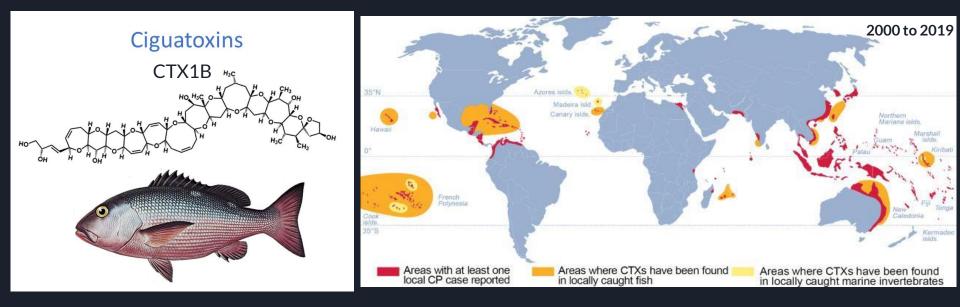


Ciguatera Fish Poisoning in Florida

Motti Goldberger and University of Maryland

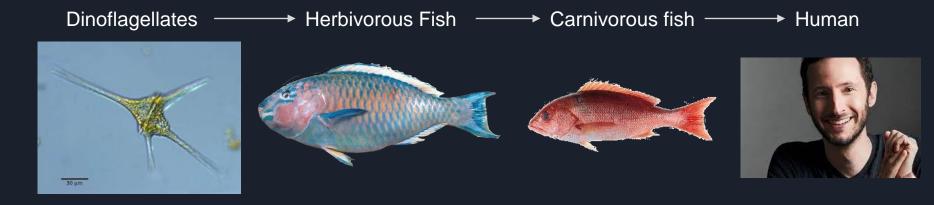
Christopher Ryzowicz New College of Florida


Order of Topics

- 1. Overview of Ciguatera Fish Poisoning (CFP)
- 2. Hypotheses
- 3. Variables/data collection
- 4. Modeling Strategy
- 5. Results/Analysis
- 6. Conclusion

Ciguatoxin Overview

• Foodborne illness caused by coral reef fish exposed to ciguatoxin



(Chinain et al. 2020)

Transfer of Ciguatoxin

• Ciguatoxin (CTXs) bioaccumulates up the food chain (Barrett, 2014)

Significance for Studying CFP

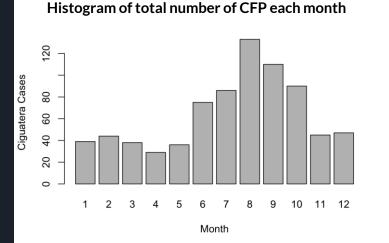
• Ciguatera cases have steadily been increasing in Florida

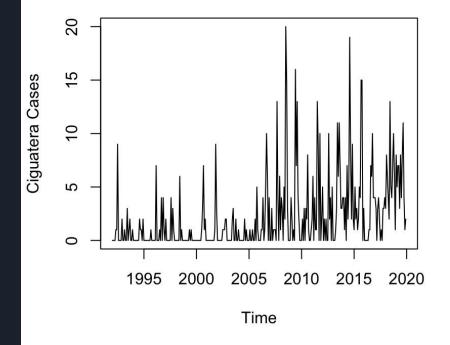
• Climate factors: Tropical Storms, SST, Heat stress?

- Economic factors
 - Reduction in fish sales/loss of jobs
 - Reduced tourism and recreational fishing
 - \circ Medical costs

Symptoms/Treatments

- Approximately 50,000-500,000 cases annually worldwide (Fleming et al. 1998)
- Symptoms: nausea, itching, vomiting, fatigue, paralysis, and tachycardia
- Treatment: IV Mannitol, emetics, or self-healing (Human Immune System)

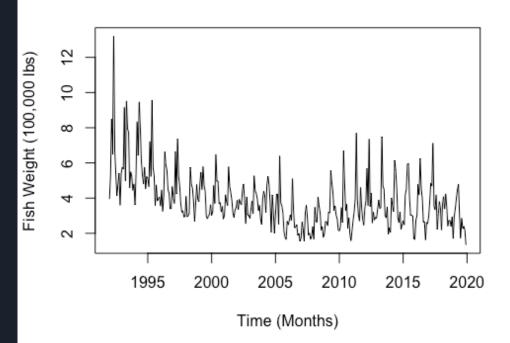



Hypotheses

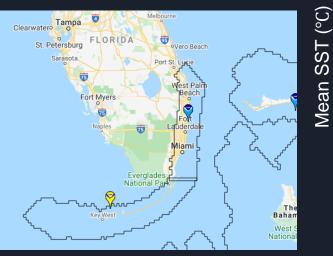
- Sea surface temperature in southern Florida has a positive relationship with CFP cases in Florida
- **Fish landings** in Florida have a positive relationship with CFP cases in Florida
- **Heat stress** in southern Florida has a positive relationship with CFP cases in Florida
- **Tropical storm intensity** in southern Florida has a positive relationship with CFP cases in Florida

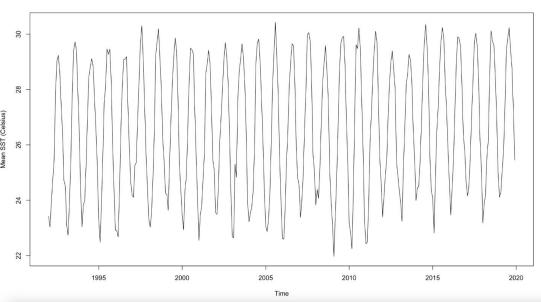
Ciguatera Fish Poisoning (CFP) Data

- Collected from Florida Department of Health Disease Reports
- Monthly CFP calls in Florida from 1992-2019
- Over 150 months that reported zero cases
- Our response variable



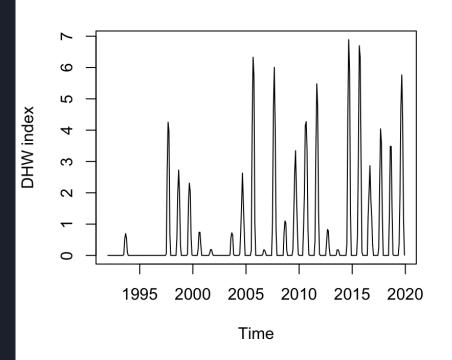
Commercial Fish Landings


- From Florida Fish and Wildlife Conservation Commission landings summaries
- Monthly weights in pounds of 8 species connected to the ciguatoxin
- Summed 8 fish weights each month



Mean Sea Surface Temperature (SST)

- Collected from 2 virtual stations in the Florida Keys by the NOAA Coral Reef Watch
- Averaged values for every month, then averaged the 2 stations


Time

Degree Heating Week (DHW) Index

- Also from NOAA Coral Reef Watch virtual stations
- Measure of accumulated heat stress for coral reefs
- Calculated based on previous 12 weeks HotSpot values

$$DHW_i = \sum_{j=i-83}^{i} \left(\frac{HS_j}{7}\right)$$
, where $HS_j \ge 1$

Impact Area and Wind Swaths

Wind Speed (WS) Classification:

 if WS \in [0,34] knots if WS \in (34,50] knots if WS \in (50,64] knots if WS \in (64, ∞) knots

Tropical Storm Intensity Metric

Storm Intensity Metric

- Collected wind swath from National Hurricane Center (NHC) of 24 tropical storms that hit our buffer area
- Based off a linear combination of wind swath area and wind intensity category

Storm Intensity =
$$\sum_{i=0}^{3} (i \cdot Intersection Area_i)$$

10 Wilma Andrew Irma ω ဖ 4 \sim 0 1995 2005 2010 2015 2020 2000 Time

Modeling CFP

- Predictor Variables
 - Storm Intensity
 - $\circ \quad \text{DHW Index}$
 - MeanSST
 - $\circ \quad \text{Fish Landings} \quad$

- Models
 - Multi-Linear
 - Residuals are non-normal
 - Heteroscedasticity exists
 - Poisson
 - Mean CFP per month = 2.217
 - Variance CFP per month = 11.96
 - Negative Binomial
 - Zero Inflated Negative Binomial
 - Zero Inflated Model
 - Count Model based on Zero Inflated Model
- Lag
 - Is there a lag between the variables and their effect on CFP?

Best Negative Binomial Model

AIC = 1235.8 Sum of Residuals = 718.91

Predictors	Coefficients	P-Values
MeanSST	0.53	< .001
Storm Intensity	-0.78	.0095
Fish Weight	-0.56	< .001
Storm Intensity*Fish Weight	-0.63	.021

* Denotes interaction between variables

Best Negative Binomial Model with MonthNum

AIC = 1184.435

Sum of Residuals = 643.520

Predictors	Coefficients	P-Values
MonthNum	0.657	<.001
MeanSST	0.50	< .001
Storm Intensity	-0.63	.0349
Fish Weight	-0.27	.0143
Storm Intensity*Fish Weight	-0.54	.0420

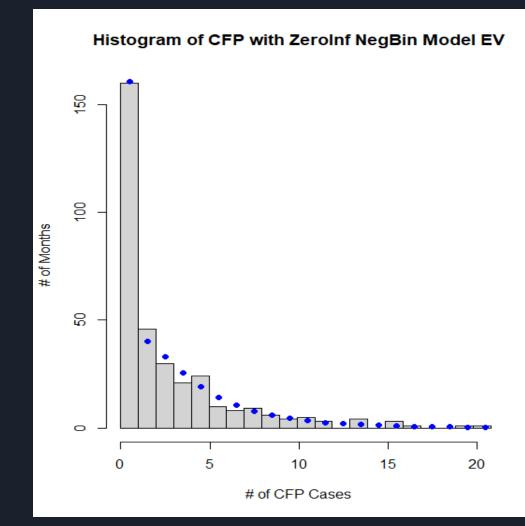
of Months ♥Ĩ●┠<u>♥</u>] ● [●] ● [●}_♠ # of CFP Cases

Histogram of CFP with NegBin Model Expected Value

Best Zero Inflated Negative Binomial Model

AIC = 1223.526 Sum of Residuals = 704.43

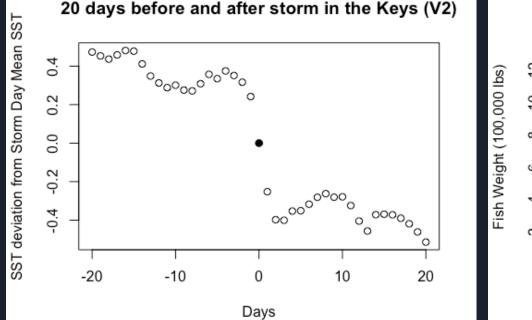
	Predictors	Coefficient	P-Value
Count Model			
	Fish Landings	-0.610	< .001
	MeanSST	0.310	< .001
	Storm Intensity	-0.937	.003
	DHW*Storm Intensity	-0.180	0.014
	Storm Intensity*Fish Weight	-1.16	.002
Zero Inflated Model			
	MeanSST	-0.71	.0015

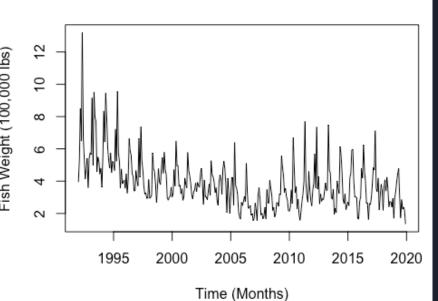


Best Zero Inflated Negative Binomial Model with MonthNum

AIC: 1163.066 Sum of Residuals = 616.297

	Predictors	Coefficient	P-Value
Count Model			
	MonthNum	0.348	<.001
	MeanSST	0.295	< .001
	Storm Intensity	-0.36	< .001
	Fish Weight	-0.803	.0141
	Storm Intensity*DHW Index	-0.165	.0121
	Storm Intensity*Fish Weight	-1.05	.004
Zero Inflated Model			
	MonthNum	-1.003	<.001
	MeanSST	-0.638	<.001





Analysis of Variable Coefficients

• Storm Intensity has a negative coefficient

• Fish Landings has a negative Coefficient

Conclusions

- MeanSST has a strong positive relationship with CFP
- Storm Intensity has a negative relationship with CFP
- Our ZINB is the best model we found and can predict a PMF of the # of CFP in a given month
- Confounding factors that are not in our model could contribute to the increase in CFP cases since 1992

Research Team

Faculty Advisors -

Professor Michael Splitt - College of Aeronautics

Dr. Nezamoddini-Kachouie - Dept. of Mathematical Sciences

Dr. Van Woesik - Dept. of Engineering and Marine Science

Graduate Assistant -

Dan Breininger - Dept. of Mathematical Sciences

References

- 1. Ault, J.S., Smith, S.G. and Bohnsack, J.A., 2005. Evaluation of average length as an estimator of exploitation status for the Florida coral-reef fish community. *ICES Journal of marine Science*, *62*(3), pp.417-423.
- 2. Barrett, J.R., 2014. Under the weather with ciguatera fish poisoning: Climate variables associated with increases in suspected cases.
- 3. Chinain, M., Gatti, C.M.I., Darius, H.T., Quod, J.P. and Tester, P.A., 2020. Ciguatera poisonings: A global review of occurrences and trends. *Harmful Algae*, p.101873.
- 4. Fleming, L.E., 1998. Seafood toxin diseases: issues in epidemiology and community outreach. *Harmful algae*, pp.245-248.
- 5. Gingold, D.B., Strickland, M.J. and Hess, J.J., 2014. Ciguatera fish poisoning and climate change: analysis of National Poison Center data in the United States, 2001–2011. *Environmental Health Perspectives*, *122*(6), pp.580-586.
- 6. Rongo, T. and van Woesik, R., 2013. The effects of natural disturbances, reef state, and herbivorous fish densities on ciguatera poisoning in Rarotonga, southern Cook Islands. *Toxicon*, *64*, pp.87-95.

Questions?