
A Dynamic and Policy-Controlled Approach to
Federating Information Systems

Niranjan Suri, Massimiliano Marcon,
Andrzej Uszok, Maggie Breedy,

Jeffrey M. Bradshaw, Marco Carvalho
Florida Institute for Human and Machine Cognition

Pensacola, FL

James Hanna, Robert Hillman,
Asher Sinclair, Vaughn Combs

Air Force Research Laboratory
Rome, NY

Abstract— Timely access to relevant data and information is
critical to successful mission execution in network centric
warfare. Often, the data required to support a mission is not
always resident within a single system, but is distributed among
multiple systems that must be dynamically interconnected to
support the data and information needs. While proprietary and
stove-piped information systems have slowly given way to
standardized information management architectures (such as the
Joint Battlespace Infosphere (JBI) architecture developed by the
US Air Force Research Laboratory), each independent
organization and/or mission is normally associated with a
separate instance of a managed information space that operates
in an independent manner. This is necessary given the different
stakeholders and administrative domains responsible for the
information. However, the demands for coordination and
cooperation require interoperability and information exchange
between these independently operating information spaces. This
paper describes a federated approach to interconnecting multiple
information spaces to enable data interchange. We propose a set
of interfaces to facilitate dynamic, runtime discovery and
federation of information spaces. We also integrate with the
KAoS policy and domain services framework to realize policy-
based control over the federation and exchange of information.
Our approach allows clients to transparently perform publish,
subscribe, and query operations across all the federated
information spaces. We have integrated with three existing JBI
implementations – Apollo from the Air Force Research
Laboratory, Mercury from General Dynamics and AIMS from
Northrop Grumman. Most recently, we have integrated with
Phoenix, a fully SoA (Service-oriented Architecture) based
approach to information management.

Keywords- Architectures; Coalition Operations;
Interoperability; Policy-based Information Sharing; Network-
centric systems and technologies; System of systems.

I. INTRODUCTION

Information systems are a key component of any military
mission and are essential to ensuring their successful execution.
Traditionally, information management was supported by
stove-piped systems that were difficult to update, modify, and
integrate. In order to address this problem, the US Air Force
Research Laboratory developed the Joint Battlespace
Infosphere (JBI) architecture [1] first and started working on
the Phoenix specification [2] afterwards. Both JBI and Phoenix
try to define a standard for the implementation of information

management architectures that support a publish/subscribe/
query model. In addition to that, the JBI architecture
standardizes the interfaces for client applications (CAPI – the
Client API) to facilitate client integration into any JBI
implementation.

This standardization enables the implementation of
information management architectures that are based on a
common information management model. However, the
interconnection and information sharing between information
spaces (infospaces) that may belong to different administrative
domains still remains an open issue.

Federation solves this problem by supporting the
interconnection of multiple, independently managed infospaces
for information sharing. This paper describes our approach to
federation. We propose a set of interfaces to facilitate dynamic,
runtime discovery and federation of infospaces. We also
integrate with KAoS - policy and domain services framework,
to realize policy-based control over the federation and the
exchange of information. Our approach allows clients to
transparently perform publish, subscribe, and query operations
across all the federated information spaces.

For the purpose of this paper we only consider the JBI
architecture when explaining the key components of our
federation approach. In terms of implementation we have also
generalized our approach in order to fit into the Phoenix
specification as well.

II. OVERVIEW OF JBI

The architecture and motivations for JBI are described in
detail in [3], which presents a reference model for information
management. The elements of the JBI architecture essential for
the scope of federation are highlighted in Figure 1.

An Information Space is defined as one instance of a JBI
based system, which facilitates exchange of information
between clients. A number of clients connect to the system,
behaving as producers and/or consumers of information.

The system includes both an Information Catalogue, that is
a directory of information types known to the system, as well
as an Information Repository, which handles the actual data.
The Information Repository may optionally archive
information for later retrieval using queries. Different JBI
based implementations are free to use any approach as long as

The 2010 Military Communications Conference - Unclassified Program - Systems Perspectives Track

978-1-4244-8180-4/10/$26.00 ©2010 IEEE 225

they comply with the syntax and semantics of the CAPI - the
Client API. In the case of Apollo, one of AFRL’s reference
implementations of the JBI information management concepts,
the Information Catalogue is called the Metadata Repository
(MDR), while the Information Repository is called the
Information Object Repository (IOR). Published data is
represented as a Managed Information Object (MIO). Each
MIO has a corresponding data type that is registered in the
MDR, metadata in the form of an XML document, and a
payload. Clients may have standing subscriptions based on the
type, with an optional predicate to match against published
metadata. If a predicate is specified, it is in the form of an
XPATH expression, which can filter out unnecessary MIOs
that a client is not interested in receiving. Clients may also
execute queries that result in matching MIOs being retrieved
from the IOR and returned to the client.

Figure 1: Architecture of a JBI-Oriented Information Management System

A client typically connects to one (and only one)
Information Space. While it is possible to connect to multiple
information spaces, doing so places the onus on the client to
discover the information spaces and connect to each one. The
client would also need to be authenticated with multiple
information spaces, which implies that all of them must have
accounts for the client (difficult when there are multiple
administrative domains involved). One of the benefits of
Federation is to hide the presence of multiple information
spaces from the clients. Each client continues to connect to one
information space, but has access to all allowed information
(controlled by policy) across multiple information spaces.

III. FEDERATION ARCHITECTURE

The federation architecture supports seamless and secure
integration of multiple information spaces, that are called
federates. Seamless implies that the architecture supports
automatic discovery of and interconnection between federates.
The process of federation is transparent to clients, which still

connect to their home federate as normal. Secure implies that
the federation process is not arbitrary and open. The
establishment of federation and exchange of information is
controlled via policies. Section VI describes the role of policies
in greater detail.

Figure 2: Architecture for Federation

One aspect of our federation architecture is that all federates
are peers. Each federate independently manages its connection
with other federates. Each federate has its own set of policies
that govern the exchange of information with other federates.
This is a logical approach considering that federates may sit on
different administrative domains. Policies can however be
established from a single administrator point using the KAoS
Policy Administration Tool (KPAT).

Figure 2 shows our architecture for federation. The
components we added to the original JBI architecture are
represented with shaded boxes. The Federation Service (FS) is
the major component. It handles the exchange of data between
the local infospace and its federates. The interaction between
federates can be controlled thereby restricting the behavior of
FS through a set of policies specifying obligations and
constraints. The Monitoring Service (MS) provides statistics
about host and network performances as well as about the FS
itself. FS may use this information to perform different types of
adaptation. The communication with other information spaces
that are part of the federation is handled by the Federation
Connectors (FC). Each federate instantiates a number of FCs,
one for each of the other federates it is connected with.

IV. FEDERATION INTERFACES AND IMPLEMENTATION

One of the main goals of this research effort was the
development of a generic set of interfaces supporting federation
in order to obtain a flexible architecture easily adaptable to

226

different IMS implementations. After examining the JBI CAPI
specification and a number of implementations (i.e. Apollo
from AFRL, Mercury from General Dynamics and AIMS from
Northrop Grumman), we developed the following main
interfaces:

 IMDService,

 InfoObjectReceptor,

 QueryReceptor,

 IMDServiceMonitor,

 AdaptationOracle.

Figure 3 shows in detail how all the interfaces are inserted
in the Federation Service Architecture.

IMDService supports all the basic operations that each
federate may want to perform on another federate. This set of
operations is implemented in the FS and is invoked by the local
Information Management System (e.g., Apollo). FS interacts
with the remote federates using the Remote Federation Service
Proxy (RFSP) that exposes the same interface. For the local FS,
each RFSP represents a hook to the related remote federate. A
proxy contains an instance of the Federation Connector (FC)
and an instance of a Remote Request Handler (RRH). FC
manages the communication with the related remote federate
across the network and RRH handles the requests received
from the remote federate executing them on the local IMS.

The InfoObjectReceptor interface is used by RRH for the
delivery of information objects to any subscribed client. When
a query is issued from a remote federate, the query is executed
in the local IMS by invoking the QueryReceptor interface. In
our federation architecture, both these interface are
implemented by a direct modification in the IMS.

The Discovery Manager (DM) component provides the
discovery functionalities that are necessary to automatically
find other potential federates in the network. The discovery
process relies either on the capabilities of the Group Manager
[4] or on the Cross-layer communication substrate (XLayer) [5]
for discovery and grouping support.

The Federation Manager (FM) takes the necessary actions
when new potential federates are discovered by the DM and
when connections with remote federates are terminated by the
FCs.

The Federation Monitoring Component (FMC) implements
the IMDServiceMonitor interface that exposes all the
functionalities for monitoring the behavior of FS. FMC
registers with the underlying Monitoring Service [6] as a
provider for application-level statistics about the performance
of the local IMS (e.g., number of info objects published per
second, predicate matching rate per subscription, etc.). The
Adaptation Manager (AM) provides a concrete implementation
of the AdaptationOracle interface. AM takes advantage of the
application-level statistics along with information about system
and network behavior to dynamically adapt the behavior of
federation.

AM currently incorporates two specific adaptation
mechanisms: a CPU-overload adaptation and a low-bandwidth

adaptation. The CPU-overload adaptation is triggered when
CPU utilization on the local federate becomes higher than a
predefined threshold. In such cases, remote subscriptions are
sorted based on the hit-rate of their predicates and the predicate
evaluation is then temporarily disabled, starting with the
predicates that match the most, until the CPU is no longer
overloaded. Turning off local evaluation of remote predicates
implies that all publications that match the type are sent to the
remote federates. Predicates with high hit-rates are selected
first because their predicate matching would likely succeed;
therefore disabling their evaluation increases the bandwidth
utilization by the minimum amount possible. The low-
bandwidth adaptation handles network overload situations in
the connection with a remote federate. In this case, the
adaptation mechanism entirely disables remote subscriptions
from that federate. The subscriptions are chosen based on their
priorities, which can be specified by the remote clients.

Figure 3: Federation Interfaces and Federation Service Architecture

V. FEDERATION IN ACTION

This section describes in detail the process of federation
from the discovery phase to the disconnection of a federate.
The publish and subscribe mechanism implemented by the
Federation Service are described as well.

For simplicity, we will consider a scenario where the
federation happens only between two instances of an
Information Management System (IMS), which we will refer to
as Federate A and Federate B. We will also assume that the
nodes where the IMSs run are discovered with a lower level
discovery-enabled communication substrate, such as XLayer or
Group Manager mentioned in the previous section. This
discovery process provides the endpoint address (IP address
and port) for each federate to the other.

A. Federation Establishment

When the Federation Service is instantiated along with the
other services that are part of the IMS architecture, the first step
is the registration by the DM with the discovery and grouping
API provided by the sub-layer with such capabilities. By

227

registering and joining a predefined group, the IMS manifests
its intention of being part of the federation. Once that happens,
each IMS instance is notified about the presence of the other.
At this point, a handshake phase starts. During the handshake,
each potential federate opens a connection to the other and
eventually a contract negotiation occurs (described in Section
VI). Upon contract acceptance by both nodes, the federation is
officially established, and each federate creates an instance of a
RFSP.

B. Subscription forwarding

When a client connected to Federate A issues a subscription
with its local IMS, the request is captured by the Federation
Service (FS). FS retrieves the RFSP for Federate B and uses it
to remotely forward the received request for subscription. Once
Federate B obtains it, the subscription is stored in a remote
subscriptions table, ready to be matched against local
publications.

C. Publication handling

When a client publishes information to the local IMS
(Federate A), such publication is intercepted by the FS. In
normal conditions (i.e., with no adaptations in effect), Federate
A attempts to execute the predicate matching locally, by
comparing the publication type and metadata with the remote
subscriptions it may have previously stored in its remote
subscription table. Publications for which the local matching
succeeds are marked as matched, and sent to Federate B via the
RFSP. Federate B receives the publication, verifies if it was
already matched (and if it was not it matches it with the local
subscriptions), and forwards it to the IMS. Finally the IMS
takes care of the delivery to the correct subscriber clients.

D. Federation Termination

Federation lasts until at least one of the nodes dies or leaves
the federation group. When the other is notified about one of
these events it cleans up any references to the former remote
federate, including any cached remote subscriptions.

E. Policies

All the federation operational behavior detailed above is
entirely governed by policies. Before performing any step in its
execution flow, FS verifies with the policy framework whether
the current operation is allowed, and whether there are any
restrictions to be imposed. Section VI explains in detail
contracts and policies to dynamically control the behavior of
federation.

VI. FEDERATION SERVICE CONTRACTS

An important aspect for the coordinated operation of
federated infospheres is a comprehensive, semantically-rich,
and enforceable service agreements. The privileges and
obligations of each infosphere within the federation must be
established and monitored for compliance at all times. The
service agreements bind all parties to act according to the
constraints accepted when the federation was formed. This
approach is necessary to ensure the proper flow of information
through the federation. The KAoS Policy Service [7] with
federation specific extensions is used by the FS to create and
enforce federation contracts. KAoS allows for the specification,
management, conflict resolution, and enforcement of policies

within domains. The use of ontologies, encoded in OWL [8], to
represent policies enables reasoning about the controlled
environment, about policy relations and disclosure, policy
conflict resolution, as well as about domain structure and
concepts. The behavior of all the components in the FS is
dynamically controllable at runtime via policies. The FS on
each federate is integrated with the KAoS Guard software
component, which stores policies controlling establishment,
lifecycle, information exchange, and adaptation of the
federations established by this federate. When a node discovers
a new possible federation partner and the initial connection is
established, the two potential federates exchange information
about their current configuration. Based on this information as
well as its own local policies, each federate independently
decides:

 Whether to establish a federation with the remote
federate,

 What priority to assign to the remote federate,

 Based on the current resource usage for the federation
operations and the assigned federate priority, how to
estimate the quantity of resources it can devote to
server requests from the federate,

 What metadata type subscriptions or queries it would
be able to support for a given federate.

During subsequent subscription exchanges, queries, and
publication with federates, each operation is analyzed with
respect to current policies. Policies may allow or prevent a
given operation. They may also modify the operation by
changing the subscription or query predicate, or by removing
metadata from the published information object being
forwarded to the remote federate. Moreover, policies may
enforce or waive obligations (e.g., logging) relevant to certain
types of operations. In addition, policies and the agreed
adaptation matrix control how and when a given adaptation
mechanism is activated when the share of resources used by the
given federate exceeds the agreed-upon limit.

KAoS is controlled using the KAoS Policy Administration
Tool (KPAT), a graphical policy management tool. KPAT
configuration for the control of federation consists of sets of
predefined policy templates and policies associated with them.
Each policy can be easily activated and deactivated. The policy
templates are grouped into four categories:

 Federation Acceptance Polices,

 Gatekeeping Policies,

 Adaptation Policies,

 Contract Policies.

VII. EXPERIMENTAL EVALUATION

The Federation Service has been experimentally evaluated
in terms of measuring overhead from adding federation
capabilities to the base Information Management System
(IMS). For this experimentation we considered both Apollo as
well as Phoenix. We measured the performance of publish and
subscribe operations considering a baseline installation of the

228

evaluated IMS versus two installations of the same IMS sitting
on two different nodes collaborating together through
federation.

This experimental evaluation was conducted on virtual
machines running on VMWare Server. The host machines have
a dual core 3.06 GHz Intel Xeon processor and 4GB of
memory. We deployed one virtual machine per physical
machine. All the virtual machines were running Ubuntu Server
8.04, and were provided with 1GB of RAM.

In order to understand the overhead that may be caused by
the Federation Service, we measured the throughput in terms of
time spent to send and receive information by the clients
(execution time) and the maximum number of Information
Objects per second that clients were able to send and receive
(throughput).

All the tests involved one publisher client and two
subscriber clients. In the first set, all are connected to the same
instance of the IMS. In the second set of experiments, the
publisher was connected to the first instance of the IMS and the
subscribers were both connected to the second one, so the
Information Objects were sent to the other side across the
federation. The performance evaluation was executed using the
benchmark suite provided with Apollo and adding clients that
would support the information exchange protocols defined by
the Phoenix architecture. We chose to run the clients with 55
iterations. With this configuration, publisher and subscriber
clients exchange 1275 Information Objects. Figure 4 shows the
experimental scenario.

Figure 4: Experimental Scenario for the Performance Evaluation: The
Baseline Version of the Tested IMS is shown in A. B shows the Configuration

for the Tests with the Federation Service

From the results presented in Table 1 and Table 2, we make
two different observations. In the case of Apollo, we can see
how the presence of the Federation Service improves the
overall performance of the IMS instead of creating overhead.
That actually makes sense: by adding federation capabilities,
we split the load between the two federates (which are on
separate physical nodes). In particular the publications are
handled by the first instance of the IMS while the subscriptions
are managed by the second instance.

This becomes even clearer when considering the numbers
obtained in Phoenix tests. Phoenix uses asynchronous channels
that rely on the Netty framework [9] for exchanging
information from and to clients. On the publisher side, this
means that the publication time and rate are not affected by the
computation that is necessary to manage every single piece of
information being published. The publisher keeps putting
information into the channel as fast as it can. The underlying
layer will then manage the delivery to the IMS. This explains
the very small difference in terms of performance of the
publishing information to Phoenix with or without federation.

TABLE 1: TIME SPENT TO PUBLISH AND RECEIVE THE INFORMATION OBJECTS

BY CLIENTS

Configuration
Publisher

Time
Subscriber 1

Time
Subscriber 2

Time
Apollo Baseline 46.62 sec 41.16 sec 40.87 sec

Apollo with Federation 29.00 sec 28.14 sec 28.19 sec

Phoenix Baseline 3.81 sec 9.27 sec 9.26 sec

Phoenix with Federation 3.88 sec 4.81 sec 4.81 sec

TABLE 2: NUMBER OF INFORMATION OBJECTS PER SECOND PUBLISHED AND

RECEIVED BY CLIENTS

Configuration Publisher Subscriber 1 Subscriber 2

Apollo Baseline 29.2 IO/s 30.97 IO/s 31.19 IO/s

Apollo with Federation 42.10 IO/s 45.31 IO/s 45.22 IO/s

Phoenix Baseline 327.80 IO/s 137.55 IO/s 137.63 IO/s

Phoenix with
Federation

322.09 IO/s 265.29 IO/s 265.29 IO/s

On the other hand, the subscribers’ performance is affected by
the computation the IMS needs to accomplish in order to
manage the Information Objects it receives from the publisher
and then dispatch them to the right subscriber clients. Time and
reception rate are calculated from when the first piece of
information is received to when the last one is delivered, which
occurs concurrently with incoming information from publishers
that needs to be handled. Having the load divided between two
IMSs interconnected with federation shows its benefits also in
the case of Phoenix.

The throughput results presented above show that from the
client perspective, there is no performance degradation in terms
of time and rate caused by adding federation capabilities to an
IMS. The overhead of federation does manifest itself in terms
of increased latency in information delivery. Latency of the
information, i.e. the difference in time between when the
information is produced by the publisher and when the same
information is received by the subscriber, is crucial for certain
types of applications, particularly in the tactical environment.
The delay in the delivery of Information Objects to the
subscribers clearly increases when such Information Objects
have to be transmitted through the network to remote federates.
Preliminary tests show that when the Federation Service is
involved in the publish-delivery process, the latency of a single
Information Object increases by 20% on average. This increase
in latency is highly dependent on the network latency. As

229

shown in Figure 4, there is an extra network hop involved with
federation, which is the primary factor contributing to the
latency.

One more noteworthy aspect with the results is the
comparison between Apollo and Phoenix. The results show a
slight improvement in the performance of federation between
Apollo and Phoenix. When adapting our architecture for the
Phoenix environment we started moving towards a lighter-
weight services approach, and that seems to have produced
benefits in terms of efficiency of the federation
implementation. If we evaluate the subscriber side, Apollo with
federation was about 1.4 times faster than Apollo baseline.
Phoenix with federation instead is almost 2 times faster than
Phoenix baseline.

VIII. FUTURE WORK

The Air Force and the Department of Defense, in the
process of moving toward network-centric operations, have
embraced Service Oriented Architecture (SOA) based systems
as a necessary means to help implementing the conceived
overarching Global Information Grid (GIG). The JBI
information management client-server concepts are now being
morphed and extended into Phoenix, a flexible SOA-based
approach to information management. The SOA characteristics
of the services in Phoenix allow applications to exchange data
as they perform their individual or collaborative processing.
These SOA services provide the perfect blend of rigidness and
flexibility that is needed for effective information management
operations. The federation approach discussed above is also
being evaluated against the Phoenix architecture to enable the
federated capabilities as a set of services, as mentioned in
Section VII. The federation services will work in harmony with
the information services and other service deployments in other
domains. The effort will result in the architecture
enhancements to assure that the necessary set of federation
SOA services are designed in a manner that is consistent with
the Phoenix architecture. Following the specification and

architecture design phase, service implementations will be
developed to provide federation capabilities for multiple SOA
service deployments.

ACKNOWLEDGMENT

This work is supported by the U.S. Air Force Research
Laboratory under Cooperative Agreement FA8750-07-2-0174.

REFERENCES
[1] Infospherics Web Site. Online reference: http://www.infospherics.org.

[2] Grant, R., Combs, C., Hanna, J., Lipa, B., Reilly, J. “Phoenix: SOA
based information management services,” Proceedings of the 2009 SPIE
Defense Transformation and Net-Centric Systems Conference, Orlando,
Fl, April 2009.

[3] Linderman, M., et. al., "A Reference Model for Information
Management to Support Coalition Information Sharing Needs", In
Proceedings of 10th International Command and Control Research and
Technology Symposium, 2005.

[4] Suri, N, Marcon, M., Quitadamo, R., Rebeschini, M., Arguedas, M.,
Stabellini, S., Tortonesi, M., Stefanelli, C. An Adaptive and Efficient
Peer-to-Peer Service-oriented Architecture for MANET Environments
with Agile Computing. In Proceedings of the Second IEEE Workshop
on Autonomic Computing and Network Management (ACNM’08).

[5] Carvalho, M., Suri, N., Arguedas, M., Rebeschini, M., and Breedy, M. A
Cross-Layer Communications Framework for Tactical Environments. In
Proceedings of the 2006 IEEE Military Communications Conference
(MILCOM 2006), October 2006, Washington, D.C.

[6] Loyal J. P., Carvalho, M., Martignoni III A., Schmidth, D., Sinclair, A.,
Gillen, M., Edmonson J., Bunch, L., Corman, D. QoS Enabled
Dissemination of Managed Information Objects in a Publish – Subscribe
– Query Information Broker. In Proceedings of the SPIE Conference on
Defense Transformation and Net-Centric Systems 2009.

[7] Uszok, A., Bradshaw, J., Lott, J. Breedy, M., Bunch, L., Feltovich, P.,
Johnson, M. and Jung, H., (2008). New Developments in Ontology-
Based Policy Management: Increasing the Practicality and
Comprehensiveness of KAoS. In Proceedings of the IEEE Workshop on
Policy 2008, IEEE Press.

[8] Web Ontology Language, online reference: http://www.w3.org/TR/owl-
features.

[9] Netty Framework Web Site: http://www.jboss.org/netty.

230

