This has always been the way in our group prior to FIT and the method we use in the labs at NRL:

1. dirty glassware after organic reactions is rinsed to remove any hazardous chemicals using acetone wash bottle and into waste organics in 4 L jugs at back of hoods. Any unreactive solids present emptied into solids waste container.
For aqueous reactions which are incompatible with organics (e.g. some of Aaron's chemistry) - rinse with water into aqueous waste instead.

2. immerse in your own soap buckets or basins kept near your benches until you are ready to clean (e.g. several days). The soap also removes stubborn materials. This would include glassware, syringes, spatulas etc. Anything that is not harmed by soapy water.

3. at the end of the week or when you need the glassware, carry bucket to sink and rinse with water. Then rinse with acetone and put on rack to dry or in oven for efficient drying. Remove from rack or oven as soon as dry and store in your kit or put back the correct place if communal.

4. If the soapy water does not cut it, use the base bath and follow the same procedure.

5. if you perform reactions frequently which are water sensitive, you might have a collection of glassware and equipment which never comes in contact with water and is only cleaned with organic solvent, base bath, or simple wiping with a kimwipe and spatula. For organometallic chemistry this is often how it is achieved.

5. Bear in mind that any glassware that has come in contact with water is very difficult to dry. There is always a thin layer of water on the surface of the glass which cannot be removed conventionally. Under these circumstances you can flame-dry (pass a flame from the burner over the exterior of the glassware), or you can silylate by quickly rinsing with trimethylsilyl chloride. This reacts with the OH groups on the surface of the glass.

You should be thinking about what has come in contact with your glassware/equipment (e.g. soap, acetone, water etc.) and how traces of these might interfere with your reactions, and secondly, what are the compatible cleaning agents, methods for removing the materials after the end of the reactions.