
Basic Training
Editors: Richard Ford, rford@se.fit.edu

Michael Howard, mikehow@microsoft.com

In this column, we take a look at
stealth from both a historical and a
technological perspective. This is a
hugely important topic, for if an un-
wanted computer program can’t be
seen, it can’t be eliminated. In
addition, software developers—espe-
cially security software developers—
must have a solid understanding of
what can be trusted in an environ-
ment—and what can’t. When it
comes to deception, stealth is the state
of the art.

The need for stealth
Stealth techniques in software all
relate to hiding information. A
stealthy program, for example, could
hide files on the hard drive, processes
in the tasklist, or logins to a particular
computer. As such, stealth tech-
niques attempt to convince an ob-
server that the world is some other
way than it actually is.

The first faulty assumption we
must do away with is the idea that
being stealthy is always bad; in fact,
there are several legitimate uses for
stealthy programs on a computer. For
example, if a vendor wishes to hide
its software from prying eyes, stealth
can be a useful technique. Both digi-
tal rights management (DRM) and
security vendors wish to make the at-
tacker’s job as difficult as possible. Al-
though using stealth to do this is

clearly (at some level) security
through obscurity, many would
argue that it can play an important
role in at least slowing down a reverse
engineer. Several in the field have ar-
gued vehemently that understanding
stealth techniques is a crucial step to-
ward understanding an attacker’s true
capabilities. As such, creating stealth
programs to understand what’s possi-
ble might be a useful exercise.

Despite these claims of legiti-
macy, culturally, software stealth is
primarily associated with comput-
ing’s “dark side”—in particular,
viruses, rootkits, and malicious
code. For the remainder of this arti-
cle, we refer to stealthy software as
malcode, although this is purely a
convenience: we acknowledge that
stealthy software might not contain
any malicious components.

Passive vs. active
Although stealthy computer soft-
ware sounds terribly complex, in ac-
tuality some forms of limited stealth
are very easy to implement. At the
simplest level, marking a file as hid-
den in a FAT file system provides
some level of (not very useful) stealth
as it “hides” a file from normal view.
Techniques like this are loosely
called passive because they simply use
the operating system’s features to
make a particular file’s presence or

process harder to spot. Other exam-
ples of passive stealth include co-
locating a remote thread in a normal
application, or using alternate data
streams on NTFS file systems. In
both cases, casually examining the
environment is likely to leave the
user with a false representation of its
actual state.

When using passive techniques,
malcode basically lets the underlying
operating system or command shell
operate exactly as designed. It does
nothing to actively make the results
of system calls misleading. As a re-
sult, it doesn’t provide a great deal of
stealth—anyone who understands
how the operating system is de-
signed to function won’t be misled.
Far more interesting is active stealth,
in which the malcode actually mod-
ifies the way the computer functions
to meet its own ends.

Before tackling this topic, it’s
worth revisiting the actual need for
stealth in malicious software. Hiding
is useful, but sometimes simply
blending in might seem like an op-
tion—after all, what normal user can
account for all files on his or her com-
puter? One or two extra processes
and files would be lost among the
noise. Although this argument seems
to hold water, it ignores why malcode
uses stealth: in addition to hiding
from the user, the malicious code
hides from other software that’s ac-
tively searching for it, either specifi-
cally or generically. Thus, although
passive stealth, or even simply “hiding
in plain sight” seems on the surface
sufficient, it’s anything but.

Active deception
Historically, active stealth isn’t a par-
ticularly new idea. Even very early

RICHARD FORD

AND WILLIAM

H. ALLEN

Florida
Institute of
TechnologyT

he concept of stealth—as it pertains to computers—

shares a great deal with its real-world counterpart. As

Monty Python’s Flying Circus illustrated so brilliantly

many years ago, stealth is all about “how not to be

seen” (http://en.wikipedia.org/wiki/How_Not_To_Be_Seen).

How Not To Be Seen

PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY 67

Basic Training

viruses could hide their presence on
the disk. Back in the DOS days, such
stealth was relatively easy to imple-
ment: a virus could simply hook an

interrupt and handle requests that
would reveal its presence. Figure 1
shows a boot-sector virus “hook-
ing” INT 13h (the BIOS disk inter-
rupt). Thus, when a program
attempts to read the disk at a sector
level, the virus surreptitiously modi-
fies the call to return a “clean” disk
view. Such deception isn’t difficult
to implement because the machine’s
host programs have fairly limited
ways of accessing the underlying
hardware, and the entire interrupt
system explicitly supports intercep-
tion of calls.

This idea can be extended dramat-
ically to deceive at a more granular
level. For simplicity’s sake, we use an
illustration from an old MS-DOS ver-
sion; although the details of the tech-
nique are different for other operating
systems, the basic principals apply.

Consider a MS-DOS-based
virus that wished to hide changes
made to file size, date, time stamps,
and even file contents. In MS-DOS,
most operating system services are
provided by a single interrupt—
INT 21h. When such an interrupt
request is encountered (in the form
of an INT 21h instruction), the
CPU looks at the INT 21h vector
stored in memory and passes control
to the location to which this value
points. If a program modifies this
vector, control can be passed any-
where. To “stealth” almost any MS-
DOS API, all the virus needs to do is
redirect the INT 21h vector to
point to its own code. It then effec-
tively sits between the program re-
questing service and the underlying
operating system.

Virus scanners have traditionally
dealt with such stealth by checking
the memory contents for viruses. If a
virus is known, simply checking the

memory for telltale interception sig-
natures or virus code—at least under
simple operating systems like
DOS—can indicate its presence.
Unfortunately, life gets complicated
in more modern environments.

32-bit deception
As operating systems became more
sophisticated, operating system ven-
dors placed more emphasis on isolat-
ing one program’s effects on another.
Hence, Win32 helped bring the idea
of different privileges to the typical
computer user. The world was broken
up into user-mode components—
programs the user typically executes,
which run on top of the host operat-
ing system—and kernel-mode pro-
grams that actually load into the
operating system and have unre-
stricted access to its internal structures.

Simplistically, user-mode stealth
is analogous to the DOS situation:
user-mode programs can intercept
system calls (typically, calls to the
Win32 API) and modify their return
codes before returning them to the
calling process. Thus, a Windows
virus can easily hide its presence
from other user-mode programs.
Although virus-specific detection
techniques generally find known
viruses in memory (and therefore
render such stealth impotent), cer-
tain generic detection techniques
can fall prey to stealth in such an en-
vironment. Running an integrity
checker in user mode on an infected
machine, for example, is a pointless
exercise if the virus implements
user-mode stealth.

Because user-mode interception

is easy to implement, both malcode
authors and antivirus vendors make
full use of kernel-mode intercep-
tion in which the stealth (and, hope-
fully, the detection thereof) is
implemented in kernel-mode code.
Although interception within the
kernel can pose some technical
problems for developers, correctly
implemented kernel-mode stealth
can be extremely effective—once
malcode infiltrates the kernel, it’s
difficult to determine which calls
have been tampered with.

Microsoft isn’t oblivious to this;
the recent launch of Windows
OneCare and some of Vista’s design
are definitely attempts to protect the
brand from malicious code. In par-
ticular, Vista’s design attempts to
make modifying the kernel difficult.
Microsoft explains these features as a
defense against changes that “violate
the integrity of the kernel” and that
lead to reliability, performance, and
security issues (www.microsoft.com/
whdc/driver/kernel/64bitpatch
_FAQ.mspx). As such, 64-bit ver-
sions of Windows, including Vista,
were developed to make it difficult
for attackers to use kernel tricks to
hide malicious software. Like all such
software prophylactics, this approach
isn’t bulletproof—and isn’t claimed
to be. Some hackers (both black and
white hat) have already developed
techniques that claim to circumvent
Vista’s protective mechanisms.

For example, despite the intro-
duction of device driver signing, it’s
still conceivable that attackers could
execute rogue code in kernel mode.
Similarly, a well-motivated attacker
can make numerous modifications to
the machine while the operating sys-
tem is at rest by booting from a CD
and mounting the stored operating
system image. Thus, Vista isn’t the
end of the line for software stealth;
introducing malcode just got signifi-
cantly more difficult—not enough
to make it impossible to see stealthy
malcode, but difficult enough to raise
the bar for attackers—at least for a
while. The flipside of this, however,

68 IEEE SECURITY & PRIVACY ■ JANUARY/FEBRUARY 2007

Some hackers (both black and white hat) have

already developed techniques that claim to

circumvent Vista’s protective mechanisms.

Basic Training

is that it’s also difficult for legitimate
software to modify kernel operation.
Thus, some third-party security de-
velopers object to Vista’s protections;
how this will develop is beyond this
article’s scope, but it does illustrate
the double-edged nature of much of
the technology and techniques we
discuss here.

The future
One interesting development in the
recent past is hypervisors—virtual
machine monitors that virutalize the
operating system—such as SubVirt1

or BluePill.2 In each case, a thin hy-
pervisor is placed between the oper-
ating system and the underlying
computer hardware. Hypervisors
ultimately control of every aspect of
the computer’s operation.

Such hypervisors are likely to be-
come increasingly common as
CPUs begin to contain more sup-
port for machine virtualization. As
convenient as virtualization tech-
nologies are for load balancing and
data center simplification, they can
also be turned squarely upon the
user as “virtual rootkits.” In such a
scenario, an attacker places the entire
operating system inside a virtual ma-
chine. Depending on the simulated
environment’s fidelity, it can be ex-
tremely difficult for software run-
ning in the virtual environment to
determine the environment’s real
nature, as system calls must ulti-
mately trust not the true state of the
underlying hardware (which might
be inaccessible from the virtual ma-
chine), but the state the hypervisor
reports. Essentially, you might be
able to determine the hypervisor’s
presence but not its intent.

In basic terms, the future for users
looks pretty bleak, regardless of the
operating system you use. Stealth
techniques are continually evolving,
and new technologies will make
system-call interception easier on
vulnerable end-user machines.
High-end solutions are certainly
possible in the corporate world
(stealth has a hard time with booting

the system into a known clean con-
figuration, but how many home
users will ever do that?), but unless
they’re made far more user-friendly,
they’ll go unused at home—where
spyware and other malcode are a po-
tential tunnel into corporate net-
works via virtual private networks.

Although most of this article’s dis-
cussion has been Windows-centric,
stealth techniques are in no way solely
a Windows problem; they’re a snare
for Apple and Unix users, too. At-
tackers focus on Windows because of
the technology’s omnipresence, but
the general techniques applied here
are very catholic in their applicability.

S imple stealth techniques can be
extremely effective when

countering generic virus-detection
techniques, but all fall prey to virus-
specific detection because the
stealth technique can be detected
via signatures. However, new devel-
opments in stealth, such as virtual-
ization, pose significant challenges
to defenders; when every program
call can potentially return modified
data, it’s difficult to determine any-
thing about the environment with
certainty. Fortunately, all isn’t lost: in
a future column we’ll look at state-
of-the-art anti-stealth technology,
and see that defenders aren’t with-
out options.

References
1. S.T. King et al., “SubVirt: Imple-

menting Malware with Virtual
Machines,” Proc. 2006 IEEE Symp.
Security and Privacy, IEEE CS Press,
2006, pp. 314–327.

2. J. Rutkowska, “Subverting Win-
dows Vista Kernel for Fun and
Profit,” Black Hat Briefings pre-
sentation, Dec. 2006; http://black
hat.com/presentations/bh-usa-06/
BH-US-06-Rutkowska.pdf.

Richard Ford is an associate professor at
the Florida Institute of Technology. His
research interests include malicious
mobile code, spyware detection and pre-
vention, and security metrics. Ford has a
PhD in physics from the University of
Oxford, England. He is a consulting edi-
tor for Virus Bulletin (www.virusbtn.
com). Contact him at rford@fit.edu.

William H. Allen is an assistant profes-
sor of computer science at Florida Insti-
tute of Technology. His research interests
include computer and network security,
the modeling and simulation of network-
based attacks, and computer forensics.
Allen has a PhD in computer science from
the University of Central Florida. He is a
member of the IEEE, the ACM and Usenix.
Contact him at wallen@fit.edu.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 69

For our readers:

Should “white hat” researchers

write stealthy malware for test

purposes? Is it okay to build a

rootkit for research? We’d like to

hear about some of your expe-

riences with stealthy programs.

Send your stories to Richard Ford

at rford@se.fit.edu.

Figure 1. Interrupt interception schematic. (a) The normal functioning of an
application. (b) The INT 13 vector is redirected to the virus code, giving the malcode
control of the machine.

Application BIOS Disk
INT 13h

Application BIOS Disk
INT 13h

Virus

(a)

(b)

