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ABSTRACT
High performance is desired in the workplace, even with swarms
of robots on their way in the Fourth Industrial Revolution. Our re-
search focuses on the population of knowledge workers, who are
typically expected to sit in one space for extended periods while
performing deep, intellectual and creative work. For those who
work predominantly using computers, there is growing scope to
augment task performance using artificial virtual agents. This trend
is evident in the adoption of voice-based, and gesture-based appli-
cations that allow users to issue vocal or gestural commands while
their hands are occupied on primary tasks. Even though multimodal
interaction may yield more productivity than solely mouse and key-
board interactions, it may still impose a significant cognitive load
on the user. We propose the modeling of a smart motivational hu-
manoid assistant that is personalized to interact with human users
without explicit commands, and instead via wireless sensors that
can perceive the operator’s brain activity. The humanoid engages
with the human using effective nudges through neurofeedback.
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1. Introduction
Knowledge workers perform "non-routine cognitive jobs" whose
ideas and concepts are responsible for the growth and development
of businesses around the world. In the US, knowledge workers
constitute almost 50% of the workforce [1]. They work with tools
and automation that relieve them of many tasks, enabling them
to deeply immerse themselves into the difficult knowledge tasks
that cannot be automated [2]. The research question arises, how
should human workers interact with complex automated technolo-
gies, which is itself a knowledge-work task? And, can this be done
in a way that enhances deep cognitive work?

While the work environments of knowledge workers vary widely
across different industries, this paper focuses on the office workspace
and to the knowledge worker operating a computer system on a
desk to complete a range of work activities. The primary artifacts
in this context are the computer, and the top surface of the desk as
shown in Figure 1. The knowledge worker may be a novice or an
expert who may be succeeding on tasks, making errors, overloaded
or distracted. Tasks may vary from writing documents, respond-
ing to email, computing calculations or debugging software code.
Secondary artifacts in the office space such as lamps, toys, books,
posters and windows may be used for changing mood, taking a
break or sparking creativity.

The organization includes all supervisors and team-mates who
interact with the knowledge worker to perform work tasks using
the artifacts. Situations may be normal, abnormal or emergency

Figure 1. Proposed context of use shows Nao humanoid interacting
with a knowledge worker that wears a Muse neurofeedback head-
band while completing work tasks using a computer in the office
workspace. Image courtesy ABC Gold Coast: Damien Larkins.

scenarios that determine the relevant interactions during operation
time. Situation complexity is often caused by interruptions, context-
switching, and high workload conditions.

One predominant problem in environments such as these is the
propensity for the knowledge worker becoming distracted to the
detriment of work completion. Due to the reduced attention or im-
paired alertness, the inevitable net result is increased human er-
ror, and reduced ability to work safely, and productively [3] and
decreased job satisfaction [4]. Human-centered design of the hu-
manoid robot as a collaborative team-mate may enhance the task
performance and psychological well-being of the knowledge worker.
The robot should not cause stress and discomfort but incorporate
social signals, cues and norms into the planning and control archi-
tecture to ensure psychological safety of the knowledge worker [5].

In this paper, we present the first steps of research into devel-
oping a computational model for a humanoid robot to support the
cognitive needs of knowledge workers by increasing the duration
and depth of their cognitive work. The second section of this paper
outlines the state-of-the-art research on the psychological state of
flow, neurofeedback-driven nudges, and human-robot interaction.
In the third section, we present a design rationale for the smart per-
sonalized humanoid assistant. A demonstration of the agent-based
framework was conducted to analyze the effects of the neurofeed-
back processing, and action planning modules. In the final section
of the paper, we discuss the implications of neurofeedback-driven
nudges, and conclude with limitations of our research, and sugges-
tions for future work.
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2. Related Work

2.1 Deep Work and Flow State
Knowledge workers are exposed to both internal and external dis-
tractions and interruptions that lead to suboptimal productivity, in-
creased stress and dissatisfaction with their work. The average
knowledge worker spends 30 percent of their daily time on email,
and another 30 percent on team communication and Internet ac-
tivities [2]. A significant portion of lost time is spent in context-
switching, where additional time is lost before an interrupting task
is started, and after it ends [6].

Distractions between episodes of knowledge work are a signifi-
cant source of lost productivity and dissatisfaction due to the diffi-
culty in accomplishing work goals. If these periods of distraction
can be decreased or eliminated, the resulting ability to focus and
complete tasks may positively impact on productivity.

Flow is defined as “the state in which people are so involved in
an activity that nothing else seems to matter; the experience itself
is so enjoyable that people will do it even at great cost, for the
sheer sake of doing it” [7]. In the workplace, flow occurs when
individuals, teams or organizations operate with optimal focus, and
perform without apparent effort, which yields a heightened sense
of motivation, intrinsic satisfaction, and peak outcomes [8, 9].

Flow experiences are not always easy to attain and sustain, but
developing the ability to control attention may be an effective way
to find and maintain flow [10]. Concentration is a significant com-
ponent of achieving flow [11]. To establish the flow state, the hu-
man must focus attention on the activity, and goals at hand. Our
hypothesis is that if the operator is aware of their state of concen-
tration, they will be better able to drive towards deeper levels.

2.2 Neurofeedback and Nudges
Attention focus is a trainable skill that may result in reaching the
flow state [12]. One way to train sustained attention is to provide
a sensitive feedback signal so human users can learn to sense up-
coming lapses earlier and prevent them from occurring in behavior
[13]. Neurofeedback training has produced outcome gains in sus-
tained attention [14], and has been used for the purpose of cognitive
enhancement and as a therapeutic tool [15].

Neurofeedback is a category of biofeedback that is based on
brain electrical signals recorded by bio-sensors placed on the head
of humans. Neurofeedback involves the collection of the brain sig-
nals, classification and presentation of a stimulus to make individu-
als aware of their brain states and how to self-regulate certain brain-
based processes [16]. In general, effective use of biofeedback re-
quires specialized equipment to convert physiological signals into
meaningful cues or a trained biofeedback practitioner [17].

To be effective working with the most difficult knowledge tasks
in a domain, human workers often rely on external aids such as
rituals, reminders and mental hacks, which this work collectively
calls "nudges". This set of work-related nudges are used mostly on
an ad-hoc basis to propel workers to deep levels of concentration
and achievement. Nudges are used in behavior science to posi-
tively influence people while preserving their freedom of choice,
and without engaging their deliberative capacities [18, 19].

The purpose of the reinforcement learning loop shown in Fig-
ure 2 is to help the knowledge worker achieve, and maintain a flow
state while performing tasks. The aim is to have the Nao humanoid
monitor and mirror the human’s state so that it can effectively mo-
tivate them with nudges when they drift off task, and become invis-
ible when their task performance is in the flow state.

Figure 2. The reinforcement learning control model depicts the hu-
man completing work tasks in an operational environment that al-
lows interactions with the humanoid agent. Percepts of human state
and traits represent the agent’s observations over time. The reward
signal is obtained based on the humanoid’s likeness to the human’s
subsequent flow state, and task completion. The humanoid performs
nudge actions that consistently target stimulation towards deep flow.

The proposed nudges incorporate sound, physical motion, and
other visual cues, and aims to combat boredom, fatigue, anxiety,
distractions and habitual behaviors that may lead to under-performance
during knowledge work. The nudges are delivered using traits of
transparency and expressiveness versus autonomy and accuracy [20],
good automation etiquette versus socially-agnostic behavior [21],
and empathetic verbal apology over sterile error codes [22, 23].

Andujar et al [24] proposed that adapting humorous smart tech-
nologies in the workplace can be beneficial for employee retention
and the improvement of employees’ positive emotional state. The
designers of humanoid interactions are recommended to consider
how to detect negative responses resulting from the uncanny valley
effect (where people react with unease seeing humanoid behavior
that closely, but not perfectly, matches human behavior), and de-
sign robot behaviors to mitigate this by using humor or apology to
overcome the robot’s disagreeable appearance [25, 26, 27].

2.3 Cognitive and Collaborative Robots
Cognitive robotics involves the use of bio-inspired methods for the
design of sensorimotor, cognitive, and social capabilities in au-
tonomous robots [28]. Reggia et al [29] designed a cognitive hu-
manoid robot framework with components that center on top-down
control of a working memory that retains explanatory interpreta-
tions that the robot constructs during learning. The core function
of our humanoid robot is to learn about the mental and emotional
states of the knowledge worker and respond in a way to support
their cognitive needs.

Collaborative robots are designed to physically interact with hu-
mans in a shared workspace instead of replacing them [30]. The hu-
manoid robot proposed in this research provides personalized inter-
acts with different knowledge workers while conducting work tasks
in their workspaces. This interaction model is non-competitive co-
operation by mutual understanding where authority is traded be-
tween human, and collaborative robot [31].

The sense of presence, and enjoyment that people feel with a
robot can be manipulated by changing its social abilities [32]. In
particular, the aesthetics, functionality, embodiment, situatedness,
and morphology of humanoid robots can affect its interactions [33].
For example, Jo et al [34], found that interactions with physical and
virtual humanoid robots produced a statistically significant effect in
increasing human creativity. Automation inaccuracy can degrade
human trust, comfort, and acceptance [35]. For these reasons, the
humanoid’s expressions and feedback are designed as a clear imi-
tation of the knowledge worker’s flow state.
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Figure 3. Pipeline architecture of the neurofeedback-driven humanoid where the modules process data on server and client threads in parallel.

3. Deep Work Humanoid Implementation
The humanoid obtains its bio-sensing capability from modules that
process raw brain sensor data, classify human state, and plan ap-
propriate nudges. The humanoid listens to the nudge controller,
and executes nudges through expressive actions with its effectors.

3.1 Human EEG Stream
The human electroencephalogram (EEG) stream is collected from
four EEG electrode bio-sensors on the Muse headband [36]. The
sensor locations using the standard 10-20 coordinates are analo-
gous to the prefrontal regions (AF7 and AF8) and the temporal
regions (TP9 and TP10). The raw EEG data are sampled at 220
Hz on the four channels. The raw EEG data are transported to the
server database via a mobile device interface that is capable of be-
ing synchronized with motion and other bio-signals.

3.2 Mental and Emotional State Classifiers
Noise and artifacts such as blinks and jaw clenches are filtered from
the raw EEG data using a bandpass filter between 1 Hz to 75 Hz.
The filtered EEG data are segmented into 4-second epochs without
overlap. A short-term Fourier transform on each segment produces
power spectral density (PSD) features in 5 frequency bands (delta,
theta, alpha, beta and gamma). PSD features are classified using
a recurrent neural network (RNN) with long short-term memory
(LSTM) units. The mental states are engaged or disengaged. The
emotional states are bored (B), happy (H) or anxious (A).

3.3 Flow State Estimator
In our research, the flow concept is operationalized with two di-
mensions: human skill and task challenge. Flow is modeled as the
region where there is a balance between the human skill and task
challenge. Flow is estimated as a discrete state (DistractedB, Shal-
low FlowB, DistractedA, Shallow FlowA, Shallow FlowH and Deep
FlowH) measured 4 seconds after presentation of the nudge.

3.4 Neurofeedback Planner

A common approximation to reinforcement learning (RL) prob-
lems is to ignore noise, which assumes full observability by learn-
ing and planning in observation space rather than a latent state
space [37]. However, such approximations break down when using
the Nao robot due to non-determinism in the actuators [38], and
the EEG signals are stochastic due to sensors noise and artifacts.
Therefore, the RL control model in Figure 2 is a discrete-time par-
tially observable Markov decision process (POMDP). A Deep Q
Network (DQN) is used to obtain the policy that maximizes the
expected sum of rewards. The policy is used to plan and map the
optimal nudge to the estimated flow state of the knowledge worker.

3.5 Nudge Controller

In order to help the knowledge worker maximize on deep work, the
humanoid nudges with gestural feedback, reminders of task goals,
and, in some cases, modifies the challenge level of the task relative
to the skills of the knowledge worker. Nudges are conveyed in the
form of expressive actions that the robot executes based on prob-
abilistic computations of percepts, predictions and rewards. These
humanoid expressions that are shown in Figure 4 represent stimuli
to deliberately influence the knowledge worker by mimicking their
mental and emotional state while motivating transition to deep flow.

3.6 Global Services

The architecture has a set of global services for logging percepts
of raw data, PSD features, classified states, predictions and nudges.
Streams of bio-sensor packets are transferred and aggregated via
Bluetooth and User Datagram Protocol (UDP). The bio-sensor pack-
ets are synchronized and logged with discrete timestamps. Nudges
are communicated from the server over Wi-Fi to the robot.
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3.7 Robot User Interface
Only dependable robot architectures can be accepted for supporting
“human-in-the-loop” conditions and human–robot teams [39]. Hu-
manoids are a special case because they intrinsically present mul-
tiple control points for grasping, moving the head for perception,
assuming postures, walking, and so on [40]. We hypothesize that
a tangible interactive robot with the form factor of a warm, com-
petent, and sensitive humanoid will be acceptable, and effective in
knowledge work scenarios. The Nao humanoid supports the re-
quired human-like motor capability and has a high level of expres-
siveness that is capable of delivering a variety of nudges in Figure
4, which makes it suitable for our human-robot teamwork function.
According best practices for social robots [26, 41, 42], we designed
the humanoid to exhibit the following social characteristics:

• perceive, and express emotions;

• communicate with body language, and sound;

• exhibit a distinctive personality, and character;

• perceive natural cues (gaze, facial expression, head posture).

Figure 4. The six nudge categories of the Nao robot represent a
sparse encoding that correlates expressions to the flow state, which
is a product of mental and emotional state of the knowledge worker.

The expressions of the robot in Figure 4 are timely interactions
with the knowledge worker without overt commands. These ex-
pressions strategically auto-encode the flow state of the knowledge
worker into the metaphor of a Zen practitioner. The fluid move-
ments of the humanoid are coupled with silence, music or motiva-
tional phrases spoken by the robot. Within the six categories of ex-
pressions, there is granularity of the phrases and sounds to improve
salience and mitigate monotony. Silent motions avoid distracting
the knowledge worker unnecessarily, and simple phrases minimize
the cognitive load required to understand the robot.

According to Breazeal [41], the importance of feedback, and the
readability of expression in this process cannot be underestimated
in human-robot interaction. As the human applies the social model
to understand the robot, they are constantly observing the robot’s
behavior, and manner of expression to infer its internal states. This
allows the person to predict, and understand the robot’s behavior
only if the robot’s expression is readable (the intended signal is
appropriately interpreted by the human). The robot’s expression
reliably maps to the internal state being expressed, and this internal
state adheres to the human’s mental model of the robot.

4. Demonstration
In this section we review a demonstration of the architecture, show-
ing how the pipeline architecture ingests classified mental and emo-
tional states from EEG data, and then decides which nudge to pro-
duce on the humanoid robot. The synthetic dataset used in this
demonstration simulated 2,000 trials i.e 100 work-hours. The trials
were randomly sampled from 18 types of knowledge work scenar-
ios. Each scenario type exhibited an overarching emotional state
e.g. boring, anxious or happy. In order to simulate different fre-
quencies of distractions, the scenarios were combined with the fol-
lowing types of perturbations in mental state:

• Engaged for 3 minutes

• Disengaged for 3 minutes

• Engaged for 90 seconds then disengaged for 90 seconds

• Disengaged for 90 seconds then engaged for 90 seconds

• Engaged then disengaged alternating every 1 minute

• Engaged then disengaged alternating every 12 seconds

The 3-minute scenario graphically depicted in Figure 5 shows
a situation where a knowledge worker is in an overarching happy
emotional state but experiencing intermittent 12-second distractions.
Given this processed data from the humanoid’s sensor and percep-
tion layer, the resultant flow state is handed to the neurofeedback
planning and nudge control layers then an expression is communi-
cated to the robot’s user interface.

Figure 5. Visualization of a knowledge work scenario showing the
emotional, mental and flow states over 45 epochs of sensor data after
pre-processing and classification in the humanoid’s software pipeline.

We adopted a Q-Learning approach as the baseline reinforce-
ment learning (RL) control method for the neurofeedback planner.
The RL method was implemented in Python to approximate the
action-value function of the optimal policy. The Q-Learning algo-
rithm used temporal differences to update the scores its Q-Table.

The data was split 50:50 into training and test sets, and reused
across all experimental cases. The ε–greedy algorithm was used
to make use of the exploration-exploitation tradeoff, and a linear
function was used to decrement ε over the scenarios. Three reward
functions were used to generate the different policies. The state-
based function calculated reward based on the value of the resulting
state if it was predicted. The distance-based reward function used
the distance between the resulting state and the predicted state. The
combo function represented a weighted combination of both mea-
sures. The nudges from the neurofeedback planner were tested on
the Nao humanoid via the nudge controller. The following tables
summarize the nudges resulting from the computational model for
discussion.
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Figure 6. Comparison of policies for knowledge work scenarios across 9 four-sec epochs. The plots represent (a) before the humanoid was trained,
and after training with (b) state-based reward, (c) distance-based reward, and (d) a combined state- and distance-based reward. The green
arrows depict the attempted nudge. The blue cell represents the current observation, and the orange cell represents the previous observation.
The dashed square highlights the previous nudge, where red indicates an incorrect prediction and green indicates a correct prediction.

4.1 Discussion
Figure 6 shows a comparison of three policies that were learned
by the agent based on three different reward functions. Nudges in
the baseline (a) appeared to be random and independent of obser-
vations. The state-based reward function in section (b) shows a dif-
ferent set of nudges, which yielded low rewards on the predictions.
The distance-based reward function in section (c) depicted a more
constrained set of nudges, which were closely related to the current
observation. The combo-based reward function demonstrated that
it is possible to combine benefits from multiple reward signals.

The nudges used in this demonstration were delivered every 4
seconds during the given knowledge scenario. When executed on
the Nao, even though some nudges were silent, the number of nudges
was relatively highly across the scenarios on average. This is likely
to make the humanoid a distraction to maintaining flow and deep
work. When the humanoid is deployed, an alternative approach to
implement the neurofeedback planner would be to only nudge after
(1) a stabilized period of the flow state, (2) after dwelling in dis-
traction for 10 seconds, and (3) after task completion. The nudge
after completing the scenario may be planned by classifying the
knowledge worker’s flow performance over the scenario and rec-
ommending the next task from a task list based on its estimated
duration and challenge relative to the knowledge worker’s skill.

5. Conclusion
This main goal of this research was to develop a computational
model that effectively applies human-robot interaction in the deep
knowledge work domain to augment human performance. The ar-
chitecture presented in this paper offers a lightweight framework
for investigating biofeedback-sensitive aids to deep cognitive work.
Our hope is that this framework lowers the barrier for future re-
search into the efficacy of different nudge regimes.

Breazeal, Aly, and others are adamant that the long-term emo-
tional effects of humanoid interactions on humans need to be in-
vestigated [43, 44]. Issues arising of ethical concern include over-
reliance on automation [45], and potential manipulation of people

through social robots [46]. Some AI algorithms may suffer from in-
accuracies in the training data or may possess vulnerabilities to er-
rors, and biased rules, which may lead to inaccurate profiling [47].

Notwithstanding the challenges and ethical issues, there is a pos-
sible design of the future where robots do not replace humans but
enhance them to make a positive difference in the world. The
impact of effective neurofeedback-driven humanoids that support
deep work is potentially significant in terms of economic produc-
tivity, and social well-being of knowledge workers.

5.1 Future Work
Real human- and real humanoid-in-the-loop experiments are an ex-
citing part of the next steps. Beyond the theoretical experiments
reviewed in this paper, humanoids with simulation-trained neuro-
feedback planners will be compared with those trained with real
world experience. Then we can determine if the humanoid’s effec-
tiveness may be improved by tailoring personalized nudges that fit
the traits and preferences of specific knowledge workers.

Future studies will examine “attention” in greater detail, e.g.
nudges that help knowledge workers to train their focus on task
relevant stimuli, and boost their immunity to distraction. It is noted
that a human can be focused and attentive on a distracting stimu-
lus. This differentiation will require laboratory research with mo-
tion tracking to provide an objective measure of how attention is
directed, and controlled by the knowledge worker during tasks.

Advanced work in feature engineering can improve the humanoid’s
accuracy and responsiveness. For example, the environment’s re-
ward signal that is currently controlled by task list completion and
humanoid flow similarity may be augmented by human-centered
metrics such as joy and positive affect, which may increase the re-
liability of the neurofeedback planner.

On the hardware side, the sensor interface may be extended to
include different bio-signals such as facial expression, heart-beats,
skin conductance, etc. The purpose of multimodal bio-signal fu-
sion would be to increase classification accuracy, and improve the
explainability of our deep learning models.
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