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An Inverse, Decision-Based
Design Method for Integrated
Design Exploration of Materials,
Products, and Manufacturing
Processes
A material’s design revolution is underway with a focus to design the material micro-
structure and processing paths to achieve certain performance requirements of products.
A host of manufacturing processes are involved in producing a product. The processing
carried out in each process influences its final properties. To couple the material
processing-structure-property-performance (PSPP) spaces, models of specific manufac-
turing processes must be enhanced and integrated using multiscale modeling techniques
(vertical integration) and then the input and output of the various manufacturing proc-
esses must be integrated to facilitate the flow of information from one process to another
(horizontal integration). Together vertical and horizontal integration allows for the
decision-based design exploration of the manufacturing process chain in an inverse man-
ner to realize the end product. In this paper, we present an inverse method to achieve the
integrated design exploration of materials, products, and manufacturing processes
through the vertical and horizontal integration of models. The method is supported by the
concept exploration framework (CEF) to systematically explore design alternatives and
generate satisficing design solutions. The efficacy of the method is illustrated for a hot
rod rolling (HRR) and cooling process chain problem by exploring the processing paths
and microstructure in an inverse manner to produce a rod with specific mechanical prop-
erties. The proposed method and the exploration framework are generic and support the
integrated decision-based design exploration of a process chain to realize an end product
by tailoring material microstructures and processing paths. [DOI: 10.1115/1.4041050]

1 Frame of Reference

Steel manufacturers focus on developing new grades of steels
with improved properties and performance. Careful managing of
material processing during steel manufacturing will lead to the
development of steels with a range of mechanical properties
resulting in the improved performance of products. A round rod is
produced after passing the raw steel through several manufactur-
ing processes such as casting, reheating, rolling, and cooling. This
round rod forms the input material for gear production. The chem-
ical composition of the steel including the segregation of alloying
elements, the deformation history during rolling, the cooling after
rolling, and the microstructure generated define the end properties
of the rolled product. The presence of large numbers of design
variables, constraints and bounds, conflicting goals, and sequential
information/material flow during material processing makes the
steel rod making process chain highly complex. Many plant
trials are therefore required to produce a new steel grade with
desired properties and performance. These trials are usually
expensive and time-consuming. An alternative is to carry out
simulation-based, integrated design exploration of the different
manufacturing processes involved in exploiting the advances in
computational modeling and identifying a ranged set of solutions

that satisfy the requirements both of the steel manufacturing pro-
cess and the end rod product.

In practice, design is involved with the selection of a suitable
material for a given application. The classical material selection
approaches are being replaced by a materials design revolution
that is underway in the recent past where the focus is to design the
material microstructure or mesostructure to achieve certain per-
formance requirements such as density, strength, ductility, tough-
ness, and hardness. The demands on the microstructure placed by
these multiple performance requirements are often in conflict.

Our interest lies in formulating and solving the inverse prob-
lem: given the required end properties/performance, what should
be the input parameters in terms of material microstructure and
processing paths for the model-based realization of the material,
product, and the manufacturing processes?

From a system’s design perspective, we view design as a top-
down, simulation-supported, integrated, decision-based process
to satisfy a ranged set of product-level performance requirements
[1,2]. Keeping with this and the discussions by Olson on
materials-by-design [3], we view the integrated design of materi-
als, products, and processes as fundamentally an inverse, goal-
oriented synthesis activity in which the designer (decision-maker)
aims at identifying material structures and processing paths that
achieve/satisfy certain required product and process-level proper-
ties and performances. From the standpoint of design community,
design process is always the inverse process of identifying design
variables to realize desired properties or performances. However,
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the word “inverse” is used here from the perspective of materials
design community and will be explained in the sections that
follow.

The philosophical underpinning of the goal-oriented approach
to materials design has been provided by Olson [3] and reiterated
by many others [2,4–6]. The conventional way of modeling hier-
archical processes and systems is a “bottom-up,” cause and effect
(deductive) approach of modeling the material’s processing paths,
microstructures, resulting properties, and then mapping the prop-
erty relations to performance functions, as shown in Fig. 1. Over
the years, the focus in materials design has turned to provide
high-throughput decision support and develop inverse methods for
materials design exploration as discussed by McDowell and Kali-
dindi [7]. There are several works in this vein. Adams et al. [8]
present a framework that utilizes highly efficient spectral repre-
sentations to arrive at invertible linkages between material struc-
ture, its properties, and the processing paths used to alter the
material structure. The materials knowledge systems approach by
Kalidindi et al. [9] and [10] showcase advances in rapid inverse
design to estimate local responses. However, all these approaches
including the strategy proposed by McDowell and Olson [11] fall
to specific classes of materials design problems and demands
considerable knowledge and insight in mechanisms, material hier-
archy and information flow. Thus, these classes of inverse design
approaches are mostly suited for detailed design and not for
“design exploration” [5].

In our work, we seek “top-down,” goals/means, inductive, or
inverse methods especially at early stages of design to explore the
design space of processing paths and resulting microstructures of
a material satisfying a set of specified performance requirements,
see Fig. 1. Approaches to pursue top-down design exploration by
employing multiscale modeling and systems-based design espe-
cially at early stages of design are addressed in limited literatures.
Choi et al. [12,13] propose the inductive design exploration
method (IDEM); a multilevel, robust design method that makes it
possible to consider propagation of all three types of uncertainty
[14], such as that arising in hierarchical materials design problems
that incorporates process-structure-property (SP) relations. The
two major design objectives using the IDEM for material and
product design are [11]: (i) to guide bottom-up modeling so as
to conduct top-down, goal-oriented design exploration, (ii) to
manage the uncertainty in chains of process-structure-property
relations. Kern et al. [15] propose pyDEM a generalized imple-
mentation of the IDEM as an open-source tool in the Python envi-
ronment. The top-down, goal-oriented approach of materials
design comes with several challenges as highlighted by McDowell
et al. [16]. In this paper, we address the challenge of incorporating
the design of the material as part of a larger overall systems design
process embodying the hierarchy of process-structure-property-
performance set forth by Olson [3] with consideration on support-
ing coordination of information and human decision-making.

To carry out design space exploration across the material
processing-structure-property-performance (PSPP) spaces, there
should be flow of information via simulation models integrated
across multiple scales and across multiple manufacturing

processes—defined as the vertical and horizontal integration of
models. We define vertical integration as the integration of
models and simulations of different phenomenon that occur at
multiple length scales for a specific manufacturing process so as
to generate information that can be passed to other manufacturing
processes that follow. We define horizontal integration as the
integration of different such manufacturing processes using simu-
lation models ensuring proper flow of the information generated
through vertical integration at each manufacturing process thereby
establishing the processing-structure-property-performance route
to realize an end product [17,18]. To achieve vertical and horizon-
tal integration of models, there must be analysis models linking
different manufacturing processes and phenomena, which predict
the material properties associated with these processes and ensure
the proper forward flow of information. Once we achieve forward
modeling, we carry out top-down (goal-oriented), decision-based
design exploration of the material microstructure and processing
paths to achieve the required product properties. The primary
mathematical construct used in the method is the compromise
decision support problem (cDSP) supported by the concept explo-
ration framework (CEF) to generate satisficing design solutions
[19]. Our intention in solving the compromise DSP is to satisfice a
set of goals and thus we approach the problem from the school of
thought of a satisficer; more information available in Ref. [20].
The concept exploration framework is inspired from the robust
concept exploration method proposed by Chen et al. [21] to sys-
tematically generate satisficing, top-level specifications.

In Sec. 2, we describe the vertical and horizontal integration of
models from the perspective of the steel manufacturing process
chain problem focused on hot rod rolling (HRR) process that we
are addressing. In Sec. 3, we describe the CEF and the cDSP con-
struct. In Sec. 4, the proposed goal-oriented, inverse method is
described. The empirical models and the response surface models
for computational analysis of the problem are presented in Sec. 5.
The mathematical formulation of the hot rod rolling process chain
is provided in Sec. 6 and the ternary analysis for visualizing and
exploring the solution space is covered in Sec. 7 with closing
remarks in Sec. 8.

2 Integrated Design of Materials, Products and

Processes—the Steel Manufacturing Process Chain

Problem

Many algorithms for establishing forward relationships have
been developed. These models are used to predict the behavior of
materials during complex manufacturing processes as the final
properties of the end steel product depend on its processing route
[22–27]. It is beneficial for steel manufactures to develop com-
puter algorithms/tools that provide the capability to establish
inverse relationships; i.e., relate the end properties of the steel
product as a function of process variables. These computer
algorithms/tools need to be developed using mathematical models
that predict the microstructure and mechanical properties of the
material as a function of the manufacturing process conditions.
The challenge here is in considering all the different phenomena
that happen during the processing of the material and establishing
the processing-structure-property-performance relationship in an
inverse manner using models. In this problem, we are interested in
developing an integrated method that is generic and has the ability
to relate the end mechanical properties of the material with good
accuracy to the different processing and microstructure routes
available for the material. The efficacy of the method is illustrated
for the specific steel manufacturing process chain problem
addressed below. The industry inspired problem is contributed by
Tata Consultancy Services Research and Tata Steel in India; the
focus being to integrate the design of steel (material), manufactur-
ing processes and automotive gears (end product) [28].

A difficulty during steel making is the distortion that happens in
gear blanks during forging and heat treatment requiring moreFig. 1 Olson’s hierarchical concept of materials-by-design [3]
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machining in the later stages of the manufacturing process. This
distortion is mainly due to the banded microstructure that forms
due to the presence of segregates. The segregation of alloying ele-
ments like manganese (Mn) occurs during casting solidification
and this impacts the entire downstream processing affecting the
end product mechanical properties. These segregates form due to
the limited solubility of alloying elements in the melt during cast-
ing. These micro segregation patterns usually remain in the mate-
rial at the later stages as complete removal of these patterns
through processes like reheating is not feasible from a manufac-
turing stand point as it demands large reheating time leading to
increased manufacturing costs. In the hot rolling process, defor-
mation of these structures takes place resulting in a change in the
concentration profile. The regions are flattened with alternate
layers of high solute and low solute develops during rolling. Dur-
ing the following cooling process, phase transformation occurs
and austenite to ferrite phase transformation occurs.

If the steel has hypo eutectoid composition, the ferrite phase
forms in regions with low austenite stabilizing solute and the
remainder transforms to pearlite. Due to the alternate layers of
low and high solute regions induced during hot rolling, a banded
microstructure having ferrite and pearlite forms with that finally
leading to distortion in gear blanks. To manage the effects of dis-
tortion at the end of forging, these segregates must be tracked in
the previous manufacturing stages and the factors must be
managed effectively. These factors could be the operating set
points needed for rolling and cooling to produce a specific

microstructure. Managing these factors will affect the final
mechanical properties of the product. Thus, to predict the mechan-
ical properties of the product as a function of the composition,
rolling and cooling factors, there must be an integration of mod-
els. The vertical integration of models at multiple length scales
and horizontal integration of different processes ensures proper
flow of information across processing-microstructure-final
mechanical property/performance spaces, see Fig. 2.

The forward modeling starts with the vertical integration of the
hot rolling process, which includes a hot deformation module,
recrystallization module, flow stress module, and a grain growth
module. The input is the chemical composition, initial austenite
grain size (AGS) after reheating, and the rolling schedule (strain,
strain rate, interpass time, number of passes). These are used to
predict the temperature evolution, flow stress, and to estimate the
austenite grain size after rolling. The output after the vertical inte-
gration of these modules is passed to cooling process models. In
the vertical integration of cooling process, time–temperature
transformations and simultaneous transformations must be consid-
ered for the transformations from austenite to different steel
phases. This will provide a way to model the banding that occurs
during cooling. Here, we consider austenite transformations to fer-
rite and pearlite phases only. The input to this module is the chem-
ical composition, final austenite grain size after rolling, and the
cooling conditions (cooling rate). After the vertical integration of
these modules, the output is the phase fractions (final microstruc-
ture after cooling), pearlite interlamellar spacing and the ferrite

Fig. 2 The vertical and horizontal integration of models with information flow for the hot rod rolling process chain
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grain size. This output and the chemical composition serve as the
input for the property module to predict the mechanical properties,
the yield strength, tensile strength, hardness, and toughness.
Through these model and simulation integrations, specific
problem-dependent information is passed from one manufacturing
process to the other thereby developing a link between the
manufacturing processes. This is the horizontal integration of the
manufacturing processes to realize the end product (rod produced
after rolling and cooling for this problem) by establishing the pro-
cess-structure-property-performance relationships. To illustrate
the goal-oriented inverse method, we define a boundary within the
problem. Here, we focus on using the proposed method to estab-
lish processing-microstructure-property relations between the roll-
ing, cooling module (processing and microstructure) and the
property module of the product that defines the end performance.
In Sec. 3, the concept exploration framework that is used to sys-
tematically formulate the problem and identify ranged set of satis-
ficing solutions is described.

3 The Concept Exploration Framework

The CEF is introduced in this paper as a general framework
that includes systematic steps to identify design alternatives and
generate satisficing design solutions. The CEF is inspired from the

robust concept exploration method [21] with addition of features
(processors) to consider different material and product models and
options to explore the solution space for different design scenar-
ios. Core to the CEF is the foundational mathematical construct—
the cDSP [19]. The cDSP construct used here is anchored in the
robust design paradigm first proposed by Taguchi. The fundamen-
tal assumption is that the models are not complete, accurate, and
of equal fidelity [29,30]. The cDSP is a hybrid of mathematical
programming and goal programming. Target values for each goal
are defined in a cDSP and the emphasis of the designer is to sat-
isfy these target goals as closely as possible. This is achieved by
seeking multiple solutions through trade-offs among multiple con-
flicting goals. The solutions obtained are further evaluated by
solution space exploration to identify solution regions that best
satisfy the requirements identified. There are four keywords in the
cDSP—Given, Find, Satisfy, and Minimize. The overall goal of
the designer using the cDSP is to minimize a deviation function—
a function formulated using the deviations (captured using devia-
tion variables) that exists from the goal targets. The details
regarding formulating and solving the cDSP are available [19,30]
and are not explained here.

Next, we explain the CEF. In Fig. 3, the computing infrastruc-
ture for the CEF is shown. The computing infrastructure for CEF
includes eight processors (A, B1, B2, D, E, F, G, H) and

Fig. 3 The computing infrastructure for CEF
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simulation programs (C). The application of the CEF begins with
the designer identifying the overall end goal design requirements
for the problem under study. The further steps in the CEF are
below. The solid arrows in Fig. 3 are used to highlight the steps of
CEF in sequence. The dotted lines and dashed lines are used to
represent information sharing within the framework.

3.1 Step 1 Using Processors A and B1. In this step, the ini-
tial concept exploration space is defined and the cDSP is formu-
lated. For the requirements identified for the problem, the control
factors (factors that the designer can control), noise factors (fac-
tors that the designer cannot control), and the responses (the per-
formance goals identified) and their ranges are identified in
processor A. This information is input to the foundational mathe-
matical construct—the cDSP, processor F. In parallel with the
identification of factors, ranges, and responses, a designer identifies
the models available/required. For problems related to manufactur-
ing processes such as hot rolling and cooling, several different mod-
els defining material/process behavior are available in the literature
[22–25,31]. Such available theoretical and empirical models are
identified in processor B1 and are communicated to the cDSP.

3.2 Step 2 Using Processors B2, D, E and Simulation
Program C. In step 2, the designer carries out low-order screen-
ing experiments. If models for the problem are not available or if
there is a need to develop reduced order or surrogate models so as
to reduce the size of the problem, an experiment is designed to
develop them. The point generator, processor B2, is used to design
the experiments. The simulation program (C) is used to run the
experiments. The simulation programs for manufacturing related
problems may use some of the theoretical and empirical models
from processor B1. This information flow is shown using the
dotted arrow in Fig. 3. An example of this is a finite element
simulation (Simulation Program, C) for rolling that uses a consti-
tutive model (empirical model, Processor B1) to define the flow
behavior of the material. The experiments analyzer, processor D,
evaluates the simulation results and recommends additional
experiments if needed. Regression analysis and ANOVA are used
to evaluate the significance of the results. Processor E is used to
create the surrogate models using the simulation program results
that are acceptable to the designer.

3.3 Step 3 Using Processors F, G and H. All models are
communicated to the cDSP, processor F. The cDSP is then exer-
cised for different design scenarios as specified by processor G.
These scenarios, which are identified by assigning different weights
to the deviations associated with the goals, define a solution space.
This solution space is then explored using processor H. Ternary
plots are generated to visualize and explore the solution space to
identify feasible solution regions that satisfy the requirements. A
human designer evaluates the design solutions, checks feasibility
and satisficing solution regions. If the overall end goal requirements
are not satisfied or there are no feasible satisficing regions, the over-
all end goal requirements may be modified as in Fig. 3. In such a
situation, a designer can also make use of the ternary plots to carry
out design trade-offs to identify regions that satisfy the modified
end goal requirements instead of repeating the CEF.

Thus, the generic functionalities offered by CEF in summary
include: (i) identification of end goals and requirements for a
problem, (ii) systematic identification of control factors, noise fac-
tors that influence the responses of the goals and requirements,
(iii) systematic identification of mathematical models—
theoretical, empirical models available from literature on the
problem domain and systematic development of surrogate models
using simulation programs and design of experiments, (iv) sys-
tematic formulation of the design problem using the cDSP con-
struct for the given information available for the problem, (v)
systematic planning of the design scenarios to be explored for the
problem, (vi) exercising the problem formulated for the design

scenarios, and (vii) systematic analyzing of the solution space
with the opportunity for the human designer to visualize the solu-
tion space and make design decisions. These functionalities can
be used to formulate and execute any complex systems problem in
a systematic fashion to provide decision support provided avail-
ability of required information. To facilitate the generic applic-
ability of the CEF and extend the designer’s abilities in making
design decisions that are robust, flexible, and modifiable particu-
larly in the early stages of design, an ontology for design space
exploration and a template-based ontological method that supports
systematic design space exploration using CEF is proposed in our
recent paper [32].

The concept of exploration framework along with its features
of multigoal decision support can be readily incorporated into a
design method that supports the design of the material and product
(processing, composition, and microstructure) as part of a larger
overall systems design process. The framework can embody the
hierarchy of process-structure-property-performance proposed by
Olson [3] by systematically accounting the information flow and
mappings across these spaces and transforming overall design
requirements into a set of satisficing design specifications for the
material-product-and manufacturing process system of interest.

In Sec. 4, we describe the goal-oriented, inverse method in its
generic form and the application of the method to explore the
design space for the hot rod rolling process chain problem.

4 The Goal-Oriented, Inverse Method

4.1 Generic Form of the Goal-Oriented, Inverse Method.
The basic idea of our method for finding satisficing solutions in a
multilevel, multistage process chain that involves the PSPP rela-
tions is passing down the satisficing solution ranges in an inverse
manner, from given final performance range to the design space
of the previous space (defined by model input and output) with
designer having the flexibility to choose solution of preference.
The method will be explained using the information flow diagram
shown in Fig. 4. It is a goal-oriented method because we start
with the end goals that need to be realized for the product as well
as process and then design the preceding stages to satisfy these
end goals as closely as possible by exploring the design space.
Then the design decisions that are made for the end requirements
of the product/process after exploration are communicated to the
stages that precede them to make logical decisions at those stages
to satisfy the requirements identified thereby carrying out a design
space exploration process in an inverse manner, as described by
steps 2.1–2.3, Fig. 4. To demonstrate the generic nature of the
method, we call the different sequential processes as “n” to
“nþ 2” and the decision support constructs as ‘i’ to ‘iþ 2’.

4.1.1 Step 1: Establish Forward Modeling and Information
Flow Across the Process Chain (Forward Material Workflow).
Step 1 of the proposed method involves establishing the forward
modeling and information flow across models. In step 1, the
designer makes sure that there is proper flow of information as
models are connected across different “Processes.” These proc-
esses could be different manufacturing processes that are sequen-
tially connected to produce the product with information passing
across processing-microstructure-property-performance spaces.
Mathematical models are either identified or developed to estab-
lish the information flow. The steps 1 and 2 of the concept explo-
ration framework are used to identify factors, ranges, responses,
and models for the specific materials design problem under study.
In Fig. 4, step 1, we see that the output of a process serves as the
input for the next process along with other new inputs specific to
the next process with the final output being the end product. We
can imagine these “processes n, nþ 1 and nþ 2” as processing,
microstructure, and property spaces respectively as shown in
Fig. 4 to understand the method clearly. Thus, process n (process-
ing space) generates output that serves as input for process nþ 1
(the microstructure space). The output of process nþ 1 (the
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microstructure identified) serves as the input for process nþ 2.
The output of process nþ 2 defines the property space and this
directly defines the final performance characteristics of the end
product. From a design standpoint, the inputs to a process are
design variables and the output response from the process serves
as input variables to next process.

4.1.2 Step 2: Carry out Decision-Based Design Exploration
Starting From Performance Space and Sequentially Identifying
Satisficing Regions of Interest in Previous Spaces in an Inverse
Manner

4.1.2.1 Step 2.1: Formulate compromise decision support
problem i using concept exploration framework for achieving the
desired end product properties and performances. In step 2, we
begin the decision-based design exploration starting from the end
goals and requirements that are identified. The exploration of the
process chain shown in Fig. 4 is completed using steps 2.1–2.3.
cDSP i is formulated for process nþ 2 in step 2.1. The design var-
iables of this cDSP will be the output responses from process
nþ 1 that serves as input to process nþ 2. The property and per-
formance goals that are desired are defined in this cDSP. On exe-
cuting the cDSP for different design scenarios and exploring the
solution space using CEF, the designer is able to identify the com-
bination of output responses from process nþ 1 (that serves as
input for process nþ 2) that best satisfy the conflicting property
and performance goals defined. The identified values of output
responses for process nþ 1 that satisfies the goals defined for
cDSP i are passed as goals for cDSP iþ 1. In Fig. 4, process nþ 1
represents the microstructure space; then the output of cDSP i will
be the target values of microstructure factors that satisfies the
properties and performances defined for the product. In step 2.2,
using cDSP iþ 1, we analyze how these target microstructure val-
ues can be achieved in Process nþ 1 with the output responses
from Process n as the input variables.

4.1.2.2 Step 2.2: Formulate compromise Decision Support
problem iþ 1 using concept exploration framework for achieving
the goals identified for Process nþ 1 based on the exploration
carried out in compromise decision support problem i. In step 2.2,
we formulate cDSP iþ 1 for Process nþ 1. The target goals in
this cDSP are the values of the design variables for cDSP i identi-
fied after solution space exploration in step 2.1. The design varia-
bles for cDSP iþ 1 are the output responses from process n that
serves as input to process nþ 1. Executing this cDSP and explor-
ing the solution space using CEF, the designer is able to identify
the combination of input variables that best satisfies the target
goals defined. From Fig. 4, we see that the output will the combi-
nation of processing variables that best satisfy the microstructure
targets defined in cDSP i þ 1. Again, we pass these identified val-
ues of design variables from cDSP i þ 1 that satisfy requirements
to next cDSP i þ 2 as target goals.

4.1.2.3 Step 2.3: Formulate compromise decision support
problem iþ 2 using concept exploration framework for achieving
the goals identified for Process n based on the exploration carried
out in compromise decision support problem iþ 1. In step 2.3, in
a similar fashion to previous steps, the designer formulates cDSP i
þ 2 for process n with target goals being the design variable val-
ues identified from cDSP i þ 1. On exploration of solution space,
the designer is able to identify the combination of input factors of
process n that best satisfies the targets performance goals identi-
fied for cDSP i þ 2.

Thus, using this proposed method, the designer is able to carry
out top-down driven, simulation-supported, decision-based design
of processing paths and material microstructure to satisfy a ranged
set of product-level performance requirements. The method is
generic and can be applied to similar problems with information
flow from one process to another as shown in Fig. 4. The method
supports coordination of information and human decision-making

Fig. 4 Generic form of the goal-oriented, inverse method illustrated using steps 1 and 2

111403-6 / Vol. 140, NOVEMBER 2018 Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 09/07/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



and is suited for problems involving a network of forward,
sequential information flow. Given any complex system that
involves sequential flow of information across processes/levels,
the proposed method has the potential to be applied to support
information flow by making effective decisions across the proc-
esses/levels in order to realize an end goal.

4.2 Application for the Hot Rod Rolling Process Chain
Problem. In Fig. 5, we show the schematic application of pro-
posed goal-oriented, inverse method to carry out the integrated
design exploration of the hot rod rolling process chain problem of
interest.

4.2.1 Step 1: Establish Forward Modeling and Information
Flow Across the Process Chain. For the hot rod rolling process
chain problem addressed in this paper, the mechanical property
goals and requirements for yield strength (YS), tensile strength
(TS), hardness (HV), and toughness measured by impact transition
temperature (ITT). These mechanical properties are dependent on
the final microstructure after cooling like the ferrite grain size
after cooling (FGS, Da), the phase fractions of ferrite (Xf ) and
pearlite (1� Xf ), the pearlite interlamellar spacing (S0) and the
composition variables like silicon ½Si�, nitrogen ½N�, phosphorous
[P� and manganese [Mn�. These microstructure factors are defined
by the rate (CR) at which cooling is carried out and the final aus-
tenite grain size after rolling (AGS, D) and composition variables
like carbon ½C� and manganese ½Mn�. The AGS is determined by
the processing carried out at rolling stage, which requires the
modeling of hot deformation, recrystallization, grain growth, etc.
The input to the cooling stage is D, CR, C½ � and Mn½ � from the
rolling process. The outputs are Da, Xf , and S0, which, along with

the composition variables, define the YS, TS, ITT, and HV of end
rod produced. The models used to establish these relationships are
presented in Sec. 5.

4.2.1.1 Step 2.1: Formulate compromise decision support
problem for end mechanical properties of rod to explore the proc-
essing and microstructure space for cooling stage. In step 2.1, the
cDSP for the mechanical properties of the final end product is for-
mulated. Information, requirements, and the correlations between
mechanical properties and microstructure after cooling (ferrite
grain size, pearlite interlamellar spacing, phase fractions, and
composition) are communicated to this cDSP. The end mechani-
cal property goals are requirements for yield strength, tensile
strength, hardness and toughness (impact transition temperature).
On exercising the cDSP and carrying out solution space explora-
tion of the microstructure space after cooling, the combinations
for ferrite grain size (DaÞ, phase fractions Xf , pearlite interlamellar
spacing S0, and compositions that best satisfy the requirements for
end properties are identified and are communicated to the next
step. The formulation of the cDSP is provided in Sec. 6 and the
solution space exploration is carried out in Sec. 7.

4.2.1.2 Step 2.2: Formulate compromise decision support
problem for cooling stage to explore the processing and micro-
structure space of rolling. In step 2.2, a similar process to that in
step 2.1 is carried out to formulate the cDSP for cooling. This
cDSP has target goals and requirements for ferrite grain size Da,
phase fraction Xf , and composition that are based on the solutions
obtained from the first cDSP. Also, information from cooling
stage such as banding requirements and cooling rate requirements
are included into this cDSP. The information, requirements, and
correlations of variables at the end of rolling (austenite grain size,

Fig. 5 Schematic of the proposed goal-oriented, inverse method for the hot rod rolling process chain problem
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composition) and the cooling stage parameters are communicated
to the cDSP. The goals for this cDSP are target ferrite grain size
and target phase fractions subject to constraints. On exercising the
cDSP, the combinations for austenite grain size D, cooling rate
CR, and composition elements like carbon (C) and manganese
(Mn) that best satisfy the requirements are identified. The formu-
lation of this cDSP is in Sec. 6 and the solution space exploration
is carried out in Sec. 7.

4.2.1.3 Step 2.3: Formulate compromise decision support
problem for rolling to carry out design exploration of rolling pro-
cess variables. In step 2.3, we follow a similar procedure to steps
2.1 and 2.2 to formulate the cDSP for rolling considering the
information generated from cooling and the rolling information
and requirements identified. This cDSP has a grain growth mod-
ule, static, dynamic, and meta dynamic recrystallization modules
and a hot deformation module.

Due to the complexity and size of the problem, we are demon-
strating the efficacy of method by carrying out the design space
exploration of the hot rolling process chain problem by addressing
the cDSPs in steps 2.1 and 2.2. The cDSPs in steps 2.1 and 2.2
span the processing, microstructure, and property spaces and are
thus sufficient for framing a well-defined problem boundary for
the method demonstration.

5 Mathematical Models for Hot Rod Rolling Process

Chain Design (Establishing Step 1 of Method)

The mathematical models used to formulate the HRR process
chain problem are introduced and brief descriptions are provided
here. These models, the control variables, noise factors, parame-
ters, responses, and allowable ranges are identified by carrying
out steps 1 and 2 of the CEF as described in Sec. 3. From the
problem perspective, we accomplish step 1 of the goal-oriented,
inverse decision-based design method by identifying these for-
ward models to establish the relationships described in Sec. 4. In
Sec. 5.1, we describe the microstructure-mechanical property cor-
relation models that establish relationships between the mechani-
cal properties of the rod product and the microstructure generated

after cooling stage. In secs. 5.2 and 5.3, we describe the models
for phase transformation on cooling after hot rolling.

5.1 Mechanical Property–Microstructure Correlation
Models. The required mechanical properties for the rod are yield
strength (YS), tensile strength (TS), toughness measured by ITT
and hardness (HV). Gladman et al. [33,34] predict the mechanical
properties of plain carbon steel products as a function of the
ferrite-pearlite microstructure. Models with improved predictive
power were later developed by Hodgson and Gibbs [22], Majta
et al. [24], Kuziak et al. [23] and Yada [35], Table 1. Details on
these models and the reason for their selection are presented by
Nellippallil et al. [36].

5.2 Models for Phase Transformation on Cooling After
Hot Working. Classical nucleation and grain growth theory
quantitatively describe the kinetics of decomposition of austenite.
Using classical Johnson-Mehl-Avrami theory, we describe the
transformation of a single phase to a product phase [27]. The
transformations that occur in steel are often simultaneous resulting
in the formation of multiple phases such as allotriomorphic ferrite,
Widmanst€atten ferrite, bainite, pearlite, and martensite. Therefore,
one requirement for a kinetic model for the phase transformation
of steel is that it must allow for simultaneous phase transforma-
tions resulting in different steel phases. Robson and Badeshia [37]
and Jones and Badeshia [38] address this requirement by numeri-
cally solving all impingement equations and choosing the appro-
priate nucleation and grain growth equations. The simultaneous
transformation of austenite into allotriomorphic ferrite, Wid-
manst€atten ferrite, and pearlite is considered by Jones and

Table 1 Mechanical property models

Mechanical Property Model Reference

Yield Strength
YS ¼ Xf 77:7þ 59:9� Mn½ � þ 9:1� 0:001Dað Þ�0:5

� �

þ 478½N�0:5 þ 1200 P½ � þ 1� Xfð Þ½145:5þ 3:5S�0:5
0 � (1)

Kuziak and co-authors [23]

where YS is in MPa, So in lm, Da in lm

Tensile Strength
TS ¼ Xf 20þ 2440� N½ �0:5 þ 18:5� 0:001Dað Þ�0:5

� �

þ 750 1� Xfð Þ þ 3 1� X0:5
f

� �
S�0:5

0 þ 92:5� ½Si� (2)

Kuziak and co-authors [23]

where TS is in MPa, So in lm, Da in lm

Hardness HV ¼ Xf 361� 0:357Tmf þ 50½Si�
� �

þ 175ð1� Xf Þ (3) Yada [35]

Average austenite to ferrite transformation
temperature (Tmf ) is assumed as 700� C

Impact Transition Temperature ITT ¼ Xf �46� 11:5D�0:5
a

� �
þ 1� Xfð Þ

� �335þ 5:6S�0:5
0 � 13:3p�0:5 þ 3:48� 106ð Þt

� �

þ 49 Si½ � þ 762½N�0:5 (4)

Gladman and co-authors [34]

where Da, So, p and t are in mm. We have assumed the value
of pearlite colony size p as 6 lm and carbide thickness t as 0.025 lm

Table 2 Factors and factor levels for DoE

Level CR K/min AGS lm C½ � % ½Mn�%

1 11 30 0.18 0.7
2 55 55 0.24 1.1
3 100 100 0.3 1.5
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Badeshia [38]; details can be found in Refs. [27,38], and [39]. We
have used the program STRUCTURE developed by Jones and Bade-
shia to predict the simultaneous transformation of austenite [40].

Response surface models (RSMs) are used to calculate the
microstructure (allotriomorphic ferrite, Widmanst€atten ferrite, and
pearlite) of steel as a function of percentages of carbon ½C� manga-
nese [Mn�, cooling rate CR, and austenite grain size ½D� using the
STRUCTURE program. These predictors are selected because of their
substantial contribution to austenite transformation and the forma-
tion of banded microstructure [27]. Values for the other required
input are based on the work of Jones and Badeshia [38]. A frac-
tional factorial design of experiments is carried out to develop
response surface models for the transformation of austenite to fer-
rite and pearlite [23,25], Table 2. The response surface models are
shown in Table 3. The RSMs are verified by comparing the pre-
dictions with experimental (measured) data reported by Bodnar
and Hensen [41], see Nellippallil et al. [36].

5.3 Models for Ferrite Grain Size (Da) and Pearlite
Interlamellar Spacing (So). As the hot worked steel cools, aus-
tenite is transformed into various phases. The most important

parameters are the ferrite grain size and pearlite interlamellar
spacing because they contribute to the steel’s mechanical proper-
ties. The models for these parameters are shown in Table 4.

6 Formulation of the Cdsps for Hot Rolling Process

Chain Problem

In step 2.1 of the method, we formulate the cDSP for the
desired end mechanical properties of the product, Table 5. We
then determine the end mechanical properties as a function of
microstructure factors (Da, Xf , S0, Mn, Si, N) after cooling. The
end mechanical property goals, e.g., maximizing YS, TS, and HV,
are captured in the cDSP. The requirement for minimizing impact
transition temperature is captured as a constraint. The possible
achievement of these conflicting goals is characterized by solution
space exploration. The upper and lower limits for the system
variables and the maximum and minimum values for the mechani-
cal properties are defined in the cDSP as bounds and constraints.
The goal targets are YSTarget¼ 330 MPa, TSTarget¼ 750 MPa,
HVTarget¼ 170. The requirement for ITT is to achieve the mini-
mum value. The requirement for managing the banded micro-
structure is considered during solution space exploration.

Table 3 RSM for phase fractions

Phase fraction Response surface model developed R2 value

Allotriomorphic ferrite Xfa ¼ 1:59� 0:26 C½ � � 0:00856CR� 0:0105D� 3:08 C½ �
þ 0:000826 Mn½ �CRþ 0:0009 Mn½ �Dþ 0:7647 Mn½ � C½ �

þ 0:000011CR�Dþ 0:002CR C½ � þ 0:0032D C½ � � 0:05058 Mn½ �2

þ 0:00004CR2 þ 0:000036D2 þ 2:483 C½ �2 (5)

0.98

Pearlite Xp ¼ 0:206� 0:117½Mn� � 0:0005CR� 0:00113D

þ 0:248½C� þ 0:00032 Mn½ �CRþ 0:000086 Mn½ �D
þ 0:9539½Mn�½C� � 4:259� 10�6CR�Dþ 0:00726CR½C�
þ 0:0023D½C� � 0:0305½Mn�2 � 0:0000056CR2

þ 4:859� 10�6D2 þ 0:79½C�2 (6)

0.99

Widmanst€atten Ferrite Xfw ¼ 1� ðXfa þ XpÞ (7) —

Total ferrite Xf ¼ ðXfa þ XfwÞ (8) —

Table 4 Models for Da and So

Parameter Model Reference

Ferrite grain size Da ¼ 1� 0:45e0:5
r

� �

� �0:4þ 6:37Ceqð Þ þ 24:2� 59Ceqð ÞCR�0:5 þ 22 1� exp �0:015Dð Þ
� �n o

(9)

Hodgson and
Gibbs [22]

for Ceq < 0:35

Da ¼ 1� 0:45e0:5
r

� �

� f 22:6� 57Ceqð Þ þ 3CR�0:5 þ 22 1� exp �0:015Dð Þ
� �

for Ceq > 0:35 (10)

where D is the final AGS after rolling and er is retained strain.
Ceq is the carbon equivalent given by Eq. (11).

Ceq ¼ ðCþMnÞ=6 (11)

Pearlite interlamellar spacing

So ¼ 0:1307þ 1:027 C½ � � 1:993 C½ �2 � 0:1108 Mn½ � þ 0:0305CR�0:52 (12)

Kuziak and
co-authors [23]
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Table 5 The cDSP formulation for Step 2.1

Given
(1) End requirements identified for the rod rolling process
�Maximize Yield Strength (Goal)
�Maximize Tensile Strength (Goal)
�Maximize Hardness (Goal)
�Minimize ITT (Requirement)
�Manage Banded Microstructure (Requirement)

(2) Well established empirical and theoretical correlations, RSMs and information flow from the end of cooling to the end product mechanical properties
(Details provided in Sec. 5)

(3) System variables and their ranges

Find
System Variables

X1; ferritegrainsizeðDaÞ
X2; the phase fraction of ferrite ðXf Þ
X3; the pearlite interlamellar spacing (S0)
X4; manganese concentration after cooling (½Mn�)
X5; the composition of Si (½Si�)
X6; the composition of N ([N])

Deviation Variables
d�i ; d

þ
i , i ¼1,2,3

Satisfy
System Constraints
�Minimum yield strength constraint

YS � 220 MPa (13)

�Maximum yield strength constraint

YS 	 330 MPa (14)

�Minimum tensile strength constraint

TS � 450 MPa (15)

�Maximum tensile strength constraint

TS 	 750 MPa (16)

�Minimum hardness constraint

HV � 131 (17)

�Maximum hardness constraint

HV 	 170 (18)

�Minimum ITT constraint

ITT � �100 �C (19)

Maximum ITT constraint

ITT 	 100 �C (20)

System Goals
Goal 1:
�Maximize Yield Strength

YSðXiÞ
YSTarget

þ d�1 � dþ1 ¼ 1 (21)

Goal 2:
�Maximize Tensile Strength

TSðXiÞ
TSTarget

þ d�2 � dþ2 ¼ 1 (22)

Goal 3:
�Maximize Hardness

HVðXiÞ
HVTarget

þ d�3 � dþ3 ¼ 1 (23)
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On exercising the cDSP and carrying out solution space
exploration, a process designer is able to solve and capture the
knowledge associated with the following inverse problem: Given
the end mechanical properties of a new steel product mix, what
should be the microstructure factors after the cooling stage that
satisfies the requirements?

On exercising the cDSP for different design scenarios and car-
rying out solution space exploration, following the steps in con-
cept exploration framework, we obtain the combinations for Da,
Xf , S0, Mn, Si, N that satisfy the end mechanical properties and

other requirements. The desired solutions identified for Da, Xf , S0

are then used as the target goals for the next cDSP (step 2.2 of the
goal-oriented, inverse method).

In step 2.2 of the method, we formulate the cDSP for the cool-
ing stage, Table 6. Using this cDSP, we relate the microstructure
factors after cooling that best satisfy the first cDSP requirements
as a function of the microstructure and composition factors (D,
C;Mn) after the rolling and the cooling stage operating factor
(CR). The target values for the goals are defined as DaTarget,

Xf Target
, S0Target as the results from the first cDSP. On exercising

Variable Bounds
8 	 X1 	 25ðlmÞ
0:1 	 X2 	 0:9

0:15 	 X3 	 0:25 lmð Þ
0:7 	 X4 	 1:5ð%Þ
0:18 	 X5 	 0:3ð%Þ
0:007 	 X6 	 0:009ð%Þ
Bounds on deviation variables

d�i ; d
þ
i � 0 and d�i �dþi ¼ 0; i ¼ 1; 2; 3 (24)

Minimize
We minimize the deviation function

Z ¼
X3

i¼1

Wi d�i þ dþi
� �

;
X3

i¼1

Wi ¼ 1 (25)

Table 6 The cDSP formulation for step 2.2

Given
(1) Target values for microstructure after cooling (the combination identified from the first cDSP as best satisfying the end goals)
(2) Well established empirical and theoretical correlations, RSMs and complete information flow from the end of rolling to the end product mechanical
properties (Details provided in Sec. 5)
(3) System variables and their ranges

Find
System Variables
X1; Cooling Rate (CR)
X2; AGS (DÞ
X3; the carbon concentration (½C�)
X4; the manganese concentration after rolling (½Mn�)
Deviation Variables
d�i ; d

þ
i , i ¼1,2,3

Satisfy
System Constraints
�Minimum ferrite grain size constraint

Da � 8 lm (26)

�Maximum ferrite grain size constraint

Da 	 20 lm (27)

�Minimum pearlite interlamellar spacing constraint

So � 0:15 lm (28)

�Maximum pearlite interlamellar spacing constraint

So 	 0:25 lm (29)

�Minimum ferrite phase fraction constraint (manage banding)

Xf � 0:5 (30)
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�Maximum ferrite phase fraction constraint (manage banding)

Xf 	 0:9 (31)

�Maximum carbon equivalent constraint

Ceq 	 0:35 (32)

Also included are mechanical properties constraints based on the results obtained from first cDSP solution space exploration (the acceptable ranges
identified for mechanical properties)
�Minimum yield strength constraint

YS � YSlowerlimit MPa (33)

�Maximum yield strength constraint

YS 	 YSupper limit MPa (34)

�Minimum tensile strength constraint

TS � TSlower limit MPa (35)

�Maximum tensile strength constraint

TS 	 TSupper limit MPa (36)

�Minimum hardness constraint

HV � HVlower limit (37)

�Maximum hardness constraint

HV 	 HVupper limit (38)

System goals
The target values for system goals are identified from the solution space exploration carried out for the first cDSP.
Goal 1:
� Achieve ferrite grain size target from cDSP 1

DaTarget

DaðXiÞ
þ dþ1 � d�1 ¼ 1 (39)

Goal 2:
� Achieve Ferrite Fraction from cDSP 1

Xf ðXiÞ
Xf Target

þ d�2 � dþ2 ¼ 1 (40)

Goal 3:
� Achieve Pearlite Interlamellar Spacing Target from cDSP 1

SoTarget

SoðXiÞ
þ dþ3 � d�3 ¼ 1 (41)

Variable bounds
11 	 X1 	 100ðK=minÞ
30 	 X2 	 100ðlmÞ
0:18 	 X3 	 0:3ð%Þ
0:7 	 X4 	 1:5ð%Þ

Bounds on deviation variables

d�i ; d
þ
i � 0 and d�i �dþi ¼ 0; i ¼ 1; 2; 3 (42)

Minimize
We minimize the deviation function

Z ¼
X3

i¼1

Wi d�i þ dþi
� �

;
X3

i¼1

Wi ¼ 1 (43)
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this cDSP the process designer will be able to solve and capture
the knowledge associated with the following inverse problem:
Given the microstructure after cooling that best satisfy the end
mechanical properties of a new steel product mix, what should be
the microstructure factors after rolling and the design and operat-
ing set points for cooling that satisfy the requirements identified?

7 Integrated Solution Space Exploration of Hot Rod

Rolling Process Chain Using the Proposed Method

We have exercised 19 different scenarios for both cDSPs in
steps 2.1 and 2.2, Table 7. These scenarios are selected based on
judgement to effectively capture the design space for exploration
in a ternary space with different combination of weights on goals.

We explain the significance of these scenarios using the cDSP
for the end product (the cDSP in step 2.1). For the first cDSP, sce-
narios 1-3 are for a situation where the designer’s interest is to
achieve the target of on a single goal, i.e., maximizing YS, maxi-
mizing TS or maximizing Xf as closely as possible. For example,
the designer’s preference in scenario 2 (for cDSP 1) is to achieve
only the tensile strength goal. Scenarios 4–6 are for a situation
where two goals are given equal preference, and the third goal is
not assigned any preference. For example, scenario 4 is a situation
where designer’s interest is in equally maximizing YS and TS
without giving any preference to the Xf goal. Scenarios 7–12 are
situations where the designer gives greater preference to one goal,
a lesser preference to the second goal and zero preference to the
third goal. Scenario 13 is a situation where the designer gives
equal preference to all the three goals. Scenarios 14–19 are situa-
tions where all the goals are assigned preferences with two of
them being the same preference. The exploration of solution space
is carried out by exercising the cDSPs for these scenarios and
plotting the solution space obtained in a ternary space. The axes
of the ternary plots are the weights assigned to each goal and the
color contour in the interior is the achieved value of the specific
goal that is being addressed. From these plots, we identify feasible
solution regions that satisfy our requirements and the associated
weights to be assigned to each goal to achieve this solution space.
To read more about the creation and interpretation of ternary
plots, see Refs. [17] and [42].

7.1 Solution Space Exploration of Step 2.1 Compromise
Decision Support Problem. The requirement for the process
designer in step 2.1 cDSP is to achieve the goals associated with
the mechanical properties of the end rod product. For goal 1, a

process designer is interested in maximizing the yield strength.
The target value of 330 MPa is specified in the cDSP. On exercis-
ing the cDSP and analyzing the solution space in Fig. 6, we see
that the red contour region identified by the blue dashed lines
satisfy the requirements as closely as possible. The maximum
yield strength achieved is 320 MPa and the maximum value has
achieved the weight assigned to goal 1 tends to 1. We select the
region identified in Fig. 6 as that satisfying the requirement for
YS.

For goal 2, a process designer is interested in maximizing the
tensile strength of the product. A target value of 750 MPa is speci-
fied for this goal. On analyzing Fig. 7, we observe that the red
region marked with the light orange dashed lines satisfies this
requirement. The target value of 750 MPa is achieved as we tend
to the weight of 1 for the tensile strength goal. However, as the
weight on the third goal (hardness) is increased; there is an
increase in tensile strength as well. We achieve a value of
750 MPa for tensile strength when the weight on the hardness goal
is 1. From this, we can clearly see the forward relationship that
hardness and tensile strength hold with respect to the system vari-
ables identified.

For goal 3, the process designer is interested in maximizing
hardness. The hardness is a function of the ferrite fraction, silicon
content and transformational temperature of austenite to ferrite.
We assumed a transformation temperature of 700 �C. From Fig. 8,
it is clear that the hardness target value of 170 is achieved in the
red contour region marked by the white dashed lines. We also
observe that the requirement for hardness is achieved in regions

Table 7 Scenarios with weights for goals

Scenarios W1 W2 W3

1 1 0 0
2 0 1 0
3 0 0 1
4 0.5 0.5 0
5 0.5 0 0.5
6 0 0.5 0.5
7 0.25 0.75 0
8 0.25 0 0.75
9 0.75 0 0.25
10 0.75 0.25 0
11 0 0.75 0.25
12 0 0.25 0.75
13 0.33 0.34 0.33
14 0.2 0.2 0.6
15 0.4 0.2 0.4
16 0.2 0.4 0.4
17 0.6 0.2 0.2
18 0.4 0.4 0.2
19 0.2 0.6 0.2

Fig. 6 Ternary plot for goal 1—yield strength

Fig. 7 Ternary plot for goal 2—tensile strength
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with high weights for tensile strength confirming the relationship
that we saw in Fig. 7.

On carrying out a parametric study with the transformation tem-
perature value, we found that the positive relationship between
tensile strength and hardness holds only at high transformation
temperatures. At transformation temperatures in the range of
500–550 �C, we see that hardness tends to be greater where there
is high yield strength.

Another requirement that must be strictly satisfied is the
requirement for minimum impact transition temperature for the
rod. From the solution space for the three goals for YS, TS, and
HV, we check the region where this requirement is satisfied the
best. In Fig. 9, the achieved values of impact transition tempera-
ture are plotted and we see that the blue contour region marked by
two red dashed lines is where the impact transition temperature is
minimum. The first red dashed line corresponds to an ITT of 0 �C
and the second dashed line closer to the blue contour region corre-
sponds to an ITT of �66 �C. The minimum ITT is achieved in this
region and corresponds to the same region where yield strength is
maximized.

On analyzing the results for the mechanical property goals and
requirements, we observe that the ferrite fraction system variable
plays a key role in defining the mechanical properties. A major
requirement is to manage the banded microstructure. In this work,
we satisfy this requirement by identifying regions with high ferrite
fractions. Hence, we plot the achieved solution space for ferrite
fraction with respect to the weights assigned to the three goals in
Fig. 10. We see in Fig. 10 that the red contour region marked by
the dark blue dashed lines is the region with highest ferrite

fraction (near 0.899). The dark blue contour region marked by the
dark yellow dashed lines is the region with highest pearlite frac-
tion (ferrite fraction near to 0.1). The region in between these two
dashed lines has both ferrite and pearlite. Also, from Fig. 10(a),
high ferrite fraction supports maximizing yield strength and mini-
mizing impact transition temperature and high pearlite fraction
supports maximizing tensile strength and maximizing hardness.
The banded microstructure in between satisfies these goals; how-
ever, due to the concern about distortions in gear blanks due to
these banded structures, the designer must find a region that is
either highly ferritic or highly pearlitic in Fig. 10. To come to a
decision, we superimpose plots as shown in Fig. 11.

In the superimposed plot, all the regions identified for the
mechanical property goals, and the other requirements are com-
bined to identify a single region that satisfies all the requirements,
if it exists. If such a region does not exist, the designer must make
trade-offs among the conflicting goals. On analyzing Fig. 11, the
requirements for maximizing tensile strength and hardness are
achieved in the high pearlite fraction region while the require-
ments for maximizing yield strength and minimizing impact tran-
sition temperature are satisfied at the high ferrite fraction region.
Hence, the designer is faced with the dilemma of choosing from
either the region of high ferrite or high pearlite that satisfies the
goals. To make a decision, we first identify some solution points
from the superimposed plot and analyze the extent to which the
goals are met. We identify 8 solution points A, B, C, D, E, F, G,
and H from the ternary space and the results associated with each
of these solution points are summarized in Table 8.

Fig. 8 Ternary plot for goal 3—hardness

Fig. 9 Ternary plot—ITT solution space

Fig. 10 Ternary plot—ferrite fraction solution space

Fig. 11 Superimposed ternary plot
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From Table 8, we see that all the goals are satisfied by mini-
mum values of ferrite grain size Da and interlamellar spacing So.
This is a very important information that needs to be communi-
cated to the preceding stages as the requirements from these
stages must be to produce a material having these characteristics
at the end. On analyzing the impact of ferrite fraction, we see that
high yield strength and minimum ITT are satisfied when the fer-
rite fraction is high, while low yield strength, high ITT, high ten-
sile strength, and high hardness occurs when the ferrite fraction is
low (more pearlite). As the pearlite fraction increases, the values
of ITT achieved are very high (65–100 �C Þ, which are not accept-
able. Hence, we identify regions (the light yellow region in
Fig. 11) with a high ferrite fraction, where both yield strength and
impact transition temperature requirements are met while compro-
mising on the requirements for tensile strength and hardness.
From a design standpoint, the compromise does not severely
affect either tensile strength or hardness. Therefore, we choose
solution point A having the highest ferrite fraction. Point A
achieves a YS of 321 MPa, TS of 516 MPa, HV of 131, and ITT of
�66 �C.

The solutions for the microstructure space after cooling identi-
fied after exploration become the goals for the next cDSP (step
2.2). The target goal for the cDSP for cooling, therefore, is to
achieve a minimum ferrite grain size, maximum ferrite fraction,
and minimum pearlite interlamellar spacing; target values of 8lm,
0.9 and 0.15 lm; respectively.

7.2 Solution Space Exploration of Step 2.2 Compromise
Decision Support Problem. The requirement in step 2.2 cDSP is
to achieve the targets identified from the first cDSP as closely as
possible. For goal 1, the process designer is interested in minimiz-
ing ferrite grain size and the target value is 8 lm. On exercising
the cDSP and analyzing the solution space for ferrite grain size in
Fig. 10, we see that the minimum achieved value of Da using the

current configuration is 10.06 lm. Based on literature study
[23,31], we determine that any value less than 15 lm is acceptable
as the ferrite grain size after cooling. This updated requirement is
met in the region identified by the red dashed lines in Fig. 12. As
we move closer to the dark blue contour regions, the requirement
for minimum Da is closest to being satisfied.

For goal 2, the process designer must maximize ferrite fraction
to the target value of 0.9. In Fig. 13, we see that the maximum fer-
rite fraction achieved is around 0.7149. Based on reported ferrite
fractions after cooling from the literature [23], we find that any
value of the ferrite fraction above 0.68 is acceptable.

The region that satisfies the requirement is marked by the
dashed orange line in Fig. 13. As we move toward the red contour
region, the maximum ferrite goal is satisfied most closely.

For goal 3, the requirement is to minimize pearlite interlamellar
spacing to a target value of 0.15 lm. On analyzing Fig. 14, the
minimum value achieved is 0.1497 marked by the blue contour
region. Based on reported values of pearlite interlamellar spacing
[23], we define that any value less than 0.17 lm is acceptable.
This region is marked by the dark blue dashed line in Fig. 14.

Again, to make a design decision, we superimpose all the goals
in one superimposed ternary plot, Fig. 15.

In the superimposed ternary plot, the light yellow region satis-
fies all the requirements. To analyze further we pick six solution
points both from within the region identified and outside. Solution
points C, D, and E lie within the region that satisfies all the goals
in the best possible way. Solution points A, B and F lies outside
the region. The results are summarized in Table 9.

On analyzing the results in Table 9, we see that solution point
A satisfies the requirement of minimizing ferrite grain size to the
greatest extent and this is achieved with a high cooling rate and
low value of austenite grain size. This happens because a high
cooling rate results in less time for the nuclei to grow before new
nuclei are formed resulting in a decrease of average grain size

Table 8 Solution points selected

Microstructure Factors After Cooling Mechanical Properties of End Rod

Sol. Pts Da lm Xf S0 lm Mn (%) YS MPa TS MPa HV ITT�C

A 8 0.9 0.15 1.49 321 516 131 �66
B 8 0.101 0.21 0.7 220 750 169.9 35
C 8 0.1 0.15 0.7 220 749 169.9 94.8
D 8 0.89 0.15 1.5 320 516 131 �66
E 8 0.89 0.15 1.49 320 516 131 �66
F 8 0.89 0.15 1.49 320 516 131 �66
G 8 0.1 0.18 1.5 228 749 169.8 65
H 8 0.113 0.15 1.49 231 749 169.4 100

Fig. 12 Ternary plot—ferrite grain size Fig. 13 Ternary plot—ferrite fraction

Journal of Mechanical Design NOVEMBER 2018, Vol. 140 / 111403-15

Downloaded From: http://asmedigitalcollection.asme.org/ on 09/07/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



[27]. This means that there is an increased grain boundary area
per volume available for nucleation resulting in more nuclei and
thus smaller ferrite grain sizes. Solution point B satisfies the
requirement for a high ferrite fraction and this is achieved with a
low cooling rate, high austenite grain size and low manganese.
The holds true as a low cooling rate favors the growth of allotrio-
morphic ferrite resulting in the overall growth of ferrite. A high
austenite grain size results in an increase in Widmanstatten ferrite,
while a low austenite grain size results in an increase in allotrio-
morphic ferrite. Both these situations need to be considered when
studying the effect of austenite grain size on the ferrite fraction.
Also, a low manganese content results in less banded microstruc-
ture favoring an increase in allotriomorphic ferrite. Solution point
C satisfies the requirement for minimum pearlite interlamellar
spacing and this is achieved with both low values of cooling
rate and austenite grain size. On analyzing all solutions listed in
Table 9, we see that solution point D satisfies all the requirements
to the extent possible. In Point D the values of a Da of 10.74 lm,
Xf of 0.681 and S0 of 0.151 lmareachieved. The values for cool-
ing rate, austenite grain size and compositions will act as target
goals for the cDSP for the last stage of rolling (cDSP in step 2.3)
following a similar format as demonstrated using cDSPs and solu-
tion space explorations in steps 2.1 and 2.2.

8 Closing Remarks

In this paper, we present a goal-oriented, inverse method
supported by the CEF to achieve the integrated design exploration
of the material, product, and manufacturing processes. The
method is goal-oriented and inverse because we start with the end
mechanical properties of the product and inversely maps the
requirements to microstructure and processing spaces of the mate-
rial to identify multiple solutions that satisfy the requirements.
The utility of the proposed method is demonstrated by carrying
out the integrated solution space exploration of the processing and

microstructure spaces of the rolling and cooling processes to iden-
tify satisficing solutions that realize the end mechanical properties
of the rod product. The method and its application are character-
ized by a confluence of different disciplines like engineering
mechanics, materials science, manufacturing, and systems engi-
neering. The functionalities offered by the method supported by
CEF include:

� The method is based on requirements driven, “top-down”
design of system and associated subsystems by taking a
goal-oriented approach, which is different from the standard
practice of bottom-up modeling and design of material and
product systems,

� There is the perception of obtaining a satisficing design space
across process chains; augmenting the human ability to make
design decisions—visualizing a solution space and making
logical judgements through trade-offs to identify satisficing
solution regions of interest,

� There is the capability to handling ‘n’ number of design
variables—this is an advantage over other design exploration
methods like IDEM where there is a limitation on the number
of design variables,

� Propagation of end goal requirements (product performance
or properties) across a process chain with the designer having
the capability to check whether the end goals are actually
achievable at previous spaces in their current configuration
or not—designer can recommend adjustments in the design
space if needed,

� Offers flexibility in design: The capability to define new
goals and requirements at each level as the method uses
individual cDSPs to facilitate information flow allowing to
formulate a design space at each level—advantage over other
design exploration methods like IDEM and pyDEM where
the design space is defined by mapping from previous spaces
[13,15],

Table 9 Solution points selected

Processing (Cooling) and Microstructure Space after Rolling Microstructure Space after Cooling

Sol. Pts CR K/min D lm C % Mn % Da lm Xf S0 lm

A 99.9 30 0.18 0.7 10.06 0.681 0.176
B 11 74.2 0.18 0.7 19.9 0.714 0.182
C 11 30 0.19 1.02 12.5 0.684 0.149
D 44.4 30 0.18 0.94 10.74 0.681 0.151
E 33.06 30 0.18 0.95 11.05 0.687 0.151
F 70.3 30 0.18 0.93 10.33 0.673 0.151

Fig. 14 Ternary plot—pearlite interlamellar spacing Fig. 15 Superimposed ternary plot for all goals
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� The capability to carry out rapid, integrated design explora-
tion of material and products using simulation models that
we accept are typically incomplete and inaccurate,

� The capability to coordinate information and human decision
making,

� The CEF offers the capability to prioritize models, input fac-
tors, output responses, and computational tools in terms of
their value in design, and

� Ensuring feasible design solutions that allow to invest on
new complex material systems with confidence.

The proposed method and the concept exploration framework
are generic and support the integrated decision-based design of
similar manufacturing processes involving the material and prod-
uct. Given any complex systems problem that involve sequential
flow of information across processes/levels, the proposed method
has the potential to be applied to support information flow and
human decision-making across the processes/levels in order to
realize an end goal. Through the proposed method and demonstra-
tion carried out in this paper using an industry-inspired problem,
we propose an approach for microstructure-mediated design by
integrating the design of the material, product, and associated
manufacturing processes involved.

Acknowledgment

The authors thank Tata Consultancy Services Research, Pune
for supporting this work (Grant No. 105-373200). Janet K. Allen
and Farrokh Mistree gratefully acknowledge financial support
from the John and Mary Moore Chair and the L.A. Comp Chair at
the University of Oklahoma respectively.

References
[1] Allen, J. K., Panchal, J., Mistree, F., Singh, A. K., and Gautham, B. P., 2015,

“Uncertainty Management in the Integrated Realization of Materials and
Components,” Third World Congress on Integrated Computational Materials
Engineering (ICME), p. 339.

[2] McDowell, D. L., Panchal, J., Choi, H.-J., Seepersad, C., Allen, J. K., and Mis-
tree, F., 2009, Integrated Design of Multiscale, Multifunctional Materials and
Products, Butterworth-Heinemann, Waltham, MA.

[3] Olson, G. B., 1997, “Computational Design of Hierarchically Structured Mate-
rials,” Science, 277(5330), pp. 1237–1242.

[4] Horstemeyer, M. F., 2018, Integrated Computational Materials Engineering
(ICME) for Metals: Concepts and Case Studies, Wiley, Hoboken, NJ.

[5] McDowell, D. L., 2018, “Microstructure-Sensitive Computational Structure-
Property Relations in Materials Design,” Computational Materials System
Design, Springer, Cham, pp. 1–25.

[6] Horstemeyer, M. F., 2012, Integrated Computational Materials Engineering
(ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering
Design With Science, Wiley, Hoboken, NJ.

[7] McDowell, D. L., and Kalidindi, S. R., 2016, “The Materials Innovation Eco-
system: A Key Enabler for the Materials Genome Initiative,” MRS Bull., 41(4),
pp. 326–337.

[8] Adams, B. L., Kalidindi, S., and Fullwood, D. T., 2013, Microstructure-Sensitive
Design for Performance Optimization, Butterworth-Heinemann, Waltham, MA.

[9] Kalidindi, S. R., Niezgoda, S. R., Landi, G., Vachhani, S., and Fast, T., 2010,
“A Novel Framework for Building Materials Knowledge Systems,” Comput.
Mater. Continua, 17(2), pp. 103–125.

[10] Kalidindi, S. R., Niezgoda, S. R., and Salem, A. A., 2011, “Microstructure
Informatics Using Higher-Order Statistics and Efficient Data-Mining Proto-
cols,” JOM, 63(4), pp. 34–41.

[11] McDowell, D. L., and Olson, G., 2008, “Concurrent Design of Hierarchical
Materials and Structures,” Scientific Modeling and Simulations, Springer, Dor-
drecht, The Netherlands, pp. 207–240.

[12] Choi, H.-J., Mcdowell, D. L., Allen, J. K., and Mistree, F., 2008, “An Inductive
Design Exploration Method for Hierarchical Systems Design Under
Uncertainty,” Eng. Optim., 40(4), pp. 287–307.

[13] Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., and Mistree, F., 2008, “An
Inductive Design Exploration Method for Robust Multiscale Materials Design,”
ASME J. Mech. Des., 130(3), p. 031402.

[14] Nellippallil, A. B., Mohan, P., Allen, J. K., and Mistree, F., 2018, “Robust
Concept Exploration of Materials, Products and Associated Manufacturing
Processes,” ASME Paper No. DETC2018-85913.

[15] Kern, P. C., Priddy, M. W., Ellis, B. D., and McDowell, D. L., 2017, “pyDEM:
A Generalized Implementation of the Inductive Design Exploration Method,”
Mater. Des., 134, pp. 293–300.

[16] McDowell, D. L., Choi, H. J., Panchal, J., Austin, R., Allen, J. K., and Mistree,
F., 2007, “Plasticity-Related Microstructure-Property Relations for Materials
Design,” Key Engineering Materials, Trans Tech Publications, Z€urich, Switzer-
land, pp. 21–30.

[17] Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B. P., Allen,
J. K., and Mistree, F., 2017, “A Goal-Oriented, Sequential, Inverse Design
Method for the Horizontal Integration of a Multi-Stage Hot Rod Rolling Sys-
tem,” ASME J. Mech. Des., 139(3), p. 031403.

[18] Tennyson, G., Shukla, R., Mangal, S., Sachi, S., and Singh, A. K., 2015, “ICME
for Process Scale-Up: Importance of Vertical and Horizontal Integration of
Models,” Third World Congress on Integrated Computational Materials Engi-
neering (ICME 2015), pp. 11–21.

[19] Mistree, F., Hughes, O. F., and Bras, B., 1993, “Compromise Decision Support
Problem and the Adaptive Linear Programming Algorithm,” Prog. Astronaut.
Aeronaut., 150, pp. 251–290.

[20] Mistree, F., Patel, B., and Vadde, S., 1994, “On Modeling Multiple Objectives
and Multi-Level Decisions in Concurrent Design,” Adv. Des. Autom., 69(2),
pp. 151–161.

[21] Chen, W., Allen, J. K., and Mistree, F., 1997, “A Robust Concept Exploration
Method for Enhancing Productivity in Concurrent Systems Design,” Concurrent
Eng., 5(3), pp. 203–217.

[22] Hodgson, P., and Gibbs, R., 1992, “A Mathematical Model to Predict the
Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels,” ISIJ Int.,
32(12), pp. 1329–1338.

[23] Kuziak, R., Cheng, Y.-W., Glowacki, M., and Pietrzyk, M., 1997, “Modeling of
the Microstructure and Mechanical Properties of Steels During Thermomechan-
ical Processing,” National Institute of Standards and Technology, Gaithersburg,
MD, NIST Technical Note. 1393.

[24] Majta, J., Kuziak, R., Pietrzyk, M., and Krzton, H., 1996, “Use of the Computer
Simulation to Predict Mechanical Properties of C-Mn Steel, After Thermome-
chanical Processing,” J. Mater. Process. Technol., 60(1–4), pp. 581–588.

[25] Phadke, S., Pauskar, P., and Shivpuri, R., 2004, “Computational Modeling of
Phase Transformations and Mechanical Properties During the Cooling of Hot
Rolled Rod,” J. Mater. Process. Technol., 150(1–2), pp. 107–115.

[26] Nellippallil, A. B., De, P., Gupta, A., Goyal, S., and Singh, A., 2016, “Hot
Rolling of a Non-Heat Treatable Aluminum Alloy: Thermo-Mechanical and
Microstructure Evolution Model,” Trans. Indian Inst. Met., 70(5), pp.
1387–1398.

[27] J€agle, E., 2007, “Modelling of Microstructural Banding During Transforma-
tions in Steel,” Ph. D. dissertation, University of Cambridge, Cambridge, UK.

[28] Shukla, R., Goyal, S., Singh, A. K., Panchal, J. H., Allen, J. K., and Mistree, F.,
2015, “Design Exploration for Determining the Set Points of Continuous
Casting Operation: An Industrial Application,” ASME J. Manuf. Sci. Eng.,
137(3), p. 034503.

[29] Taguchi, G., Introduction to Quality Engineering, Asian Productivity Organiza-
tion, 1986, Distributed by the American Supplier Institute, Quality Resources,
Dearborn, MI.

[30] Bras, B., and Mistree, F., 1993, “Robust Design Using Compromise Decision
Support Problems,” Eng. Optim., 21(3), pp. 213–239.

[31] Pietrzyk, M., Cser, L., and Lenard, J., 1999, Mathematical and Physical Simu-
lation of the Properties of Hot Rolled Products, Elsevier, Kidlington, Oxford.

[32] Wang, R., Nellippallil, A. B., Wang, G., Yan, Y., Allen, J. K., and Mistree, F.,
2018, “Systematic Design Space Exploration Using a Template-Based Ontolog-
ical Method,” Adv. Eng. Inf., 36, pp. 163–177.

[33] Gladman, T., Dulieu, D., and McIvor, I. D., 1977, “Structure/Property Relation-
ships in High-Strength Micro-Alloyed Steels,” Conf. Microalloying, 75, pp.
32–55.

[34] Gladman, T., McIvor, I., and Pickering, F., 1972, “Some Aspects of the
Structure-Property Relationships in High-C Ferrite-Pearlite Steels,” J. Iron Steel
Inst., 210(12), pp. 916–930.

[35] Yada, H., 1987, “Prediction of Microstructural Changes and Mechanical Prop-
erties in Hot Strip Rolling,” International Symposium on Accelerated Cooling
Rolled Steel, Winnipeg, MB, Canada, Aug. 24–25, pp. 105–119.

[36] Nellippallil, A. B., Allen, J. K., Mistree, F., Vignesh, R., Gautham, B. P., and
Singh, A. K., 2017, “A Goal-Oriented, Inverse Decision-Based Design Method
to Achieve the Vertical and Horizontal Integration of Models in a Hot-Rod
Rolling Process Chain,” ASME Paper No. DETC2017-67570.

[37] Robson, J., and Bhadeshia, H., 1997, “Modelling Precipitation Sequences in
Power Plant Steels—Part 1: Kinetic Theory,” Mater. Sci. Technol., 13(8),
pp. 631–639.

[38] Jones, S., and Bhadeshia, H., 1997, “Kinetics of the Simultaneous Decomposi-
tion of Austenite Into Several Transformation Products,” Acta Mater., 45(7),
pp. 2911–2920.

[39] Jones, S., and Bhadeshia, H., 1997, “Competitive Formation of Inter-and Intra-
granularly Nucleated Ferrite,” Metall. Mater. Trans. A, 28(10), pp. 2005–2013.

[40] Jones, S. J., and Bhadeshia, H. K. D. H., 2017, “Program Structure on the Mate-
rials Algorithm Project,” Materials Algorithms Project Program Library, Feb. 4,
2017, http://www.msm.cam.ac.uk/map/steel/programs/structure.html

[41] Bodnar, R., and Hansen, S., 1994, “Effects of Austenite Grain Size and Cooling
Rate on Widmanst€atten Ferrite Formation in Low-Alloy Steels,” Metall. Mater.
Trans. A., 25(4), pp. 665–675.

[42] Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen,
J. K., and Mistree, F., 2016, “A Goal Oriented, Sequential Process Design of a
Multi-Stage Hot Rod Rolling System,” ASME Paper No. DETC2016-59402.

Journal of Mechanical Design NOVEMBER 2018, Vol. 140 / 111403-17

Downloaded From: http://asmedigitalcollection.asme.org/ on 09/07/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1126/science.277.5330.1237
http://dx.doi.org/10.1557/mrs.2016.61
http://dx.doi.org/10.3970/cmc.2010.017.103
http://dx.doi.org/10.3970/cmc.2010.017.103
http://dx.doi.org/10.1007/s11837-011-0057-7
http://dx.doi.org/10.1080/03052150701742201
http://dx.doi.org/10.1115/1.2829860
http://dx.doi.org/10.1016/j.matdes.2017.08.042
http://dx.doi.org/10.1115/1.4035555
http://dx.doi.org/10.2514/5.9781600866234.0251.0290
http://dx.doi.org/10.2514/5.9781600866234.0251.0290
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.3054&rep=rep1&type=pdf
http://dx.doi.org/10.1177/1063293X9700500302
http://dx.doi.org/10.1177/1063293X9700500302
http://dx.doi.org/10.2355/isijinternational.32.1329
https://www.gpo.gov/fdsys/pkg/GOVPUB-C13-55dca2f44f9d8882a1646ba345bfcc1a/pdf/GOVPUB-C13-55dca2f44f9d8882a1646ba345bfcc1a.pdf
http://dx.doi.org/10.1016/0924-0136(96)02390-4
http://dx.doi.org/10.1016/j.jmatprotec.2004.01.027
http://dx.doi.org/10.1115/1.4029786
http://dx.doi.org/10.1080/03052159308940976
http://dx.doi.org/10.1016/j.aei.2018.03.006
http://dx.doi.org/10.1115/DETC2017-67570
http://dx.doi.org/10.1179/mst.1997.13.8.631
http://dx.doi.org/10.1016/S1359-6454(96)00392-8
http://dx.doi.org/10.1007/s11661-997-0157-8
http://www.msm.cam.ac.uk/map/steel/programs/structure.html
http://dx.doi.org/10.1007/BF02665443
http://dx.doi.org/10.1007/BF02665443
http://dx.doi.org/10.1115/DETC2016-59402

	s1
	aff1
	l
	s2
	1
	2
	s3
	3
	s3B
	s3C
	s3D
	s4
	s4A
	s4A2a
	s4A2b
	s4A2c
	4
	s4B
	s4B2
	s4B3
	5
	s4B4
	s5
	s5A
	s5B
	1
	FD1
	FD2
	FD3
	FD4
	2
	s5C
	s6
	3
	FD5
	FD6
	FD7
	FD8
	4
	FD9
	FD10
	FD11
	FD12
	5
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	FD25
	6
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	FD33
	FD34
	FD35
	FD36
	FD37
	FD38
	FD39
	FD40
	FD41
	FD42
	FD43
	s7
	s7A
	7
	6
	7
	8
	9
	10
	11
	s7B
	8
	12
	13
	s8
	9
	14
	15
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

