainty. The characteristics of the prob-
lems for which the method can be applied include: (i) sequential
model-based information transformation from one space to
another, (ii) availability of analytical models for responses as a
function of control and noise factors, and (iii) availability of infor-
mation on model parameter and model structure uncertainty. In Sec.
4, we demonstrate the efficacy of the method and the associated
robust design functionalities using an industry-inspired hot rolling
and cooling process chain example problem for the production of
a steel rod.

4 Test Example: Robust Concept Exploration of
Material (Steel), Product (Rod), and Associated
Manufacturing Processes (Hot Rolling and Cooling)
Developing new grades of steels with improved properties and

performances is the focus of steel manufacturers. Developing
steels with a range of mechanical properties resulting in improved
performance of products is possible by carefully managing the
material processing and thereby tailoring the microstructure gener-
ated. Several manufacturing processes such as casting, reheating,
rolling, and cooling are involved in the processing of a steel rod.
This round rod produced is further used for gear production after
forging into gear blanks. The end properties of the rolled product
are influenced by the chemical composition of the steel including
the segregation of alloying elements, the deformation history
during rolling, the cooling after rolling and the microstructure gen-
erated after rolling and cooling processes. The steel rod-making
process chain is highly complex due to large numbers of design var-
iables, constraints and bounds, conflicting goals, and sequential
information/material flow during material processing. Many plant
trials that are usually expensive and time-consuming are required
to produce a new steel grade with desired properties and perfor-
mance. An alternative, therefore, is to carry out simulation-based,
integrated design exploration of the different manufacturing pro-
cesses involved by exploiting the advances in computational mod-
eling and identifying a ranged set of robust solutions that satisfy the
requirements of the processes and product.
In Fig. 7, we show the process–structure–property–performance

hierarchy for the integrated design of hot rolling and cooling pro-
cesses to produce the steel rod. Using Fig. 7, we capture the
forward material workflow for the problem. The processing stage
involves the two manufacturing processes, namely hot rolling and
cooling. During hot rolling, the thermo-mechanical processing of
the material happens. The modeling of the hot rolling process
involves a hot deformation module, recrystallization module,
grain growth module, and flow stress module [36]. The inputs to
the rolling process are the chemical composition, initial austenite
grain size after reheating, and the rolling schedule (strain, strain
rate, interpass time, and number of passes). Using these inputs,
we predict the temperature evolution, flow stress and calculate the
final austenite grain size (AGS, D) after rolling, see Ref. [36]. In
our design problem, we are interested in the final AGS and it
forms the input from rolling side to the microstructure space. The
microstructure space is generated during the cooling process.
During the cooling process, depending on the cooling rate (CR)
and the final AGS from rolling and the chemical composition of
the incoming steel, time-temperature transformations and simulta-
neous transformations take place. This results in the phase transfor-
mation of austenite to different steel phases like Allotriomorphic
ferrite, Widmanstatten ferrite, pearlite, etc. Also, alternate layers
of the banded microstructure of ferrite and pearlite can also form

Fig. 6 Designs A and B produce satisficing robust solution
space in Space Z
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depending on the micro-segregates that are present and the cooling
conditions. In our design study, we consider the transformations of
austenite to ferrite and pearlite. The output after the cooling process
from the microstructure space as shown in Fig. 7 is the phase frac-
tions of ferrite and pearlite (Xfand Xp), ferrite grain size (FGS) after
transformation (Dα), pearlite interlamellar spacing (So), and the
chemical composition of the material. These serve as an input for
the property space to predict the mechanical properties, the yield
strength, tensile strength, and hardness which are measures of per-
formance for the final rod product. This completes the forward
material workflow for the problem we are addressing and estab-
lishes the process–structure–property–performance hierarchy for
the material system. In Secs. 4.1 and 4.2, we discuss the Steps 1
and 2 of the proposed method.

4.1 Step 1: Establish Forward Modeling and Information
Flow Across the Process Chain (Material Workflow)

4.1.1 Identifying Factors (Input) and Responses Across
Process Chain (See Steps of Concept Exploration Framework).
For the hot rod rolling process chain problem addressed in this
paper, the mechanical property goals and requirements are for
yield strength (YS), tensile strength (TS), and hardness (HV).
These mechanical properties are dependent on the final microstruc-
ture after cooling like the ferrite grain size after cooling (FGS, Dα),
the phase fractions of ferrite (Xf) and pearlite (1−Xf), the pearlite
interlamellar spacing (S0), and the composition variables like
silicon [Si], nitrogen [N], phosphorous [P], and manganese [Mn].
These microstructure factors are defined by the rate (CR) at
which cooling is carried out and the final austenite grain size after
rolling (AGS, D) and composition variables like carbon [C] and
manganese [Mn].

4.1.2 Identify Models and Relationships That Map From
Processing Space to Final Performance Space Across the
Process Chain Taking Into Account the Uncertainty in Models
and Design Variables

4.1.2.1 Microstructure–mechanical property correlation
models. The mechanical properties for the end rod produced are
represented by yield strength (YS), tensile strength (TS), and hard-
ness (HV). Gladman et al. [29,30] were instrumental in predicting
the mechanical properties of plain carbon steel products as a func-
tion of the microstructural parameters of the ferrite–pearlite micro-
structure. Models were later developed by Hodgson and Gibbs [37],
Majta et al. [27], and Kuziak et al. [28].

4.1.2.2 Models for yield strength and the variability
associated. Over the years, different researchers have predicted
yield strength as a function of different microstructural parame-
ters. These different models when used to predict values at differ-
ent ranges for a given input and hence have variability associated
with them in the prediction of the yield strength property. In this
paper, to demonstrate our method for inverse design and manag-
ing uncertainty, we assume the yield strength model by Gladman
et al. [29,30] as the mean response model f0(x) for our problem.
The upper uncertainty bound function f1(x) for yield strength is
the model by Hodgson and Gibbs [37] that when used always pre-
dicts yield strength higher than the model by Gladman and coau-
thors for a given input. The lower uncertainty bound function f2(x)
for yield strength is the model by Kuziak et al. [28] that when
used to predicts yield strength at a lower level than the mean
response model for a given input. The models thus identified
for yield strength are

Yield strength
mean response function
( ) YS f0 x( ) = 63 Si[ ] + 425 N[ ]0.5+X1/3

f 35+ 58 Mn[ ] + 17 0.001Dα( )−0.5( )
+ 1− X1/3

f

( )
179+ 3.9S−0.5

0

( ) (9)

Yield strength
upper uncertainty bound function
( ) YS f1 x( ) = 62.6+ 26.1 Mn[ ] + 60.2 Si[ ] + 759 P[ ]

+ 212.9 Cu[ ] + 3286 N[ ] + 19.7 0.001Dα( )−0.5
(10)

Yield strength
lower uncertainty bound function
( ) YS f2 x( ) = Xf 77.7+ 59.9 × Mn[ ] + 9.1 × 0.001Dα( )−0.5

( )
+ 478 N[ ]0.5+1200 P[ ] + 1− Xf

( )
145.5+ 3.5S−0.5

0

[ ] (11)

Fig. 7 Process–structure–property–performance hierarchy for the integrated design of hot
rolling and cooling processes to produce a steel rod—forward material workflow
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The mean response function and prediction interval models are
plotted as shown in Fig. 8. The models are depicted as a function
of the ferrite grain size (FGS, Dα) and ferrite fraction (Xf) for a
value of pearlite interlamellar spacing of 0.15 (μm), manganese
concentration of 1.5 (%), nitrogen of 0.007 (%), silicon of
0.36 (%), phosphorous of 0.019 (%), and copper of 0.08 (%).

4.1.2.3 Model for tensile strength. We select the model by
Kuziak and coauthors, in which they describe the tensile strength
TS, of carbon–manganese steels as a function of ferrite grain size
after cooling Dα, cooling rate CR, ferrite fraction Xf, the pearlite
interlamellar spacing So, and the composition elements in the
steel [28], see Eq. (12).

TS = Xf (20 + 2440 × [N]0.5 + 18.5 × (0.001Dα)
−0.5)

+ 750(1 − Xf ) + 3(1 − X0.5
f )S−0.50 + 92.5 × [Si]

(12)

4.1.2.4 Model for hardness. Hardness (HV) is represented as a
function of ferrite and pearlite fractions, average austenite to ferrite
transformation temperature (Tmf), and the weight percentage of
silicon (Si) based on the investigation by Yada [31], see Eq. (13).

HV = Xf (361 − 0.357Tmf + 50[Si]) + 175(1 − Xf ) (13)

4.1.3 Processing-Microstructure Correlation Models

4.1.3.1 Model for ferrite fraction. We select the response
surface model developed by Nellippallil et al. [25] for ferrite frac-
tion, see Eq. (14). The model is developed by carrying out a
design of experiments using the program STRUCTURE developed by
Jones and Badeshia to predict the simultaneous transformation of
austenite.4 For more details on the development of the response
surface model and the validation of the same, see Refs. [38–41].

Xf = 1 −

0.206 − 0.117[Mn] − 0.0005CR − 0.00113D

+ 0.248[C] + 0.00032[Mn]CR

+ 0.000086[Mn]D + 0.9539[Mn][C]

− 4.259 × 10−6CR*D

+ 0.00726CR[C] + 0.0023D[C]

− 0.0305[Mn]2 − 0.0000056CR2

+ 4.859 × 10−6D2 + 0.79[C]2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

4.1.3.2 Model for ferrite grain size. We select the model by
Hodgson and Gibbs [37] for defining ferrite grain size, see
Eq. (15). The factors affecting ferrite grain size Dα are final austen-
ite grain size after rolling D, retained strain ɛr, the composition of
carbon and manganese measured in terms of carbon equilvalent
Ceq, and cooling rate CR from the cooling side.

Dα = (1 − 0.45ε0.5r ) × (−0.4 + 6.37Ceq)
{

+ (24.2 − 59Ceq)CR−0.5 + 22[1 − exp(0.015D)]}
whereCeq = (C +Mn)/6

(15)

4.1.3.3 Model for pearlite interlamellar spacing. We select the
model by Kuziak et al. [28] where pearlite interlamellar spacing So
is defined as a function of carbon C, manganese Mn, and cooling
rate CR, see Eq. (16).

So = 0.1307 + 1.027[C] − 1.993[C]2 − 0.1108[Mn]

+ 0.0305CR−0.52
(16)

4.2 Step 2: Carry Out Inverse Decision-Based Robust
Design Exploration

4.2.1 Step 2.1: Robust Solution Space Exploration of Property–
Performance Space. We start the inverse decision-based robust
design exploration from property–performance space. The cDSP
for the last space is formulated with EMI and DCI goals that
capture both property and performance requirements for the end
product. The design variables for this cDSP will be the output
responses fromMicrostructure space which forms the input for prop-
erty–performance space, see Fig. 7. On exercising the cDSP, the
process designerwill be able to solve andcapture theknowledge asso-
ciated with the following inverse problem:Given the endmechanical
properties of a new steel product mix, what should be themicrostruc-
ture factors after phase transformation that satisfies the requirements
identified taking into account the uncertainty associated with models
and parameters associated? The cDSP reads as follows:
cDSP for Property–Performance (Larger is Better)
Given
End requirements identified for the rod rolling process

• maximize yield strength;
• maximize tensile strength; and
• maximize hardness.

f0,i(x), multiple mean response functions, f1,i(x), multiple upper
uncertainty bound functions, and f2,i(x), multiple lower uncertainty
bound functions. LRLYS= 200 MPa, LRLTS= 450 MPa and
LRLHV= 130.
EMITarget,YS= 3 EMITarget for EMI goal for YS considering Types

I, II, and III robust design (RD); DCIITarget,TS= 8 DCITarget for DCI
goal for TS consideringTypes I and II RD; andDCIITarget,HV= 8DCI
Target for DCI goal for HV considering Types I and II RD
System variables, their ranges, and variability
Fixed parameters

Composition elements Concentration (%)

C 0.18
Si 0.36
V 0.003
Cu 0.08
N 0.007
P 0.019

Find
µx (mean location of system variables)
Deviation variables

d−i , d+i , i = 1, 2, 3

Fig. 8 The mean response function and the upper and lower
uncertainty bound functions for yield strength

4http://www.msm.cam.ac.uk/map/steel/programs/structure.html.
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Satisfy
System constraints

• Robust solution constraint for YS

EMIYS (x)≥ 1

• Robust solution constraint for TS

DCITS (x)≥ 1

• Robust solution constraint for HV

DCITS (x)≥ 1
System goals
Goal 1:

• Maximize EMI for yield strength

EMIYS (x)
EMITarget, YS

+ d−1 − d+1 =1

where EMI(x) = {f0(x) − LRL}/{Ymin − f0(x)}

where Ymin =min fj(x) −
∑n
i=1

∂fj
∂xi

∣∣∣∣
∣∣∣∣ · Δxi

( ){ }

Goal 2:

• Maximize DCI for tensile strength

DCITS (x)
DCITarget, TS

+ d−2 − d+2 =1

Goal 3:

• Maximize DCI for hardness

DCIHV (x)
DCITarget, HV

+ d−3 − d+3 =1

where DCI(x) = { f0(x) − LRL}/ΔY

whereΔY =
∑n
i=1

∂f0
∂xi

∣∣∣∣
∣∣∣∣Δxi

Variable bounds
Defined in Table 2
Bounds on deviation variables

d−i , d
+
i ≥ 0 and d−i * d+i = 0, i = 1, 2, 3

Minimize
We minimize the deviation function

Z =
∑3
i=1

Wi(d
−
i + d+i ),

∑3
i=1

Wi = 1

On exercising the cDSP for different design scenarios and carry-
ing out robust solution space exploration, following the steps in
Concept Exploration Framework, we obtain the combinations for
Dα, Xf, S0, and Mn that best satisfy the end mechanical properties

in the presence of model structure and model parameter uncertainty.
The desired solution ranges identified for Dα, Xf, and S0 are then
identified as the target goals for the next cDSP (cDSP for micro-
structure space).
We exercise 13 different scenarios for the cDSP formulated in

Sec. 4.2 using the computational infrastructure DSIDES [42]. Dif-
ferent weights are assigned to each goal in these scenarios.
Details of the scenarios and the results obtained for the goals are
provided in Table 3.
These scenarios are selected based on judgment to effectively

capture the design space for exploration in a ternary space with
the different combination of weights on goals. Next, we explain
the significance of each of these scenarios and identify robust satis-
ficing solutions from the solution space generated in Table 3. We
explain the significance of the scenarios using the cDSP for the
property–performance space. Scenarios 1–3 are for a situation
where the designer’s interest is to achieve the target of one of the
goals, maximizing EMIYS, maximizing DCITS, or maximizing
DCIHV as close as possible. For example, the designer’s preference
in Scenario 3 is to achieve only the DCI goal for hardness. Scenarios
4–6 are for a situation where two goals are given equal preference,
while the third goal is not given any preference. For example, Sce-
nario 5 is a situation where the designer’s interest is in equally max-
imizing EMIYS and DCIHV without giving any preference to the
DCITS goal. Scenarios 7–12 are situations where the designer
gives greater preference to one goal, a lesser preference to the
second goal, and zero preference to the third goal. Scenario 13 is
a situation where the designer gives equal preference to all the
three goals considered. The exploration of solution space is
carried out by exercising the cDSPs for these scenarios using
DSIDES and plotting the solution space obtained in a ternary
space. In the context of our work, the axes of the ternary plots are
the weights assigned to each goal, and the color contour in the inte-
rior is the achieved value of the specific goal that is being addressed.
From these plots, we identify feasible solution regions that satisfies
our requirements and the associated weights to be assigned to each
goal to achieve this solution space. More details on the creation and
interpretation of ternary plots are available in Ref. [43].
In Figs. 9(a)–9(c), we show via the ternary plots the achieved

values of yield strength (Goal 1), tensile strength (Goal 2), and hard-
ness (Goal 3), respectively, for all the 13 scenarios. For Goals 1, 2,
and 3, we are interested in achieving high values of EMIYS, DCITS,
and DCIHV, respectively. We see from Figs. 9(a)–9(c) that the solu-
tion spaces are composed of solutions with EMIYS≥ 1, DCITS≥ 1,
and DCIHV≥ 1, respectively. This ensures robust solutions under
both model structure and model parameter uncertainty for Goal 1,
and robust solutions under model parameter uncertainty for Goals
2 and 3. The maximum EMIYS, DCITS, and DCIHV are achieved
in the red regions, and these regions are therefore the most robust
regions. The dark blue regions are the least robust in the solution
spaces generated. We define acceptable compromised robust
regions within the solution spaces as EMIYS≥ 1.5, DCITS≥ 6,
and DCIHV≥ 7 identified by the dashed lines. Any solution points
lying within these regions are acceptable for us as these points satis-
fice the requirement for the three goals under uncertainty.
Since we are interested in identifying satisficing robust solution

regions for the multiple conflicting goals, we plot the superposed
plot with all the robust solution spaces of interest as shown in
Fig. 10. The light-yellow region identified in Fig. 10 satisfices the
robust design requirements identified for the conflicting mechanical
property goals. In Fig. 10, we highlight three points A, B, and C. A
is the most robust region for YS with high EMI but lowest for TS
and HV with low DCIs. Similarly, B is the most robust region for
TS with high DCITS but lowest for YS with low EMIYS. Point C
(Scenario 13 in Table 3) lying inside the satisficing robust solution
space achieves the highest DCIHV and is the most robust region for
HV goal satisficing the robust design requirements of other goals.
We select Point C and the solution region around it as the robust
solution of interest, and this information is passed to the cDSP for
microstructure space (Table 4).

Table 2 System variables, ranges, and variability

Sr. No System variables (X) Ranges
Variability

(Δx)

1 X1, ferrite grain size (Dα) 5–25 µm [± 3]
2 X2, the phase fraction of ferrite (Xf) 0.1–1 [± 0.1]
3 X3, the pearlite interlamellar

spacing (S0)
0.15–
0.25 µm

[± 0.01]

4 X4, manganese concentration after
cooling ([Mn])

0.7–1.5% [± 0.1]
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4.2.2 Step 2.2: Carry Out Inverse Decision-Based Design
Exploration of Microstructure Space. We carry out the inverse
decision-based design exploration of microstructure space with in-
formation coming from the first cDSP as our requirements. The three
goals for Xf, Dα, and SO are defined with the designer’s interest to
achieve the values identified in Table 4 as close as possible. Upper
requirement limits (URLXf =0.75,URLDα =30μm,URLSO =0.2μm)
for the three goals are defined since the individual goal requirements
are to achieve as small value as possible (smaller is the better case). In
this formulation,we are considering only themodel parameter uncer-
tainty with an assumption that the model structure uncertainty does
not exist. The cDSP for the microstructure space is thus formulated
with the DCI goals that captures microstructure requirements identi-
fied undermodel parameter uncertainty. The design variables for this
cDSP will be the output responses from the processing space which
forms the input for microstructure space, see Fig. 7. The cDSP with
DCI reads as follows:

Table 3 Scenarios and achieved values of goals

Scenarios w1 w2 w3 Goal 1—EMIYS Goal 2—DCITS Goal 3—DCIHV

1 1 0 0 2.635684224 1.000026749 2.650971569
2 0 1 0 1.202283838 8.110528422 8.663291569
3 0 0 1 1.226883558 7.450292555 8.278751569
4 0.5 0.5 0 1.570932001 6.818501827 8.691461569
5 0.5 0 0.5 1.663214956 5.852196386 7.748441569
6 0 0.5 0.5 1.188246479 8.154843742 8.640151569
7 0.25 0.75 0 1.408711494 7.277846111 8.786341569
8 0.25 0 0.75 1.663636535 5.847812704 7.744171569
9 0.75 0 0.25 1.673002166 5.769498377 7.668461569
10 0.75 0.25 0 1.584223565 6.720117931 8.596961569
11 0 0.75 0.25 1.202283838 8.110528422 8.663291569
12 0 0.25 0.75 1.192159649 8.146318646 8.647991569
13 0.34 0.33 0.33 1.562131147 6.917735445 8.786341569

Fig. 9 Robust solution space for (a) YS, (b) TS, and (c) HV

Fig. 10 Superposed robust solution spaces

Table 4 Microstructure information for next cDSP

Sol.
Pt

Microstructure factors (solutions
identified are passed as microstructure

requirements to next cDSP)

Mechanical
properties of rod
(achieved robust

values)

Xf Dα (μm) S0 (μm) Mn (%)
YS

(MPa)
TS

(MPa) HV

C 0.1 (±0.1) 24.7 (±3) 0.15 (±0.01) 0.7 (±0.1) 245 747 170
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4.2.2.1 Compromise design support problem for
microstructure space (smaller is better), robust designs I and II.
Given
End requirements identified for the rod rolling process are as

follows

• Minimize ferrite fraction;
• Minimize ferrite grain size; and
• Minimize pearlite interlamellar spacing.

f0,i(x), multiple mean response functions

URLXf = 0.75

URLDα = 30μm

URLSO = 0.2μm

DCITarget, Xf= 10, DCIITarget, Dα = 10, and DCIITarget, SO= 200.
System variables, their ranges, and variability
Find
µx (mean location of system variables)
Deviation variables

d−i , d+i , i = 1, 2, 3

Satisfy
System constraints

• Robust solution constraint for ferrite fraction

DCIXf (x) ≥ 1

• Robust solution constraint for ferrite grain size

DCIDα (x) ≥ 1

• Robust solution constraint for Pearlite Interlamellar spacing

DCISO (x) ≥ 1

System goals
Goal 1:

• Maximize DCI for ferrite fraction

DCIXf (x)

DCITarget, Xf

+ d−1 −d
+
1 =1

Goal 2:

• Maximize DCI for ferrite grain size

DCIDα (x)
DCITarget, Dα

+ d−2 −d
+
2 =1

Goal 3:

• Maximize DCI for pearlite interlamellar spacing

DCISO (x)
DCITarget, SO

+ d−1 −d
+
1 =1

where DCI(x) = {URL − f0(x)}/ΔY

whereΔY =
∑n
i=1

∂f0
∂xi

∣∣∣∣
∣∣∣∣Δxi

Variable bounds
Defined in Table 5
Bounds on deviation variables

d−i , d
+
i ≥ 0 and d−i *d

+
i = 0 , i = 1, 2, 3

Minimize
We minimize the deviation function

Z =
∑3
i=1

Wi(d
−
i + d+i ),

∑3
i=1

Wi = 1

On exercising the cDSP for different design scenarios and carry-
ing out robust solution space exploration, following the steps in the
Concept Exploration Framework, we obtain the combinations for
CR and D, the variables from processing space that best satisfice
the microstructure requirements in the presence of model parameter
uncertainty. The cDSP formulated for microstructure space is exer-
cised for 13 different scenarios (the same scenarios as given in
Table 3) by assigning weights to the goals using DSIDES.
In Figs. 11(a)–11(c), we show the robust solution space for ferrite

fraction, Xf (Goal 1),Dα (Goal 2), and SO (Goal 3), respectively. Our
interests inGoals 1, 2, and 3 are to achieve highDCI values forXf,Dα,
and SO, respectively. The ternary spaces are made of DCIXf ≥ 1,
DCIDα ≥ 1, and DCISO ≥ 1, ensuring robust solutions under model
parameter uncertainty associated with the design variables.We com-
promise and identify the regions with DCIXf ≥ 7, DCIDα ≥ 9.5,
and DCISO ≥ 150 as the robust satisficing regions of interest under
uncertainty as shown in Fig. 11.
To identify satisficing robust solution regions for microstructure,

we plot the superposed plot shown in Fig. 12 with all the robust
solution spaces of interest. In the superposed ternary plot, we see
that the light-yellow region satisfices all the identified microstruc-
ture requirements under model parameter uncertainty. To analyze
further we pick three solution points from the region identified.
Solution points A, B, and C lie within the region that satisfies all
the robust design goals in the best possible manner. The results
associated with the selected points are summarized in Table 6.
On analyzing the results in Table 6, we see that the solutions

identified from the satisficing robust region in the ternary space
show a very small deviation in performance from each other. The
processing variable values associated with the solution points in
this region results in robust solutions of microstructure under the
model parameter uncertainty considered in this design problem.
Thus, using this proposed inverse method, we are able to carry

out top-down driven, decision-based robust design exploration of
processing paths and material microstructure to satisfy a ranged
set of product-level performance requirements. The inverse
method proposed is generic and can be applied to similar problems
with information flow from one process to another to design the
system under different types of uncertainty classified in this paper.

5 Discussion: Robustness Under Model Structure and
Model Parameter Uncertainty Using Error Margin
Indices and Design Capability Indices
In this section, based on the design study carried out, we discuss

the usefulness of the robust design metrics EMI and DCI used in
this paper for designing a system under model structure and
model parameter uncertainty by carrying out a comparative study.
To illustrate the same, we use the yield strength model proposed
by Gladman and coauthors (Eq. (9)), which we used as the mean
response function for YS in the cDSP formulated for property–per-
formance space. We explore three formulations: In the first, we for-
mulate a single goal cDSP with an EMI for the yield strength mean
model with the uncertainty bounds defined by the yield strength

Table 5 System variables, ranges, and variability

Sr. No System variables (X) Ranges Variability (Δx)

1 X1, Cooling rate (CR) 11–100 K/min (±10)
2 X2, Austenite grain size (D) 30–100 µm (±10)
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models by Hodgson and Gibbs (Eq. (10)) and Kuziak and coauthors
(Eq. (11)); the formulation is the same as in the first cDSP, except
there is only one goal which is for maximizing the EMI for yield
strength). In the second, we formulate a single goal cDSP with a
DCI goal for the yield strength mean model in consideration of
only model structure uncertainty defined in the first cDSP. Third,
we formulate a single-objective traditional optimization problem
for maximizing the mean yield strength function.
The results associated with this comparative study are plotted in

Fig. 13 with ferrite fraction and ferrite grain size as the input factors
for the yield strength model. We see that the cDSP with EMI pre-
dicts a mean response value of 288.755 MPa. The corresponding
EMI value for the solution point is 2.63568. The formulation with
DCI predicts yield strength at 306.08 MPa and is higher than that
with the EMI prediction. The DCI value at this point is 5.37195.
However, the EMI value when calculated is only 1.85375. This
means that the EMI is less for the solution point that is identified
using DCI formulation compared to the solution point identified
using an EMI formulation. The is because the DCI formulation
overlooks the uncertainty associated with the model and thus
achieves a lower EMI value for the design solutions. Next, on ana-
lyzing the solution obtained via the single-objective optimization
formulation, we see that the optimal solution predicts the highest
response for yield strength (YS= 420.654 MPa). However, both
the DCI and EMI values are low for the optimization solution
point when calculated. This means that the optimal solution
points obtained are prone to both model structure and model param-
eter uncertainty and are less robust compared with the solutions
obtained via cDSP-DCI and cDSP-EMI.
We infer from this comparative study, the advantage of EMI and

DCI formulations for complex material-product and process
systems as the design solutions are more robust against model struc-
ture uncertainty and model parameter uncertainty. The limitation
here with the EMI and DCI is the inability to capture the designer’s
preference since the EMI and DCI are calculated as a combination
of mean and response variations. This limitation can be overcome
by separating the mathematical combinations of mean and

Fig. 11 Robust solution space for (a) Xf, (b) Dα, and (c) SO

Fig. 12 Superposed robust solution spaces

Table 6 Solution points selected

Sol. Pts

Factors from
processing space Microstructure space

CR (K/min) D(μm) Xf Dα(μm) S0 (μm)

A 94 46 0.69147 13.1038 0.176
B 93.9 46. 0.691 13.103 0.1763
C 93.7611 45.7 0.69125 13.0554 0.1763

Fig. 13 Solutions obtained for yield strength as a single goal
using different formulations—a comparative study
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performance variance and formulating them as two individual goals
in the cDSP and repeating the same for multiple goals.

6 Closing Remarks
In this paper, we present a robust concept exploration by extend-

ing the goal-oriented inverse design method proposed by Nellippal-
lil et al. [25] to identify satisficing robust solutions across process
chains. The extension embodies the introduction of specific
robust design goals and new robust solution constraints anchored
in the mathematical constructs of EMIs and DCIs to determine
“satisficing” robust design specifications for multiple conflicting
goals from the standpoint of Types I, II, and III robust design
across process chains. The utility of the proposed method, robust
design goals, constraints, and metrics proposed is demonstrated
by carrying out the solution space exploration of the processing
and microstructure spaces of the rolling and cooling processes to
identify satisficing robust solutions to realize the end mechanical
properties of the rod product. The contributions in this paper are
the following:

(1) The previous work by Choi et al. [23] on robust design using
EMI address only a single-objective case. In this paper, we
address multiple conflicting goals and how satisficing
robust solutions can be explored across a process chain
using the inverse design method.

(2) We make it possible for a designer to handle multiple robust
design formulations (using both EMI and DCI) in one
problem formulation. This allows designers to look at
robust design Types I and II for one goal (via DCI) and
Types I, II, and III for another goal (via EMI) in a single
problem formulation depending on the problem
requirements.

Based on these contributions, the key functionalities of the GoID
method with robust design metrics, goals, and constraints when
compared to other domain-independent design exploration
methods include the following:

• an increase in the problem size as there are no limitations in the
number of design variables and goals to be studied,

• improved flexibility in the design of the various processes
involved as individual design spaces are formulated at each
level allowing designers to incorporate new design goals and
requirements;

• the capability to identify robust satisficing solutions for multi-
ple conflicting goals under multiple sources of uncertainty; and

• the capability to visualize and explore solutions that are rela-
tively insensitive to the sources of uncertainty identified.

The method and associated robust design constructs are generic
and can be applied to coordinate information flow and human
decision-making across processes/levels in order to realize an end
goal by managing the sources of uncertainty—a key functionality
that allows the application of this method to other complex
system problems involving sequential model-based flow of infor-
mation under uncertainty.
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