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Abstract

Uncertainty pertaining to multiple parameters is a critical issue in designing complex systems. Whether 

or not to acquire more information to reduce uncertainty, and how to acquire information are the meta-

level decisions to be made. Key challenges in making such decisions are that there are multiple 

information sources to choose from, and the cost of information as well as its effects on the overall design 

utility are different. To address these challenges, a performance-based stepwise information acquisition 

method is proposed. In the proposed method, the utility-based compromise Decision Support Problem 

construct is used to formulate design decisions to maximize the overall utility. For meta-level decisions, a 

performance index is developed for selecting the most appropriate information in each acquisition trial. 

The index is an integration of the improvement potential of the overall utility, the sensitivity of each 

ranged parameter, and the cost of the acquired information. Advantages of this proposed method are: 1) 

sensitivity-efficiency ensures that acquired information is invested on the critical parameters which avoids 

ineffective information acquisition; 2) cost-efficiency ensures that every acquisition is cost-efficient which 

avoids budget overruns. The efficacy of this method is demonstrated using the design of a hot rod rolling 

process. It is shown in the results that the performance-based method leads to an 8-45% larger drop of 

improvement potential compared to the random method.

Keywords: Uncertainty; Multi-parameter; Information Acquisition; Sensitivity; Value of 

Information

1. Frame of Reference

Designers often confront a variety of uncertainties in the design of systems and products [1-3]. In order 

to arrive at a better decision, designers collect information to reduce uncertainty associated with making 

a decision. However, gathering more information (e.g., by physical experiments or computer simulations) 
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inevitably results in an increase in cost which could be in terms of human time, computational time, or 

delay. Accordingly, we suggest that engineers are confronted with resolving the following dilemma:  make 

a decision under the current uncertainty or expending resources to reduce that uncertainty for a 

potentially better expected outcome. The trade-off between reduced uncertainty and the increased cost 

is a meta-level (or process-level) decision [4] that designers have to make in addition to decisions on the 

artifact or system that is being designed. 

Simon [5] argues that humans are “Administrative man” making decisions under imperfect 

knowledge about nature and limited processing capability, instead of the theoretical “Economic man” 

who does not have such limitations. The idea of decision making under imperfect knowledge and 

searching for “satisficing” (good enough) solutions instead of optimal solutions is adopted in References 

[6, 7]. Howard [8] proposes the value-of-information construct for determining whether to get additional 

information for making a decision. As defined by Howard, value-of-information is the difference between 

the expected value of the objective for the alternative selected with the benefit of the information and 

that without. Value-of-information has been extensively studied in theoretical research fields including 

decision theory [9] and game theory [10]. 

In engineering design, various authors have written about the use of value-of-information 

construct in information acquisition for decision making under uncertainty. For example, Agogino and 

coauthors [11-13] use the expected value-of-information (EVI) for catalog selection problems wherein 

designers need to choose components from a catalog under significant uncertainty. Panchal and 

coauthors [4] propose an index called “improvement potential” to measure the value of information in 

simulation model refinement, and in the increasing of decision model fidelity for complex system design 

[14]. Based on the “improvement potential”, Messer and coauthors [15] propose the “process 

performance indicator” for model selection under limited information in the context of integrated product 

and material design. In summary, existing value-of-information based approaches provide useful means 
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for designers to evaluate both the benefit and the cost of additional information, so as to facilitate 

designers making decisions on whether to go ahead and make a decision based on the information at 

hand or delay the decision and expend further effort developing a better understanding of the problem. 

However, authors typically focus on a singular parameter under uncertainty and seldom touch upon multi-

parametric uncertainty. For instance, the “improvement potential” index and the associated stepwise 

simulation model refinement method [4] work well for problems with a single uncertain parameter, but 

there is a lack of clarification or justification of how this method can guide the information acquisition 

process among multiple uncertain parameters. In the EVI based approach [11-13], even though it is 

mentioned that a vector of parameters are uncertain, but the process of how information is queried to 

reduce the uncertainty in multiple parameters is not specified in the catalog selection process. 

In design of engineering systems, especially complex systems, designers usually face a situation 

where multiple parameters are concurrently uncertain, and they need to make meta-level decisions on 

information acquisition to reduce the uncertainty [4, 16]. Compared to a singular uncertain parameter, 

the challenge of information acquisition for multiple uncertain parameter is mainly embodied in two 

aspects: 1) multiple information sources are available for designers to choose from, and 2) the cost of 

information as well as its impact on the overall performance of design are different. Because resources 

are often limited during design, there is a need to acquire information strategically to reduce uncertainty 

of the parameters base on the value of the information, to make better meta-level decisions to improve 

the design. In order to address the need, we propose a performance-based approach for information 

acquisition accounting for design under multi-parametric uncertainty. 

From the perspective of information sciences, the significance of this paper is anchored in that 

we recognize the importance of meta-level decisions in multi-parametric uncertainty problems. Key 

difference in meta-level decisions is that decisions makers not only need to focus on the formulation of 

the problem itself (given the uncertainty), but also need to decide whether or not to collect more 
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information and what is the “best” way to collect information. Our contribution is that we provide an 

information acquisition method to guide decision makers to make these meta-level decisions. Using the 

method, decision makers can measure the performance of the information before it is acquired, 

considering the sensitivity of the uncertain parameters of the problem and the cost of the information to 

be acquired. This enables decision makers wisely spend the limited budget on the most valuable 

information.

The paper is organized as follows. Related literature and background are provided in Section 2. 

The method proposed for information acquisition accounting for design under multi-parametric 

uncertainty is presented in Section 3. A hot rod rolling process design example is presented in Sections 4 

to demonstrate the use of the method. A generalized framework of the information acquisition method 

proposed in this paper is presented in Section 5. Closing thoughts are presented in Section 6.

2. Background and Foundation

2.1 Uncertainty in Engineering Design 

Characterization of uncertainty in the modeling of physical systems is a critical topic in engineering design 

and analysis literature, many classifications and definitions have been proposed. For example, Isukapalli 

and coauthors [17] classify uncertainties as follows: a) “natural uncertainty or variability” which stands 

for inherent randomness or unpredictability of the physical system; b) “model uncertainty” which refers 

to approximations and simplifications in model formulation, and c) “data uncertainty” denoting 

incomplete knowledge of model parameters or inputs.  Allen and coauthors [18] identify three types of 

uncertainties from a system function perspective: I) uncertainty in noise or environmental and other 

factors, II) uncertainty in design variables or control factors, and III) uncertainty introduced by modeling 

methods. Different uncertainty classifications reflect the difference in the views or computational 

representations of the problem. Zhai and coauthors [1] classify design uncertainties into randomness and 
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fuzziness, and define the hybrid of these two types as twofold uncertainty. From a standpoint of whether 

the uncertainty can be reduced or not, uncertainty can be further categorized into “reducible” and 

“irreducible” [17, 19]. Epistemic uncertainty is usually a type of reducible uncertainty that can be 

diminished by improvements in measurements and/or model formulation and/or by increasing the 

accuracy or sample size of data. Aleatory uncertainty, on the other hand, is a type of irreducible 

uncertainty which is inherit in the physical system and can only be quantified in a statistical sense and 

cannot be reduced by gathering more information. Panchal and coauthors [4] point out that aleatory 

(irreducible) uncertainty is usually represented using probability distributions, while epistemic (reducible) 

uncertainty is generally modeled using intervals [20] or fuzzy sets [21].  

Our purpose in this paper is to present an information acquisition method for reducing 

uncertainty in the expectation of making better design decisions, therefore we focus on the reducible 

uncertainty that can be reduced by acquiring more information. In order to visually present the 

uncertainty sources and identify the reducible uncertainty, the classification scheme proposed by Allen 

and coauthors [18] is used, see Figure 1. As shown in Figure 1, uncertainties may come from noise factors 

 (type I), control factors  (type II), and system models  (type III). Control factors are design 𝑌 𝑋 𝑓(𝑋,𝑌)

variables which represent the specification of the system after the system is realized or implemented. At 

the design stage, because the system is yet to be built, a designer can hardly take action to reduce the 

variability in design variables. Therefore, uncertainty associated with the control factors is a type of 

irreducible uncertainty. Noise factors are uncontrollable parameters, which are usually given before 

design is performed and are used as constants during a design process. Uncertainty associated with noise 

factors can be categorized into variability and imprecision. Some noise factors are random parameters (  𝑌𝑎

in Figure 1) and represented using probability distributions, of which, as mentioned earlier, the 

uncertainty is not reducible. Some noise factors are ranged parameters (  in Figure 1) and are 𝑌𝑒

represented using intervals, of which the uncertainty is reducible and thus is the focus of this paper, as 
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shown in the small dashed rectangle in Figure 1.  System model  represents the mathematical 𝑓(𝑋,𝑌)

relationship between the inputs  and the outputs (response)  of the system. Uncertainty associated 𝑋,𝑌 𝑍

with the system model is reducible by building models with higher fidelity. However, it is another research 

issue and out of the scope of this paper.
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Figure 1. Three types of uncertainty sources [18] and the focus of this paper

2.2 Value-of-Information for Reducing Uncertainty  

Lawrence [22] argues that the value-of-information for decision making can be measured at different 

stages in a decision making process: i) prior to consideration of incorporation of information; ii) after 

considering an information source but prior to receiving the information (ex-ante value); iii) after receiving 

additional information and making the decision, but before realization of the environmental state 

(conditional value); or iv) after addition of information and observing the outcome of the decision based 

on acquired information (ex-post value). In the engineering context, ex-post value can truly reflect the 

value-of-information for a decision based on the actual behavior of the system because the system is 

realized and the behavior can be measured exactly. However, during the design stage it is impossible for 

a designer to obtain the ex-post value because the system is yet to be built. What is critical for a designer 

is to predict the value of information before the information is received and the state occurs. Hence, we 

use the ex-ante value-of-information that captures the expected value by considering uncertainties in the 
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system. The notion of ex-ante value-of-information for design under uncertainty is well recognized in 

literature [4, 12, 14, 15, 23]. Mathematically, the ex-ante value-of-information is calculated as:

                                                     (1)𝑣(𝑥,𝑦) = 𝐸𝑥|𝑦𝜋(𝑥,𝑎𝑦) ― 𝐸𝑥𝜋(𝑥,𝑎0)

where  represents the payoff achieved by selecting an option  when the environment state is .  𝜋(𝑥,𝑎) 𝑎 𝑥 𝐸𝑥

 is the expected value of  and  is the expected value of  given .  and  stand for 𝜋(𝑥) 𝜋(𝑥) 𝐸𝑥|𝑦𝜋(𝑥) 𝜋(𝑥) y 𝑎0 𝑎𝑦

the options selected by the decision maker in the absence and presence of information .y

Simulation-based design (SBD) [24] is an emerging field of study in engineering design wherein 

the focus is on using computational models for supporting design decisions typically made by humans to 

ensure cost-effectiveness of a design process. In SBD, a computational model when exercised is a source 

of information that a designer can take into consideration in making decisions associated with efficacy of 

a design. Even though the actual system behavior is unknown at this stage, getting more information to 

increase the fidelity of computational models (e.g., modeling more effects) can improve the accuracy of 

prediction and approximate the actual system behavior. Therefore, refining simulation models is 

appropriate for reducing uncertainties. Panchal and coauthors [4] assume that the imprecision bounds 

(upper and lower bounds) of a simulation model are available, and propose the improvement potential 

( ) indices for measuring the value-of-information in model refinement. 𝑃𝐼
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Figure 2. Decision making based on imprecision bounds [4]

The imprecision bounds of the simulation model represent the upper and lower bounds on the 

overall utility function (decision is made to maximize the overall utility), as shown in Figure 2. The actual 

payoff lies somewhere (unknown) in the belt confined by lower bound  and upper bound . Even 𝑈𝑚𝑖𝑛 𝑈𝑚𝑎𝑥

though the actual utility function is unknown, a designer can still make decisions based on some rules 

such as maximizing the lower bound (i.e., improving the worst case scenario) or upper bound (i.e., 

improving best possible scenario) on achievable payoff, or maximizing the weighted combination (i.e., 

Hurwicz criterion [25]) of payoff. When Hurwicz criterion is followed, the decision point should be the  𝑥𝐻

that maximize the Hurwicz utility value . The lower and upper bound on expected payoff at  are 𝐻 𝑥𝐻

represented as  and  respectively. The maximum achievable payoff through the design (𝑈𝑚𝑖𝑛) ∗ (𝑈𝑚𝑎𝑥) ∗

space is  which is calculated by maximizing the upper bound of the overall utility. Given that max (𝑈𝑚𝑎𝑥)

the imprecision bounds of the overall utility are available, the maximum possible value-of-information 

(namely, the maximum possible incremental payoff by reducing the range between the bounds) can be 

evaluated using the improvement potential ( ) as follows:𝑃𝐼
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                                                                    (2)𝑃𝐼 = max (𝑈𝑚𝑎𝑥) ― (𝑈𝑚𝑖𝑛) ∗

where  is the maximum expected payoff that can be achieved by any point in the design space max (𝑈𝑚𝑎𝑥)

and  is the lowest expected payoff value achieved by the selected point in the design space (𝑈𝑚𝑖𝑛) ∗

(before adding information). 

In this paper, we assume that simulation models with different fidelities (characterized with 

different imprecision bounds and cost) are available as information sources for a designer to acquire in 

order to reduce the uncertainty associated with the parameters. The concept of improvement potential is 

extended to measure the value-of-information when there are multiple parameters are uncertain.

2.3 Sensitivity Analysis in Multiple Parameters under Uncertainty

In cases where multiple parameters are uncertain, the variation of the overall utility is a co-effect 

contributed by the parameters all-together. When a designer tries to acquire more information to reduce 

the uncertainty (range) of a parameter, it is important to know the effect of this action on the overall 

utility. This is important especially when a designer wants to spend a limited budget on acquiring 

information to reduce the uncertainty pertaining to the “most critical” parameters. Sensitivity Analysis 

(SA) is the study of how the uncertainty in the output of a mathematical model or system can be 

apportioned to different sources of uncertainty in its inputs [26]. It provides a way for a designer to 

understand the contribution to the overall variance in the output from each of the input parameters. In 

the SA literature, the method proposed by Sobol and the Fourier amplitude sensitivity test (FAST) method 

are two of the most popular methods. The method proposed by Sobol [27] is a variance-based sensitivity 

analysis method that decomposes the variance of the output into fractions which can be attributed to 

inputs or sets of inputs. The main advantage of the method proposed by Sobol is anchored in its capability 

of computing the “Total Sensitivity Index ( )” defined as the sum of all the sensitivity indices involving 𝑆𝑇𝑖

that factor. The Sobol method has been used for sensitivity analysis in many applications, such as financial 

big data analysis [28] and petroleum engineering [29], etc. However, one drawback of the Sobol method 
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lies in its computational efficiency – it relies on a large number of sample points in the input space [30]. 

The FAST method introduced by Cukier and coauthors [31, 32] is a computationally-efficient sensitivity 

analysis method that converts multidimensional input space into a single dimensional space by using a 

suitably defined search curve, which is given by 

                                                                    (3)𝑥𝑖(𝑠) = 𝐺𝑖(𝑠𝑖𝑛 𝑤𝑖𝑠)

where  is a scalar variable varying over the ,  are a transformation functions, and  𝑠 ―∞ < 𝑠 < +∞ 𝐺𝑖 {𝑤𝑖}

is a set of different frequencies to be properly selected associated with each factor. As  varies, all the 𝑠

input factors change simultaneously along a curve and systematically explores the input space. Each  𝑥𝑖

oscillates periodically at its corresponding frequency , and output  ( ) shows different 𝑤𝑖 𝑌 𝑌 = 𝑓(𝑥1,𝑥2,…,𝑥𝑛)

periodicities combined with the different frequencies  , whatever  is. If some  has a strong influence 𝑤𝑖 𝑓 𝑥𝑖

on the output, the oscillations of  at frequency  shall be of high amplitude, which forms the basis for 𝑌 𝑤𝑖

computing sensitivity. FAST has been regarded as one of the most elegant methods for SA [30].  The main 

advantage of FAST is its computational efficiency, however, it has limitations in computing the total effects 

(instead of the main effect). Saltelli and coauthors [30] proposed an extended FAST (EFAST) method that 

combines FAST’s better efficiency and Sobol’s capacity to compute total effects. The key idea of EFAST is 

assigning frequency  to the th factor and a different frequency  to all the remaining factors. By 𝑤𝑖 𝑖 𝑤(𝑖)′

evaluating the spectrum at  and its higher harmonics , the partial variance  can be 𝑤(𝑖)′ 𝑝𝑤(𝑖)′ 𝐷( ― 𝑖)

estimated, and the total effect (sensitivity ) of the th factor is calculated by𝑆𝑖 𝑖

                                                                                (4)𝑆𝑖 = 𝐷(𝑇𝑖) = 𝐷 ― 𝐷( ― 𝑖)

where the index   stands for “all but .” For detailed calculation of the variance  and , see [30]. ―𝑖 𝑖 𝐷 𝐷( ― 𝑖)

Different transformation functions have been proposed [30, 31]. To make the samples distributed in a 

more general range [ ], Lauret and coauthors [33] proposed a transformation function given by𝑎𝑖, 𝑏𝑖

                                                       (5)𝑥𝑖(𝑠) =
𝑎𝑖 +  𝑏𝑖

2 +
𝑏𝑖 ―  𝑎𝑖

𝜋 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑠𝑖𝑛 𝑤𝑖𝑠)
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In this paper, EFAST is used to evaluate the total effect on the overall utility contributed by each 

ranged parameter, to facilitate a designer making a decision on which parameter (or set of parameters) 

should be of first priority for reducing uncertainty when multiple parameters are uncertain.

3. Proposed Method

3.1 Modeling Design Decisions – the Utility-Based Compromise Decision Support Problem

In this paper, the utility-based compromise Decision Support Problem (cDSP) [7, 34]  is used for modeling 

decisions in design. The cDSP construct is proposed by Mistree and coauthors [7] for formulating decisions 

that involve making a trade-off among multiple design objectives, it is a hybrid formulation based on 

mathematical programing and goal programing. Seepersad and coauthors [34] propose a utility-based 

cDSP wherein they replace the standard deviation function with a multi-attribute utility function.   In this 

formulation, individual goals are formulated as single-attribute utility functions, and multiple goals are 

combined in the objective function using Archimedean weightings. The mathematical formulation of the 

utility-based cDSP is provided in Figure 3. 

Given
 An alternative to be improved through modification.
 Assumptions used to model the domain of interest.
 The system parameters.
          number of system variables𝑛
       number of system constraints𝑝 + 𝑞
 equality constraint𝑝
      inequality constraints𝑞
        number of system goals𝑚
    system constraint functions 𝐺𝑖(𝑋)
                  system goal functions𝐴𝑖(𝑋)

 utility function for each goal𝑢𝑖(𝐴𝑖(𝑋))
 overall, multi-attribute utility function𝑈(𝑋)

= 𝑓[𝑢1(𝐴1(𝑋)),…,𝑢𝑚(𝐴𝑚(𝑋))]

Find
  System variables

        𝑋 = 𝑋1,…,𝑋𝑗 𝑗 = 1,…,𝑛
  Deviation Variables

   𝑑 ―
𝑖 ,𝑑 +

𝑖 𝑖 = 1,…,𝑚
Satisfy
  System constraints (linear, nonlinear)

     𝐺𝑟(𝑋) = 0 𝑟 = 1,…,𝑝
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     𝐺𝑟(𝑋) ≥ 0 𝑟 = 𝑝 + 1,…,𝑝 + 𝑝
  System goals (linear, nonlinear)

 𝐸[𝑢𝑖(𝐴𝑖(𝑋))] + 𝑑 ―
𝑖 ― 𝑑 +

𝑖 = 1
  Bounds

             𝑋𝑚𝑖𝑛
𝑗 ≤ 𝑋𝑗 ≤ 𝑋𝑚𝑎𝑥

𝑗 𝑗 = 1,…,𝑛
   𝑑 ―

𝑖 ,𝑑 +
𝑖 ≥ 0;𝑑 ―

𝑖 ∙ 𝑑 +
𝑖 = 0

Minimize
  Deviation Function: Additive Multi-Attribute Utility Function

𝑍 = 1 ― 𝐸[𝑈(𝑋)] = ∑𝑚
𝑖 = 1𝑘𝑖(𝑑 ―

𝑖 + 𝑑 +
𝑖 )

Figure 3. Mathematical formulation of utility-based cDSP [34] 

3.2 Modeling Information Acquisition Decisions in Design Under Multi-Parametric 

Uncertainty

A problem formulated using the utility-based cDSP represents a decision to be made to maximize the 

utility embodied in the deviation function. Due to the lack of knowledge, a designer may have multiple 

uncertain parameters in the utility-based cDSP. These uncertain parameters are mainly from the 

coefficients of the system constraint functions  and system goal functions , and are 𝐺𝑖(𝑋) 𝐴𝑖(𝑋)

represented using imprecision bounds, e.g., , where  stands for a specific uncertain 𝑝𝑘 = [𝑝𝑙
𝑘,𝑝𝑢

𝑘] 𝑝𝑘

parameter and ,  stand for the lower and upper bounds of  respectively. Given multiple parameters 𝑝𝑙
𝑘 𝑝𝑢

𝑘 𝑝𝑘

are uncertain, as shown in Figure 4, the designer is facing meta-level decisions about acquiring information 

to reduce the uncertainty in the utility-based cDSP formulation. There are two types of meta-level 

decisions in this circumstance: one is whether to acquire more information, the other is which piece of 

information to pick from the information sources. As mentioned in Section 2.2.2, simulation models are 

assumed to be the information sources. Here, we further assume that a designer’s budget for acquiring 

information is limited and model the meta-decisions as follows.



Manuscript for Information Sciences Page 14

Figure 4. Information acquisition in design under multi-parametric uncertainty

Meta-decision ①: whether to acquire more information. In this meta-decision, the improvement 

potential ( ) indices are evaluated to facilitate a designer understanding the value of acquiring more 𝑃𝐼

information. According to Equation 2, the evaluation of  is dependent on the imprecision bounds of the 𝑃𝐼

uncertain parameters and the overall utility function and is independent of the information sources. The 

two terms,   and , of Equation 2 are computed using the response surface method. max (𝑈𝑚𝑎𝑥) (𝑈𝑚𝑖𝑛) ∗

For example, if the utility-based cDSP includes  design variables and  uncertain parameters, then within 𝑗 𝑘

a  dimensional space  sample points can be generated using an orthogonal grid with  (  can 𝑗 + 𝑘 𝑁𝑗 + 𝑘 𝑁 𝑁

be different according to length of the range) elements per variable or parameter. Using the sample points, 

both  and  are calculated based on the overall utility function  as well as the max (𝑈𝑚𝑎𝑥) (𝑈𝑚𝑖𝑛) ∗ 𝑈(𝑋)

constraint functions  (the points should be subject to the constraints). Given that the improvement 𝐺𝑖(𝑋)



Manuscript for Information Sciences Page 15

potential  is known, the criterion below is used for the designer to make a decision on whether to 𝑃𝐼

acquire more information:

                                                     (6){𝑃𝐼 > 𝑃𝑇     𝑎𝑐𝑞𝑢𝑖𝑟𝑒 𝑚𝑜𝑟𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 
𝑃𝐼 ≤ 𝑃𝑇     𝑠𝑡𝑜𝑝 𝑎𝑐𝑞𝑢𝑖𝑟𝑖𝑛𝑔                         

where  denotes a threshold value that is based on the designer’s judgement according to the features 𝑃𝑇

of the design problem.

Meta-decision ②: which information to pick. This is a coupled meta-decision that includes two 

sub-decisions: 1) which parameter in the set of  to reduce uncertainty, and 2) which {𝑝1,𝑝2,…,𝑝𝑘}

information source (simulation model) to choose for reducing the uncertainty pertaining to a parameter. 

The former mainly depends on the parameter sensitivities  which associates the 𝑆𝑖 (𝑖 = 1,…,𝑘)

improvement potential  to different parameters. The latter depends on accuracy (i.e., the new 𝑃𝐼

imprecision bounds after information acquisition) and the cost which measures the performance of the 

of the simulation models . It is a coupled decision because the sensitivity of a 𝑀𝑗
𝑖(𝑖 = 1,…,𝑘;𝑗 = 1,2,…)

parameter also influences the overall performance of a simulation model that is used for reducing the 

uncertainty in the regarding parameter to improve the overall expected utility of the design. Therefore, 

the designer should concurrently consider sensitivity, accuracy, and cost in the decision about which piece 

of information (simulation model) to pick. Based on this, we propose a merit function for measuring the 

overall performance of the information sources given by

                           (7)𝑀𝑃𝑗
𝑖 = 𝐾 ∙

𝑃𝐼 ∙ 𝑆𝑖 ∙ (1 ―
𝑝𝑢′𝑖 ― 𝑝𝑙′𝑖

𝑝𝑢
𝑖 ― 𝑝𝑙

𝑖
)

𝐶𝑗
𝑖

 + 𝜀     (𝑖 = 1,…,𝑘;  𝑗 = 1,2,…;  𝐶𝑗
𝑖 ≤ 𝐵𝑎𝑣𝑎𝑖)

where  is a scale coefficient to facilitate visualization, which keeps as a constant across information 𝐾

sources;  is the improvement potential which is calculated using Equation 2, see Section 2.2 for details; 𝑃𝐼

 is the sensitivity which is calculated using Equations 4 and 5, see Section 2.3 for details;  means 𝑆𝑖 𝑃𝐼 ∙ 𝑆𝑖

the improvement potential attributed to parameter ; the term enclosed in the bracket means the 𝑖
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capability of the information source for reducing the range of the parameter (the percentage of the 

reduced range); the term  means the cost of the information; and  denotes the available budget 𝐶𝑗
𝑖 𝐵𝑎𝑣𝑎𝑖

for information acquisition;  is used to capture the total error which is produced in the evaluation of  𝜀 𝑃𝐼

and . Since  is not an estimated parameter (because both of its two terms, namely,  and 𝑆𝑖 𝑃𝐼 max (𝑈𝑚𝑎𝑥)

, are not estimated),  is mainly contributed by the evaluation of  which is estimated using (𝑈𝑚𝑖𝑛) ∗ 𝜀 𝑆𝑖

sampling methods based on Equation 5. It is seen from Equation 7 that the new range  should be [𝑝𝑙′𝑖 ,𝑝𝑢′𝑖 ]

narrower than the original range , otherwise  will be negative and the information source is [𝑝𝑙
𝑖,𝑝𝑢

𝑖 ] 𝑀𝑃𝑗
𝑖

useless. Since both  and  are factors of merit function , the meta-decision is a joint decision taking 𝑆𝑖 𝐶𝑗
𝑖 𝑀𝑃𝑗

𝑖

in account sensitivity- and cost-efficiency. The decision criterion for this meta-decision is to select an 

information source that maximizes . This is to ensure that every trial of information acquisition 𝑀𝑃𝑗
𝑖

improves the expected overall utility as much as possible and that the budget for information acquisition 

is utilized wisely. Since the improvement potential and parameter sensitivity evolves as more information 

is given to the decision model, the evaluation of  is an “online” rating process for the next candidate 𝑀𝑃𝑗
𝑖

information sources so as to facilitate the selection of the most valuable information for the current 

decision. It should be noted that even though a performance index is not 100% accurate (with error ), 𝜀

we can still use its mean value to indicate the merit of a specific information source.

3.3 Performance-Based Method for Stepwise Information Acquisition 

In Figure 4 the situation of design under multi-parametric uncertainty and information acquisition with 

multiple information sources available are shown. We assume that a designer can only acquire 

information from only one source each time and propose a performance-based method for stepwise 

information acquisition shown in Figure 5. The method consists of two meta-decisions and the following 

seven steps.
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Figure 5. Performance-based method for stepwise information acquisition

Step 1. Formulate the design decision using the utility-based cDSP construct. Mathematic formulatation 

of the utility-based cDSP is shown in Figure 3. An instantiated example is presented in Section 4.

Step 2. Identify the uncertain parameter set. In this step, a designer identifies all the uncertain 

parameters in the utility-based cDSP formulation. As mentioned in Section 3.2, these 

parameters are mainly coefficients of the system goals and constraints.

Step 3. Determine the imprecision bounds of each parameter. These bounds are gatered to evaluate 

the Improvement Potential in Step 4.

Step 4. In this step, the Improvement Potential  is evaluated by Equation 2 using DOE method. 𝑃𝐼

 and  of Equation 2 are computed using the response surface method, see (𝑈𝑚𝑖𝑛) ∗ max (𝑈𝑚𝑎𝑥)

[4] (Steps 4 and 5 of Figure 6 in [4]) for details. Both  and  are taken as inputs (𝑈𝑚𝑖𝑛) ∗ max (𝑈𝑚𝑎𝑥)

for evaluating . A desinger makes a decision after  is evaluated: if  is larger than the 𝑃𝐼 𝑃𝐼 𝑃𝐼
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threshold then proceeds to Step 5, otherwise stops information acquisition. This is meta-

decision ①.

Step 5. This is the beginning of meta-decision ②. In this step the global sensitivity of each parameter is 

calculated based on the EFAST method using the imprecision bounds gathered in Step 3 as the 

input. With sensitivity , a designer will know what fraction of each parameter can contribute 𝑆𝑖

to the Improvement Potential . Sensitivity analysis is performed before every information 𝑃𝐼

acquisition trial. To calculate the sensitivity, a designer needs to follow two sub-steps as follows.

5.a. Generation of samples of uncertain parameters within the specified imprecision bounds, 

using Equation 5 of the EFAST method, as defined in Section 2.3.

                                       (5)𝑥𝑖(𝑠) =
𝑎𝑖 +  𝑏𝑖

2 +
𝑏𝑖 ―  𝑎𝑖

𝜋 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑠𝑖𝑛 𝑤𝑖𝑠)

where  and  are the upper bound and lower bound of uncertain Parameter , s is a  𝑏𝑖  𝑎𝑖 𝑖

variable over the -∞<s<+∞,  is a particular frequency,  is a generated sample point of 𝑤𝑖 𝑥𝑖

Parameter .𝑖

5.b. Calculation of the sensitivity (total effects) of each uncertain parameter using Equation 

4, as defined in Section 2.3. The generated sample points  in Step 5.a are used as the 𝑥𝑖

input for calculating the variances in the overall design utility. For details of variances  𝐷

and , see Section 2.3.𝐷( ― 𝑖)

                                                  (4)𝑆𝑖 = 𝐷(𝑇𝑖) = 𝐷 ― 𝐷( ― 𝑖)

Step 6. In this step, a designer evaluates the performance of each simulation model considering 

sensitivity of the parameter, accuracy and cost of the simulation model, and synthesizes them 

as  using Equation 7. If the cost of the simulation model is under the remaining budget, the 𝑀𝑃𝑗
𝑖

designer proceeds to Step 7, otherwise information acquisition stops.



Manuscript for Information Sciences Page 19

Step 7. Among those simulation models of which the cost is under the remaining budget, a designer 

selects the one with maximum  to reduce the uncertainty associsted to the corresponding 𝑀𝑃𝑗
𝑖

parametr. From Step 3 to Step 7 is a iterative process. The uncertainty associated to the 

parameter set  is systematically reduced until the Improvement Potential is under the {𝑝𝑖}

threshold (which means the value of additional information is low) OR the available budget is 

less than the cost of further simulation models (which means the budget for information 

acuisition has run out).

4. Example – Design of a Hot Rod Rolling System

In this section, the efficacy of the method proposed in Section 3 is established via a hot rod rolling process 

design problem which is part of a gear manufacturing process. The foundational problem is contributed 

by our industrial partner – the Tata Consultancy Services in India. From the raw material to the final gear 

product, the material goes through multiple manufacturing processes such as casting, rolling, cooling, 

forging, and machining. All these manufacturing processes are subject to different types of uncertainties. 

There is natural uncertainty that is inherent in the system due to the complex nature associated with each 

manufacturing process. These could be operating parameters like temperature ranges, pressure ranges, 

operating speeds, etc. or the randomness in material microstructure, phases and constituents that are 

present. From a simulation-based design perspective, the uncertainties present in the system may 

represent uncertainty in simulation model parameters, control factors, models themselves and 

uncertainty propagation as models interact or share information.  In order to obtain the desired end 

properties of the gear produced, proper decisions need to be made about the process control parameters 

(set points) at each of these processes. Nellippallil and co-authors [35, 36] propose a goal-oriented, 

inverse design method to carry out the decision-based design exploration of these manufacturing 
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processes to satisfy certain end performance requirements. Extension of their work to include Type I, II 

and III robust design by managing uncertainty across the manufacturing process chain is addressed in [37]. 

In this paper, we frame the boundary within this manufacturing process chain problem and focus on the 

rod (product) produced after the rolling and cooling processes. A description of the problem is presented 

in Section 4.1. Based on this problem, In Section 4.2 we investigate how a designer can cost-efficiently 

and sensitivity-efficiently perform information acquisition using the performance-based method when 

multiple (non-controllable) parameters are under uncertainty. To demonstrate the efficacy, the 

performance-based method is compared to two other acquisition strategies. In Section 4.3, we 

benchmark the performance-based method to a method in literature to demonstrate the superiority of 

the former. In Section 4.4, we summarize and discuss the results.

4.1 Problem Formulation Using the Utility-Based cDSP Construct

Step 1 of the performance-based information acquisition method is to formulate a utility-based cDSP. In 

the context of hot rod rolling process design context, this means formulating a utility-based cDSP to 

represent the design decision associated with the problem within the cooling stage and the end rod 

product requirements. The formulation is modified from [36, 38]. The relationships established in the 

utility-based cDSP are the end mechanical properties of the rod produced; yield strength ( ), tensile 𝑌𝑆

strength ( ), and hardness ( ), as a function of the microstructure variables, ferrite grain size  and 𝑇𝑆 𝐻𝑉 (𝐷𝛼)

phase fraction of ferrite  after rolling and cooling processes. Five uncertain parameters are identified (𝑋𝑓)

for this manufacturing process chain problem. They include, pearlite interlamellar spacing , austenite (𝑆0)

to ferrite transformation temperature  , the concentrations of manganese, silicon and nitrogen (𝑇𝑚𝑓)

([ ], [ ] and [ ]). These parameters are considered uncertain as exact values for these parameters are 𝑀𝑛 𝑆𝑖 𝑁𝑖

difficult to measure and are subjected to change due to the complexity involved in the manufacturing 

process chain thereby affecting the design of the final rod produced. Bounds are defined to establish the 

upper and lower limits of the system variables. Constraints are defined to establish the maximum and 
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minimum values of the mechanical properties,  (yield strength),  (tensile strength),  (hardness) 𝑌𝑆 𝑇𝑆 𝐻𝑉

and toughness measured in terms of impact transition temperature ( ). The target values for the goals 𝐼𝑇𝑇

are defined as = 330 MPa, = 750 MPa, = 170. The design goal here is to achieve 𝑌𝑆𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑆𝑇𝑎𝑟𝑔𝑒𝑡 𝐻𝑉𝑇𝑎𝑟𝑔𝑒𝑡

high values of mechanical properties close to the target by exploring the solution space of material 

microstructure given the uncertainty associated with the parameters. The utility-based cDSP reads as 

follows:

Given

1) End requirements identified for the rod rolling process

 Maximize Yield Strength (Goal)

 Maximize Tensile Strength (Goal)

 Maximize Hardness (Goal)

 Minimize ITT (Requirement in terms of constraint)

2) Well established empirical and theoretical correlations, RSMs and information flow from the end of cooling 

to the end product mechanical properties. Details provided in [35].

3) System variables and their ranges

Table 1. System variables and ranges for u-cDSP

Sr. No System Variables Ranges

1 𝑋1, ferrite grain size (𝐷𝛼) 8-25 m𝜇

2  the phase fraction of ferrite 𝑋2, (𝑋𝑓) 0.1-0.9

4) Uncertain parameters and their probable ranges

Table 2. Uncertain parameters and ranges for u-cDSP

Sr. No Uncertain Parameters Probable Ranges

1  the pearlite interlamellar spacing ( )𝑌𝑒1, 𝑆0 0.05-0.20 m𝜇

2  manganese concentration after cooling ( )𝑌𝑒2, [𝑀𝑛] 0.6-2.0 %

3  the composition of Si ( )𝑌𝑒3, [𝑆𝑖] 0.20-0.22 %

4 the composition of N ([ ])𝑌𝑒4, 𝑁𝑖 0.0074-0.02 %

5  the austenite to ferrite transformation temperature  𝑌𝑒5, (𝑇𝑚𝑓) 570-700 °C

Find

System Variables
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𝑋1, ferrite grain size (𝐷𝛼)

 the phase fraction of ferrite 𝑋2, (𝑋𝑓)

Deviation Variables

, i =1,2,3𝑑 ―
𝑖 , 𝑑 +

𝑖

Satisfy

 System Constraints

 Minimum yield strength constraint   𝑌𝑆 ≥ 220 MPa

 Maximum yield strength constraint 𝑌𝑆 ≤ 330 MPa

 Minimum tensile strength constraint 𝑇𝑆 ≥ 450 MPa

 Maximum tensile strength constraint 𝑇𝑆 ≤ 750 MPa

 Minimum hardness constraint 𝐻𝑉 ≥ 131

 Maximum hardness constraint 𝐻𝑉 ≤ 170

 Minimum ITT constraint 𝐼𝑇𝑇 ≥ ―100℃

 Maximum ITT constraint 𝐼𝑇𝑇 ≤ 100℃

 Utility based system goals for yield strength, tensile strength, and hardness

 :  Maximize Yield Strength𝑈𝑌𝑆 1.2( 𝑌𝑆(𝑋𝑖)
𝑌𝑆𝑇𝑎𝑟𝑔𝑒𝑡)

2
―0.2( 𝑌𝑆(𝑋𝑖)

𝑌𝑆𝑇𝑎𝑟𝑔𝑒𝑡) + 𝑑 ―
1 ― 𝑑 +

1 = 1

 : Maximize Tensile Strength𝑈𝑇𝑆 1.3(
𝑇𝑆(𝑋𝑖)

𝑇𝑆𝑇𝑎𝑟𝑔𝑒𝑡
)

2
―0.3(

𝑇𝑆(𝑋𝑖)
𝑇𝑆𝑇𝑎𝑟𝑔𝑒𝑡

) + 𝑑 ―
2 ― 𝑑 +

2 = 1

 : Maximize Hardness  𝑈𝐻𝑉 1.4(
𝐻𝑉(𝑋𝑖)

𝐻𝑉𝑇𝑎𝑟𝑔𝑒𝑡
)

2
―0.4(

𝐻𝑉(𝑋𝑖)
𝐻𝑉𝑇𝑎𝑟𝑔𝑒𝑡

) + 𝑑 ―
3 ― 𝑑 +

3 = 1

 Variable Bounds     Defined in Table 1

 Bounds on deviation variables

𝑑 ―
𝑖 ,𝑑 +

𝑖 ≥  0 and 𝑑 ―
𝑖 ∗ 𝑑 +

𝑖 =  0 , i = 1,2,3 

Minimize

 Deviation from weighted overall maximum utility:

𝑍 = 1 ― (0.34𝑈𝑌𝑆 + 0.33𝑈𝑇𝑆 + 0.33𝑈𝐻𝑉)

Using the above utility-based cDSP, information acquisition to reduce the multi-parametric 

uncertainty in the formulation is performed in Section 4.2. In Section 4.2.1, multiple information sources 

for acquisition are presented. Section 4.2.2 is an baseline acquisition experiment using the performance-

based method proposed in this paper. Section 4.2.3 is the comparison between the baseline experiment 

and two other.
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4.2 Information Acquisition Regarding to the Uncertain Parameters

4.2.1 Pre-processing – Preparation of Information Sources

In Section 4.1, five parameters ( , , , , and ) are identified as uncertain parameters and their 𝑆0 𝑀𝑛 𝑆𝑖 𝑁𝑖 𝑇𝑚𝑓

associated imprecision bounds are given in Table 2. The variation of these parameters affects designers’ 

selection of appropriate design variable values that maximize the overall utility as well as the utility 

achieved. In order to reduce the uncertainty, designers have an option to acquire more information about 

these parameters from information sources. Here, we assume that for each uncertain parameter there 

are five simulation models pertaining to it, as shown in Table 3. These simulation models form the sources 

for information acquisition. The functionality of these simulation models is to gradually narrow down the 

ranges of parameters so that they become more and more certain. For example, the initial range of 

parameter  is [0.05, 0.2] m, which can be reduced to [0.135, 0.14] m after five information acquisition 𝑆0 𝜇 𝜇

trials using simulation models - . It should be noted these simulation models must be used in a 𝑀11  𝑀15

sequential manner, i.e., the fidelity from low to high. For example,  cannot be used before  𝑀12 𝑀11

because it is refined based on  by adding more fidelity to . This aligns with the concept in [4] that 𝑀11 𝑀11

simulation models are gradually refined to become more and more accurate in prediction of system 

behavior. Refinement of simulation models inevitably result in cost, which is the price that designers must 

pay in information acquisition. To reflect the increasing of difficulty of improving the accuracy of 

simulation models by adding more fidelity, we use the exponential function below to estimate the cost of 

each model.

                                                        (8)𝐶 = 𝐵 ∙ (1 + 𝑟)
1
𝑞 ∙ (1 ―

𝑅𝑎𝑛𝑔𝑒𝑛𝑒𝑤
𝑅𝑎𝑛𝑔𝑒𝑖𝑛𝑖𝑡.

)

where  denotes the inherent cost of an uncertain parameter (in this case we assume that the inherent 𝐵

costs of the five parameters are $3, $20, $3, $30, and $30 respectively),  denotes the base unit 𝑞

percentage of range reduction that incurs cost (  is set up based on designers’ prior knowledge, in this 𝑞

case we assign the  values for the five parameters as , , , 𝑞 𝑞(𝑆0) = 11% 𝑞(𝑀𝑛) = 10% 𝑞(𝑆𝑖) = 11% 𝑞(𝑁𝑖
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, and  to reflect different degrees of expensiveness in reducing their ranges), and ) = 10% 𝑞(𝑇𝑚𝑓) = 10%

 denotes the increasing rate which is assigned as 0.5 per range reduction of .  The cost of simulation 𝑟 𝑞

model refinement will have an exponential growth as acquisition moves on. Using the exponential 

function, the cost of all the simulation models are calculated and given in the third column of Table 3.

Table 3. Information sources and associated cost for acquisition

Uncertain Parameters Information Sources Cost ($)
:  [0.07,0.19]𝑀11 6.3
:  [0.09,0.18]𝑀12 13.1
:  [0.11,0.16]𝑀13 35.0
:  [0.13,0.15]𝑀14 73.2

Pearlite interlamellar Spacing  𝑆𝑜
( m)𝜇

Initial: [0.05,0.2]
:  [0.135,0.14]𝑀15 105.8
:  [0.8,1.9]𝑀21 47.7
:  [1,1.8]𝑀22 113.7
:  [1.2,1.7]𝑀23 271.0
:  [1.4,1.68]𝑀24 512.6

Manganese Concentration  𝑀𝑛
(%)

Initial: [0.6,2]
:  [1.6,1.65]𝑀25 997.8
:  [0.202,0.218]𝑀31 6.3
:  [0.204,0.216]𝑀32 13.1
:  [0.206,0.214]𝑀33 27.4
:  [0.208,0.212]𝑀34 57.3

Composition of Silicon  (%)𝑆𝑖
Initial: [0.2,0.22]

:  [0.209,0.21]𝑀35 99.5
:  [0.0089,0.0185]𝑀41 78.8
:  [0.0104,0.017]𝑀42 206.8
:  [0.0119,0.0155]𝑀43 543.1
:  [0.0134,0.014]𝑀44 1426.2

Composition of Nickel  (%)𝑁𝑖
Initial: [0.0074,0.02]

:  [0.0136,0.0138]𝑀45 1622.1
:  [583,687]𝑀51 67.5
:  [596,674]𝑀52 151.9
:  [609,661]𝑀53 341.7
:  [622,648]𝑀54 768.9

Temperature   (℃)𝑇𝑚𝑓

Initial: [570,700]

:  [632,638]𝑀55 1434.7

Given the information sources and the associated cost presented in Table 3, there are many 

possible paths for designers to perform information acquisition in a stepwise manner. For example, the 

number of possible paths is up to 3125  (i.e., ) if designers are given five total acquisition trails. In this 55

paper, we set up the constraint for information acquisition so that the budget is $1000 and designers need 

to spend the money “wisely” to reduce uncertainty pertaining to the five parameters. In order to test the 
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efficacy of the performance-based acquisition method proposed in this paper, in Section 4.2.2 we first 

implement this method in a baseline experiment, then in Section 4.2.3 we compare the baseline 

experiment with two controlled experiments that follow different information acquisition strategies, and 

finally the summary of the experiments and discussion are  given in Section 4.3.

4.2.2 Baseline Experiment – Performance-Based Stepwise Information Acquisition 

In the baseline experiment, designers follow a strategy of acquiring the information source with highest 

performance at each acquisition trial until the $1000 budget is used up (as shown in Figure 5). According 

to Equation 7, the performance of a specific information source is a function of the current improvement 

potential, sensitivity of the uncertain parameter, initial range of the uncertain parameter, the updated 

range of the uncertain parameter after acquiring the information, and the cost of the information. This 

function needs to be evaluated before each acquisition trial to facilitate designers selecting the 

information source with highest performance. Given the initial ranges of the five parameters presented 

in Table 2, the starting improvement potential  is calculated as 0.2152, and the sensitivities  of the five 𝑃𝐼 𝑆

parameters ( , , , , and ) are calculated as 0.0002, 0.2825, 0.0003, 0.4135, 0.2243 respectively. 𝑆0 𝑀𝑛 𝑆𝑖 𝑁𝑖 𝑇𝑚𝑓

Using  and  as the input, the performances  of the five alternatives (M11, M21, M31, M41, M51) 𝑃𝐼 𝑆 𝑀𝑃

available for the first acquisition trial are evaluated as 0.001 0.0005, 0.27 0.001, 0.002 0.0005, 0.26± ± ±

0.001, and 0.14 0.001 respectively. It is seen from the evaluation result that M21 has the top mean ± ±

performance 0.27, therefore M21 is selected for the first information acquisition trial. After the first 

acquisition trial, the range of  is reduced from [0.6%, 2%] to [0.8%, 1.9%]. This new range will again be 𝑀𝑛

used to calculate the new improvement potential, new sensitivity, and to evaluate the performances of 

information sources for the next acquisition trial, then the second acquisition trial is carried out. The 

acquisition process iteratively moves on (as the flowchart shown in Figure 5) until accumulated cost 

reaches the $1000 budget (no improvement potential threshold is set to stop the process, unless the 
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budget is used up). The process path of all the acquisition trials in the baseline experiment is captured in 

Figure 6, and the associated process data is presented in Table 4. 

Figure 6. Baseline experiment using the performance-based method

Table 4. Process data the baseline experiment

Sensitivity (total effects) Design Var.Info. 

Acq.

Imp. 

Poten. S. - S0 S. - Mn S. - Si S. - Ni S. - Tmf Dα Xf

Selected 

Model Perfo.

Accu. 

cost

Hurw. 

Util.

T1 0.2152 0.0002 0.2825 0.0003 0.4135 0.2243 21.22 0.81 M21 0.27 0.01± 47.68 0.8427

T2 0.2064 0.0002 0.1914 0.0003 0.4469 0.2771 21.22 0.81 M41 0.28 0.01± 126.46 0.8452

T3 0.1826 0.0003 0.2734 0.0004 0.3263 0.3710 17.44 0.81 M51 0.20 0.01± 193.96 0.8561

T4 0.1112 0.0014 0.2594 0.0005 0.3114 0.1717 8.00 0.63 M22 0.11 ±

0.005

307.64 0.9083

T5 0.1012 0.0016 0.1762 0.0005 0.4043 0.2156 8.00 0.63 M42 0.06 ±

0.005

514.49 0.9102
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T6 0.0884 0.0029 0.2694 0.0012 0.3134 0.4068 8.00 0.63 M52 0.09 ±

0.005

666.37 0.9113

T7 0.0808 0.0032 0.2785 0.0010 0.3295 0.2363 8.00 0.63 M23 0.05 ±

0.005

937.41 0.9116

End 0.0714 8.00 0.63 937.41 0.9129

As shown in Figure 6 and Table 4, the information acquisition process goes through seven 

different trials: M21→M41→M51→M22→M42→M52→M23. In this process, it is seen that the 

improvement potential is reduced from the initial 0.2152 to 0.0714 which means a fairly low uncertainty 

in the obtained overall utility caused by the uncertainties pertaining to the input parameters. And by the 

end of Trial 7 the accumulated cost reaches 937.41, which is very closed to the budget limit, and designers 

cannot afford a further acquisition since cost of the next highest-performance information source is far 

beyond the remaining budget, and therefore the process is stopped. The seven acquisition trials are 

mainly distributed in Parameters , , and , no trial is distributed to Parameters  and . This is 𝑀𝑛 𝑁𝑖 𝑇𝑚𝑓 𝑆0 𝑆𝑖

because the sensitivities of  and  are closed to 0 (which means their variation has negligible effect on 𝑆0 𝑆𝑖

the overall utility); even though their cost is relatively low, it cannot compensate the low sensitivities. It 

is also seen in Figure 6 that acquisition trials alternated among , , and  frequently. This is because 𝑀𝑛 𝑁𝑖 𝑇𝑚𝑓

the sensitivities of these parameters vary after each acquisition, which therefore affects the next 

acquisition. From the overall perspective, it is seen a decrease of improvement potential ( ) and an 𝑃𝐼

increase of utility using Hurwicz criterion ( ), as shown in Figure 7. During the first two acquisition trials, 𝐻

the variation of both  and  is small. However, through the third acquisition trial (i.e., the range of 𝑃𝐼 𝐻

Temperature  is reduced from the initial [570℃, 700℃] to [583℃, 687℃]), both  and  vary 𝑇𝑚𝑓 𝑃𝐼 𝐻

significantly –   decreases from 0.1826 to 0.1112 and  increases from 0.8561 to 0.9083. This rapid 𝑃𝐼 𝐻

variation is due to the sensitivity of  at the bounds of [570℃, 700℃] which is relatively high, and once 𝑇𝑚𝑓

being changed it would result in significant variation in the utility. After the third trial, both  and  go 𝑃𝐼 𝐻

through a gentle variation until the acquisition process is stopped. 
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Figure 7. Variation of the Hurwicz utility and improvement potential after information acquisition trials

Figure 8 is an illustration of a designer’s decision about the two design variables –  and  after 𝐷𝛼 𝑋𝑓

the information acquisition process is stopped. The lower bounds on the utility for various values of the 

design variables (  and ) are plotted as , whereas the upper bounds are plotted as . The 𝐷𝛼 𝑋𝑓 𝑈𝑚𝑖𝑛 𝑈𝑚𝑎𝑥

Hurwicz utility is plotted as , which is maximum at   and . The maximum value of  𝐻 𝐷𝛼 = 8 𝑢𝑚 𝑋𝑓 = 0.63 𝐻

is denoted as *, which is equal to 0.9129. Some sample points of  at certain variable ranges (e.g., (𝐻) 𝑈𝑚𝑖𝑛

) are equal to 0. This is because solutions within these ranges violate the 𝑋𝑓 = 0.63, 𝐷𝛼~[20, 25]

constraints and are treated as infeasible solutions with a utility value 0. From the plots of  and  𝑈𝑚𝑎𝑥 𝑈𝑚𝑖𝑛

the imprecision bounds of the overall utility value are very close to each other around the decision points 

( ). The difference between them is measured by the improvement potential , which 𝐷𝛼 = 8, 𝑋𝑓 = 0.63 𝑃𝐼

is equal to 0.0714 – representing a low imprecision on the overall utility. Here, a conclusion can be drawn 

that the $1000 budget is “wisely” spent to reduce the uncertainty of the overall utility to a relatively low 

level which is fairly safe for making a decision. If there is no limit on the budgets, uncertainty will keep 

decreasing and approaching 0 with infinite acquisition trials.
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Figure 8. Decision made after 7 information acquisition trials

4.2.3 Comparison – Information Acquisition Using Other Strategies

In this section, we compare the performance-based information acquisition strategy with two other 

strategies, namely, the cost-only based acquisition strategy and sensitivity-only based strategy, to 

showcase the advantage of the information acquisition method proposed in this paper. The acquisition 

paths for the cost-only based strategy as well as the sensitivity-only based strategy are show in Figure 9. 

Both are subject to the same constraint as the baseline experiment in Section 4.2.2, namely, the budget 

for information acquisition is limited to $1000.



Manuscript for Information Sciences Page 30

Figure 9. Information acquisition following the cost-only and sensitivity-only strategies

Cost-only Based Information Acquisition. This strategy means that designers always use the 

information source with minimum cost at any acquisition trial, regardless of the effect the acquired 

information can have on the overall utility. It represents a prudent attitude in spending money on 

information acquisition. For example, with caution, designers at the first trial select M11 for $6.3 which is 

the minimum cost out of the five alternatives. Driven by this strategy, the acquisition process goes through 

15 different trials and is stopped when the remaining budget is not able to support a further trial. The 

path is: M11→M31→M12→M32→M33→M13→M21→M34→M51→M14→M41→M35→M15→M22→

M52. Along this path the acquisition trials are distributed to all the five uncertain parameters, and the 

trials evolve in a way that the cost of acquisition increases sequentially form low to high. In Figure 10, the 

improvement potential values for all acquisition trials following the cost-only based strategy are plotted 

(blue dots) and are compared with those following the performance-based strategy (red dots). It is 

observed that cost-only based acquisition results in a slower decrease of improvement potential than the 

performance-based acquisition: it only takes the latter 7 trails to decrease improvement potential from 

0.2152 to 0.0714 and the process is stopped; however the former only drops to 0.189 after the 8 trials, 

and it takes the former another 7 trails to decrease to 0.079. This is because in the previous 8 trials of the 
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cost-only based strategy, all the money is spent on acquiring information for those uncertain parameters 

(  and ) having little impact on the overall utility. Here, the conclusion is that performance-based 𝑆𝑜 𝑆𝑖

acquisition is more efficient than the cost-only based acquisition in reducing the uncertainty pertaining to 

the overall utility. This is further verified by a bar chart for accumulated cost shown in Figure 11. In 

performance-based acquisition, the accumulated cost increases very fast and reaches the budget limit in 

7 trials. Each acquisition trial, although more expensive than the cost-only based acquisition, is invested 

in the critical parameters. However, with regard to the cost-only based acquisition, most of the trails are 

invested for the inconsequential parameters and therefore requires more trials to reach the same 

uncertainty level as the performance-based acquisition.

0

0.05

0.1

0.15

0.2

0.25

T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 1 0 T 1 1 T 1 2 T 1 3 T 1 4 T 1 5

cost-only based acquisition

Acquisition trials

Im
pr

ov
em

en
t p

ot
en

tia
l

Budget: $1000

Acquisition stopped

Acquisition stopped

Acquisition started

Figure 10. Improvement potential variations in cost-only based acquisition and performance-based 

acquisition



Manuscript for Information Sciences Page 32

0
100
200
300
400
500
600
700
800
900

1000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Cost-only based acquisition Performance based acquisition

Acquisition trials

Ac
cu

m
ul

at
ed

 c
os

t (
$)

Budget: $1000
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Sensitivity-only Based Information Acquisition. This strategy means that designers always 

acquire the information source pertaining to the uncertain parameter with the greatest sensitivity, 

regardless of how much the information will cost. Compared to the cost-only strategy, this strategy stands 

for a greedy attitude in information acquisition because designers want every trial to have the highest 

impact on the overall utility. Driven by this strategy, the acquisition path is: 

M41→M21→M42→M22→M51→M43. The process is stopped after the 6th trial when the budget is 

overrun. It is observed in Figure 9 that all the trials are distributed to only three parameters ( , , and 𝑀𝑛 𝑁𝑖

) which have high sensitivities. This is the same as the baseline experiment where the performance-𝑇𝑚𝑓

based strategy is followed. The improvement potential values for the 6 acquisition trials following the 

sensitivity-only based strategy are plotted in Figure 12 and are compared with those following the 

performance-based strategy. It is observed that both strategies have similar tendencies in the decreasing 

of improvement potential – the improvement potential values of both strategies drops to the same level 

(0.0884) by the 5th trial. The difference is that in the next acquisition (i.e., Trial 6), the sensitivity-only 

based acquisition process is stopped because of budget overrun, while the performance-based acquisition 
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process is stopped after two more trials. This is verified by a bar chart of accumulated cost in Figure 13. It 

is observed that there is a dramatic increase of accumulated cost of the sensitivity-only strategy by the 6th 

trial which results in budget overrun. By the comparison, it is concluded that even though the sensitivity-

only based acquisition strategy is efficient in reducing the uncertainty pertaining to the overall utility, it is 

likely to result in budget overrun because cost is never considered in information acquisition. Performance 

based acquisition, by taking both sensitivity and cost into account, is relatively safe against budget overrun 

especially in the late stages of acquisition when the cost increases dramatically.
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4.3 Benchmarking against Methods in Literature

The performance-based information acquisition method is benchmarked against a random method used 

in Reference [4]. In Reference [4], the focus is on addressing the issue of whether or not to acquire more 

information when parameters are uncertain. Since evaluation of the performance of multiple sources is 

not provided in Reference [4] as the guidance for the information acquisition process, designers must 

randomly select a parameter to reduce its range by acquiring information from the associated simulation 

models (sources), then randomly switch to another parameter and perform the same task until the 

improvement potential reaches a low level. We apply this random method to the hot rod rolling process 

design problem and compare its efficacy in information acquisition with the performance-based method, 

given that the budgets for both are the same $1000. The comparison results are shown in Table 5. Within 

the $1000 budget, there are 15 possible paths for information acquisition based on the random method. 

For example, Path 1 stands for that designers randomly choose Parameter  out of the five parameters 𝑆𝑜

and use the associated simulation models for acquisition, then after 5 trials (M11-M15) when the 

associated simulation models cannot be further refined they randomly switch to another parameter Mn, 
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and finally stop at simulation model M23 when the remaining budge cannot support another trail. 

Therefore, the path of P1 is M11→ M12→ M13→ M14→ M15→ M21→ M22→ M23. After Path P1 the 

improvement potential has dropped from 0.2152 to 0.1698, a percentage of 21.1%. We enumerate all the 

15 paths using the random method and obtain an average improvement potential drop of 38.46%, which 

is about 28% smaller than the drop using the performance-based method. All the improvement potential 

drops after the 15 acquisition paths are plotted in Figure 14. We observe the maximum drop (58.83%) is 

achieved by Path P4, and the minimum drop (21.1%) is achieved by Path P1, both are smaller than the 

drop of 66.82% achieve by the performance-based method. Therefore, we conclude that the 

performance-based information acquisition method results in a 8-45% larger drop of improvement 

potential than the random method for the same budget.

Table 5. Information acquisition paths of the random and the performance-based methods

Acquisition 
No. Path Covered 

Parameters
Imp. Poten. 
Drop

P1 M11→ M12→ M13→ M14→ M15→ M21→ M22→ M23 So, Mn 21.10%

P2 M11→ M12→ M13→ M14→ M15→ M31→ M32→ 
M33→ M34→ M35→ M21→ M22 So, Si, Mn 35.83%

P3 M11→ M12→ M13→ M14→ M15→ M31→ M32→ 
M33→ M34→ M35→ M41→ M42 So, Si, Ni 34.67%

P4 M11→ M12→ M13→ M14→ M15→ M31→ M32→ 
M33→ M34→ M35→ M51→ M52 So, Si, Tmf 58.83%

P5 M11→ M12→ M13→ M14→ M15→ M41→ M42 So, Ni 20.17%
P6 M11→ M12→ M13→ M14→ M15→ M51→ M52 So, Tmf 58.32%
P7 M21→ M22→ M23→ M24 Mn 17.80%

P8 M31→ M32→ M33→ M34→ M35→M11→ M12→ 
M13→ M14→ M15→ M21→ M22 Si, So, Mn 35.83%

P9 M31→ M32→ M33→ M34→ M35→M11→ M12→ 
M13→ M14→ M15→ M41→ M42 Si, So, Ni 34.67%

P10 M31→ M32→ M33→ M34→ M35→M11→ M12→ 
M13→ M14→ M15→ M51→ M52 Si, So, Tmf 58.83%

P11 M31→ M32→ M33→ M34→ M35→M21→ M22→ M23 Si, Mn 30.90%
P12 M31→ M32→ M33→ M34→ M35→M41→ M42 Si, Ni 33.41%
P13 M31→ M32→ M33→ M34→ M35→M51→ M52→ M53 Si, Tmf 41.59%
P14 M41→ M42→ M43 Ni 25.56%
P15 M51→ M52→ M53 Tmf 40.99%

Random 
method 
of ref. 
[4]

Average Imp. Poten. 38.46%
Performance-based 

method proposed in this 
paper (PT)

M21→M41→M51→M22→M42→M52→M23 Mn, Ni, Tmf 66.82%
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Figure 14. Improvement potential drops after information acquisition based on the random and the 
performance-based methods

4.4 Discussion of the Results

By the hot rod rolling process design problem, the sensitivity-efficiency and cost-efficiency of the 

proposed performance based stepwise information acquisition method for design decision making under 

multiple parametric interval uncertainty is established. First, we use the utility based cDSP construct to 

formulate the design decision to be made. In the formulation, 5 uncertain parameters ( , , , , and 𝑆0 𝑀𝑛 𝑆𝑖 𝑁𝑖

) and their initial imprecision bounds are identified. Second, as a baseline experiment, we apply the 𝑇𝑚𝑓

performance-based method to acquire information and gradually reduce the ranges of these 5 uncertain 

parameters. It is shown in the results that after 7 trials the given acquisition budget is used up, and the 

improvement potential  decreases to a low level which indicates that it is quite safe to make a decision 𝑃𝐼

on the two design variables (  and ). Third, under the same conditions, we conduct another two 𝐷𝛼 𝑋𝑓

experiments following two different acquisition strategies – cost-only based acquisition and sensitivity-

only acquisition and compare the results with those in the baseline experiment. From the comparison, it 
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is seen that the performance-based method has some advantages over the other two strategies, which is 

embodied in:

 Sensitivity-efficiency. Given a certain budget, it takes less information acquisition trials of the 

performance-based method to reduce the impacts on the overall utility due to the uncertain 

parameters. Because parameter sensitivity is considered in the merit function, the performance-

based method ensures that each acquisition trial is invested on a critical parameter which 

guarantees that the acquired information is valuable. This avoids many feckless acquisition trials 

(e.g., the cost-only strategy) and directs the acquisition quickly to the state with low improvement 

potential. Therefore, it is a sensitivity-efficient way for information acquisition under multi-

parameter uncertainty.

 Cost-efficiency. Given a certain level of uncertainty (improvement potential ) to reduce to, it 𝑃𝐼

takes less resources (money) of the performance-based method. Cost of the information is 

considered in the merit function of the performance-based acquisition method, which ensures 

that each acquisition trial is cost-efficient. Cost-efficiency of information acquisition is very 

important in the later stages of the acquisition process, where the precision of some parameters 

is already very high and collecting more information to further reduce their ranges will result in a 

dramatic increase of cost which easily leads to budget overruns. Therefore, the performance-

based method is also a cost-efficient method for information acquisition.

Finally, the performance-based method is benchmarked against a random method proposed in 

Reference [4]. It is observed that the former leads to an 8-45% larger drop of improvement potential than 

the latter for the same $1000 budget. This is due to the fact that the performance-based method takes in 

account both sensitivity- and cost-efficiency, which guides the acquisition process towards the most 

valuable information sources to reach a larger drop of improvement potential, instead of randomly (or 

blindly) selecting the parameters and investing in ineffective sources. 
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In the hot rod rolling process design problem, we use 1) simulation models as the sources for 

designers to acquire information to reduce the ranges of the 5 uncertain parameters, and 2) an 

exponential function to measure the cost of simulation model with different fidelities. However, this does 

not mean that the performance-based method is confined to the use of simulation models and 

exponential functions. Because Equation 7 is problem-independent, the performance-based method can 

also be applied to problems with other information sources (e.g., physical experiments, experts’ 

knowledge, and technical reports from consulting companies, and any other sources that can narrow 

down the parameter ranges) and other cost measures (e.g., the linear and polynomial functions that 

capture the increasing behavior of the cost). The $1000 budget is used as an example to show a threshold 

of the information cost. In information acquisition context such as conducting physical experiments using 

high-precision equipment or running high-fidelity simulation models on high-performance computers, the 

cost can be as large as millions of dollars or more. Therefore, careful evaluation of the potential 

information sources before using them to make a decision is critically important.

5. Generalization of the Information Acquisition Framework

In this section, we extend the performance-based information acquisition method to a more generic 

framework so as to facilitate solving multi-parametric uncertainty problems across domains. The 

generalized framework is shown in Figure 15. The problem is simplified as a mathematical model with two 

inputs, namely,  and , and one output .  is a vector representing control factors or variables,  is a 𝑋 𝑃 𝑌 𝑋 𝑃

vector representing uncontrollable factors or parameters, and  is a function of both  and  represented 𝑌 𝑋 𝑃

as . The goal is to choose “right” values of  for maximizing  given that  is uncertain. The 𝑌 = 𝑓(𝑋,𝑃) 𝑋 𝑌 𝑃

uncertainty in  is characterized by a set of ranges with lower bounds and upper bounds. This is a very 𝑃

common problem encountered in many engineering domains such as design, manufacturing, and control, 

etc. Given this problem, the decision maker can perform information acquisition using the performance-
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based method to reduce uncertainty in  so as to make safer decisions on choosing  for the maximization 𝑃 𝑋

of . The process are summarized as three key steps as follows.𝑌

Figure 15. A generalized framework of performance-based information acquisition for multi-parametric 
uncertainty problems

 Step ①: Information acquisition. In order to reduce the uncertainty in , the decision maker acquires 𝑃

information from multiple information sources (i.e., Source 1, 2, …, n) considering the sensitivity of 

the uncertain parameters (i.e., ) in  and the cost of the information. The information 𝑝1,𝑝2,…,𝑝𝑛 𝑃

acquisition process is facilitated by a performance-based step-wise method introduced in Section 3.3. 

The core is the equation (Equation 7) that measures the performance of the information to be 

acquired by taking sensitivity and cost into account. For details of the method, see Section 3.3.

 Step ②: Updating the uncertainty in . The acquired information is used to update the knowledge 𝑃

(accuracy) of the uncertain parameters in . With the acquired information, the ranges of Parameters 𝑃

 is reduced.𝑝1,𝑝2,…,𝑝𝑛
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 Step ③: Inputting the updated  to the mathematical model of the problem and judging whether 𝑃

more information is needed. The uncertain parameters with reduced ranges are input to the 

mathematical model (which is formulated using the utility-based cDSP construct, see Section 3.1) to 

calculate the payoff (or utility) as well as the improvement potential ( , see Section 2.2). Based on 𝑃𝐼

the current improvement potential, the decision maker judges whether or not more information is 

needed. If it is needed, the whole process is repeated from Step ① to Step ③.

Since the multi-parametric uncertainty problem is simplified as a mathematical model and the 

information acquisition method is summarized as three key steps, we believe it is easy to duplicate in 

different domains. In this paper, we assume that the information sources (i.e., simulation models) are not 

encrypted and designers have no problem when acquiring information from them, and our focus is on 

finding the “optimal” sequence or path for designers to acquire information from multiple sources and 

gradually reduce the uncertainty in their design. In situations where the information sources are 

encrypted, one of the possible solutions for information acquisition is to combine the performance-based 

method with homomorphic encryption based on learning with errors [39]. Future research opportunities 

lie in the consideration of information security when acquiring information in design under multi-

parametric uncertainty.

6. Closing Remarks

Resolving multi-parameter uncertainty is a problem that designers often confront as they design complex 

engineering systems. This problem embodies a dilemma: On the one hand, acquiring more information to 

reduce the uncertainty is an option to potentially improve the outcome of the decisions to be made. On 

the other hand, information acquisition may result in cost, and some acquired information may have very 

little effect on the outcome of the decision. Given the existence of this dilemma, designers must make 

meta-level decisions to determine whether or not to acquire additional information and how to acquire 
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information. The difficulty in making such meta-level decisions in the context of multiple parameter 

uncertainty is anchored in the fact that multiple information sources may be available to choose from, 

and the cost of the information as well as its impact on the overall utility of design are different. In this 

paper, we propose a performance based stepwise information acquisition method to address this 

difficulty. What is new in this paper includes the following:

i. We use the utility-based compromise Decision Support Problem (u-cDSP) construct for 

formulating the decisions on the design variables to maximize the overall utility of design. The u-

cDSP construct provides a structured way for integrating multiple goals in one single utility 

function, which forms the foundation for measuring the value (utility) of information under multi-

parameter uncertainty.

ii. We develop a performance-based index (Equation 7) to facilitate choosing the critical (sensitive) 

and cost-efficient information to reduce the parameter ranges at every acquisition trial, and 

iteratively reduce uncertainty of the overall utility to a level that can improve the possibility of 

making a good decision. 

iii. We develop a step-wise information acquisition procedure using the proposed performance-

based index. The procedure facilitates designers efficiently acquiring the most valuable 

information to reduce uncertainty given a limited budget.

iv. We demonstrate the efficacy of the method using a hot rod rolling process design problem. In the 

example problem, we compare the performance-based information acquisition strategy with two 

different strategies – cost-only based information acquisition and sensitivity-only information 

acquisition, and highlight the sensitivity- and cost-efficiency of the proposed method. 

v. We benchmark the proposed method against the random method in literature. It is shown that 

the performance-based information acquisition method leads to an 8-45% larger drop of 

improvement potential than the random method with the same budget.
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Information acquisition is an important means for dealing with the reducible uncertainties in 

engineering design. In this paper, we draw a boundary of the problem to focus on the reducible 

uncertainty pertaining to the uncontrollable factors  of the system model , as shown in Figure 1. 𝑌 𝑓(𝑋,𝑌)

Future research opportunities are anchored in developing information acquisition methods with respect 

to the uncertainty associated with the mathematical relationship .𝑓
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