

QuarkNet Cosmic Ray
Detection System Manual

Presented By Sten Hansen, Electrical Engineer, FermiLab
PPD, John Lofgren, Erich Keller

Written By Daniel Balick
Fermi National Accelerator Laboratory

July 2001 (Version 1.00)

 2

QuarkNet Contacts

Thomas Jordan
QuarkNet Coordinator
Education Specialist
Fermilab EO
JordanT@FNAL.gov

Prof. Kevin McFarland
Physics Professor
University of Rochester
Ksmcf@pas.rochester.edu

Mark Adams

Project Team

Sten Hansen
Electrical Engineer
FermiLab PPD/EED
Hansen@FNAL.gov

John Lofgren
CO-OP Student
Electrical Engineering Major
Valparaiso University

Erich Keller
CO-OP Student
Electrical Engineering Major
Valparaiso University

Daniel Balick
FermiLab Summer Student
Author of Manual

 3

Table of Contents
I. Introduction 4
II. Description of Parts 5
 A. Scintillator Paddles 5
 B. Photomultiplier Tubes 5
 C. High Voltage Converter 5
 D. QuarkNet Coincidence Logic Board 6
 i. LEMO Connector 6
 ii. x10 Amplifier 6
 iii. 50K Potentiometer (POT) 7
 iv. Discriminator 7
 v. Complex Programmable Logic Device (CPLD) 7
 vi. 50MHz Crystal Oscillator Clock 8
 vii. Microcontroller 8
 viii. RS-232 Driver 9
III. Operations 9
 A. Setting up 9
 B. HyperTerminal 10
 C. Possible Uses 10
 i. Basic Rate Measurements 10
 a. Working in HyperTerminal 10
 b. Capturing Data 11
 c. Working in Excel 11
 d. Data Analysis 12
 ii. Average Muon Decay Time Experiment 12
 D. Default Settings 13
IV. Suggested Readings 14

 4

QuarkNet Cosmic Ray Detection System Manual
Daniel Balick

I. Introduction

The cosmic ray detection
system is designed to allow the user
to accurately observe the rate of
incoming charged particles, as well
as the approximate decay time of
each. The vast majority of charged
particles that reach the surface of the
earth are muons. Muons have a
longer lifetime, and can travel farther
than other particles that come from
the atmosphere with enough energy
to reach the detector. Consequently,
the detector can be used to
determine the average muon decay
time, or muon lifetime.

The detectors are designed
specifically to provide a reasonably
priced detection system on a scale
appropriate for classroom or home
use. The parts used in this device
are standard for particle physics
experiments, and are the most
appropriate choices in terms of
speed, efficiency, and cost. The
detectors are scintillator paddles
which, when struck by muons,
convert the particles' kinetic energy
into several photons. These photons
excite nearby electrons. As the
electrons return to ground state,
photons are emitted. The number of
photons produced is proportional to
thickness of the scintillator. This
allows the connected photomultiplier
tubes to pick up the light gathered by
the light guides and convert it into a
signal. This signal is then
transmitted to the PC board.

The PC board's default
settings require a coincidence, a
signal from each paddle within a set

amount of time, to process the event
and consider it a charged particle hit.
The four-digit hexadecimal LED
display will show the number of
triggers that has occurred since the
device was reset. The PC board can
transmit a full listing of data. This
includes: the port number of the
paddle that received the second
pulse of the coincidence, the time
interval between the two hits
involved, the time interval since the
last hit (either a coincidence or a
single hit), and confirmation that
either a hit or a coincidence
occurred.

There is a small probability
that a low energy muon will enter the
scintillator and be stopped. In this
case, the muon decays and its decay
products will cause a scintillation.
The time interval between these two
signals is very small. This event is
defined as a double. The data
received by hits such as these can
be used to calculate the average
muon decay time.

The following manual will
serve to provide the user with a
basic understanding of the
electronics involved in the hardware
of the PC board, simple set up
instructions, and suggestions for a
few possible uses for the apparatus.

 5

II. Description of Parts

A. Scintillator Paddles
 The acrylic-based scintillator
plastic generate a light flash in
response to a charged particle
transit. Plastic scintillator was
chosen because it is relatively
cheap, can be made to fit any shape,
and has a fast response time. The
paddles are enclosed in a light tight
wrapping to exclude ambient light
from getting to the phototubes.

B. Photomultiplier Tubes
 The photomultiplier tube
(PMT) picks up the light produced in
the scintillator. This device, by
means of the photoelectric effect and
a current multiplier, converts light
into current. The device has a very
high gain and allows small traces of
light to be picked up and amplified.
Unfortunately, it tends to be quite
expensive. This device also has the
disadvantage of a relatively low
quantum efficiency (approximately
15 to 20%).

A photocathode is positioned
at the front of the tube to induce the
photoelectric effect. Directly after
the photocathode is an electrode that
focuses the electrons produced into
a beam aimed at the multiplier. (See
Figure 1) Through the use of a high
voltage source, in this case the high
voltage base attached to the PMT, a
stepladder, so to speak, is created
using incremental levels of potential
energy. An electron focused into the
multiplier is accelerated by the
potential difference into the first
dynode. A collision occurs, freeing
several electrons that, for the most
part, continue along the intended
path of the original electron. From

here, each of these electrons is
accelerated towards the next
dynode, where the same result
occurs on a bigger scale. This
process continues down the "ladder"
until the electrons reach the anode.
At this point they are collected as a
current.

Photocathode

Focusing electrode

First dynode

Multiplier

Anode

C. High Voltage Converter
 The attached high voltage
base uses a resonant converter and
a Cockroft-Walton (CW) chain to
create a high voltage source for the
PMT safely and efficiently. With the
system involved, very little energy is
lost to waste heat, and +5V is the
only necessary supply voltage. This
also allows the user to reach the
desired level of energy without the

Figure 1: Photomultiplier
Tube

 6

use of a costly high voltage box.
This is a great advantage and makes
the unit quite cost effective. A brief
explanation of the high voltage
converter, along with a schematic
diagram, appears in Appendixes A
and B, respectively.

In addition, the high voltage
base serves to relay the signal from
the PMT to the PC board with as
little interference as possible. As this
is done through a simulated coaxial
cable built in to the board, the noise
level is significantly reduced. The
total noise received from the high
voltage source is less than 2mV.

For more information on the
high voltage base, consult “HV
Resonant Converter for
Photomultiplier Tube Bases” found in
Appendix D.

D. QuarkNet Coincidence Logic
Board

By following the signal chain
received from the high voltage base
and transmitted to the PC board, the
reader will gain a better
understanding of each individual
involved part, as well as their
combined use in the device. A
schematic diagram for the board can
be found in Appendix C. The reader
may also refer to Figure 2 below.

i. LEMO Connector

The anode signal cables are
attached to the coincidence logic
board using a standard LEMO
connected. All input channels are
terminated to match a 50-ohm cable.

ii. x10 Amplifier
 This amplifier converts the
input signal to one that is big enough

x10
Amplifier

LEMO
Connector

 Discriminator

50K POT

CPLD
(Complex Programmable

Logic Device)
 50MHz

MicrocontrollerRS-232
Driver LED Display

Signal
from HV

Base

COMPUTER

Figure 2: Block diagram for QuarkNet Coincidence Logic Board

 7

to be read by the discriminator.
Further motivation in using an
amplifier, as opposed to lowering the
threshold voltage (see 50K POT for
more information), includes the
reduced significance of local noise to
the signal. Noise at 2 mV is likely to
upset a 50mV signal; the same
amount of noise will hardly effect a
signal at 500mV. Figure 3 below
shows signal patterns before and
after passing through the x10 amp.
Channel 1 shows the input signal
and Channel 2 shows the output
signal on a scale ten times as large.
The amplifier preserves signal
fidelity.

iii. 50K Potentiometer (POT)
 The purpose of this
potentiometer is to set the threshold
voltage for the discriminator. As
actual particle hits are expected to
be close to -500mV, the threshold
level is nominally set at
approximately -300mV. The
threshold for each channel can be
independently tuned from 0mV to
820mV. (See discriminator for more
information.)

iv. Discriminator
 The discriminator, also

commonly known as a comparator,
compares the threshold voltage
defined by the potentiometer to the
voltage level of the input signal. If
the input signal exceeds the
threshold voltage, the discriminator
outputs a logical '1' signal. If the
level is not met, it outputs a logical '0'
signal. The Figure 4 below shows
the signals before and after going
through the discriminator. Channel 1
shows the pulse immediately after
the x10 amplifier at the negative
input of the discriminator. Channel 2
shows a logical '1' signal after the
pulse went through the discriminator.
The reference channel (R1) shows
the threshold signal at the positive
input of the discriminator. A
capacitor is included in positive
feedback to the threshold signal in
order to lengthen the pulse signal to
80ns. This ensures that the CPLD
will have sufficient time to recognize
the pulse.

v. Complex Programmable Logic
Device (CPLD)
 The CPLD contains the
coincidence logic of the board. It
can be dynamically changed with
user-configurable control registers.

Figure 3: x10 Amplifier

Figure 4: Discriminator

 8

Each of the channels can be
individually enabled or disabled. The
multiplicity level can be set from one
to four. (A multiplicity of one
requires that a single hit occur on
any enabled input channel, whereas
a multiplicity of four requires a
coincident hit on all four channels.)
Also, input Channels 2, 3, and 4 can
be set as a 'veto' channel. If a veto
is enabled, the CPLD requires that
the veto channel does not fire to
trigger an event. The veto function is
useful when dealing with three or
more paddles, and can be used to
reduce background noise when
carrying out muon lifetime
experiments.
 The CPLD can also be
programmed with different 'gate
widths'. The gate width is the amount
of time allowed between hits
considered coincident. The default
gate width is one cycle, but can be
altered from one to up to six cycles.
 A 10-bit Delta T (∆t) counter is
included in the CPLD. This
measures the time interval between
the two pulses of a double. The
counter starts each time a
coincidence is satisfied. If the
counter overflows before a second
pulse is received, then the event is
reported as a single. If, however, a
second pulse is received before the
counter overflows, then the counter
is stopped and the event is reported
as a double. The counter value can
be read by the microcontroller when
the event is processed. The
maximum Delta T window is 20us, or
1000 counts.

vi. 50MHz Crystal Oscillator Clock
 This 50MHz oscillator sets the
frequency for the CPLD at

20ns/cycle. This is why it is
important to lengthen the input signal
to 80ns with the capacitor. It
ensures that a signal will be
recognized by the CPLD. The CPLD
also divides the clock frequency by
eight to provide a 6.25MHz clock for
the microcontroller.

vii. Microcontroller
 The microcontroller acts as
the hub of the processing system
and the main buffer between the
user and the electronics. All
configuration parameters for the
CPLD can be set through the
microcontroller. The microcontroller
measures trigger event timing using
its timer capture/compare module. A
48-bit counter runs continuously.
When an interrupt pulse is received
from the CPLD, the counter value is
recorded. This value is subtracted
from the previous event’s recorded
counter value to give a time interval
between triggers.
 Also, after a trigger event
interrupt, the microcontroller reads
and buffers the contents of all status
registers in the CPLD as well as the
10-bit Delta T counter. The
microcontroller then checks the data
to see what type of event has
occurred. If the event has passed
the trigger requirements, then the
microcontroller will display the data
to the user terminal. Below is an
example of the output data.

…
0002FBFA 13
0008AB2E 13
0001F712 13
0001C021 53 02 002B
000784B5 13
00022D4E 13
000323FD 13

 9

0002299E 13
 …
Each line represents a separate
event. All numbers involved are
hexadecimal. The first column is the
elapsed time interval since the
previous event trigger. The second
column is the value of the first CPLD
status register (QuarkStatA). The
third and fourth columns only appear
in the event of a double. The third
column is the value of the second
CPLD status register (QuarkStatB).
The fourth column is the value
recorded by the Delta T counter.
Refer to Appendix E for bit
significance of the CPLD status
registers.
 In addition to the streaming
data, the coincidence board also
keeps track of some simple statistics
on its own. The microcontroller
keeps individual scalers for each
channel as well as a total trigger
scaler. These values can be
displayed by issuing commands to
the coincidence board with a PC. In
addition, for convenience, a manual
scaler reset switch and a four-digit
hexadecimal visual scaler are
provided on the face of the board.
With this switch, the LED display,
and appropriate default settings on
startup, the board can, in theory, be
used to do some very simple
experiments without the need for a
PC.

viii. RS-232 Driver
 The RS-232 driver acts as an
interpreter between the controlling
PC and the microcontroller. It serves
to convert logic pulses received from
the microcontroller (0V/+3.3V logic)
to RS-232 standard, higher voltage
pulses (-10V/+10V) that are less

likely to be distorted by outside noise
or the resistance of the cable used.
The RS-232 configuration used is
9600 Baud, 8-bits, no parity, 1 stop
bit, and no flow control.

III. Operations

A. Setting Up

The following parts are
necessary to fully assemble your
QuarkNet Scintillator System: one to
four scintillator paddles with
connected photomultiplier tubes, one
high voltage converter base for each
photomultiplier tube, LEMO
connector cables for each
paddle/tube/base set, one +5V
daisy-chained jumper cable for each
set, one QuarkNet Coincidence
Logic Board, one wall adapter power
supply, one RS-232 connector
ribbon cable, and a PC from which to
run the board.

To get started, attach the high
voltage bases to the photomultiplier
tubes. Plug the power supply into
one power jack on the board and into
a local outlet. Connect the high
voltage bases to the QuarkNet PC
board by plugging one connector of
the LEMO cable to the base and the
other to the appropriate LEMO jack
on the PC board. Plug the daisy-
chained jumper cable into the other
power jack on the board and one
power jack of the first high voltage
base. To power the additional bases
daisy chain their power jacks using
the jumper cables. Plug the RS-232
ribbon cable into the 9-pin
connectors on the board and on the
PC. (For additional setup help,
consult the diagram found in
Appendix F)

 10

To set up the computer
interface, simply go to your ‘Start
Menu’, select the ‘Find’ option, and
select the ‘Find Files or Folders’
option. Search your local hard drive
for ‘HyperTerminal’. When the
search is complete, select the
‘HyperTerminal’ icon with a file size
of 1K (it should be a ‘Shortcut’). This
will take you to the HyperTerminal
interface and guide you through the
setup procedures. When you reach
the ‘Port Settings’ interface, enter the
information asked for as 9600 bits
per second, 8 data bits, no parity, 1
stop bit, and no flow control. Figure
5 below illustrates the options that
should be chosen.

You are now ready to begin.

B. HyperTerminal

The data must be received in
a Terminal emulator such as
HyperTerminal. This program is
included with Windows
95/98/2000/NT and can be accessed
easily. You may, however use

another terminal emulator if you
wish. The user will access the
QuarkNet Coincidence Logic Board
through this interface. Parameters
can be set and data can be
displayed directly through
HyperTerminal. For a HyperTerminal
command list, see Appendix G. The
list shown is a copy of the text
displayed in the help menu as well
as a more detailed explanation of
commonly used commands.

C. Possible Uses

There are countless potential
uses for the QuarkNet Scintillation
System. It is up to the user to design
experiments that take advantage of
the resources and data provided by
the device. This section will outline
two possible uses for the system, as
well as discuss how to select and
analyze the desired data in each
case.

i. Basic Rate Measurements
 This simple experiment can
be used to compare rates of
incoming charged particles in
different situations. Rates can be
compared between the inside and
outside of a building, at different
heights, at different times of the day,
with different materials on top of the
paddles, and with different paddle
configurations. The paddle
configurations can be, but are not
limited to, adjustments in angles,
distance between paddles, and
overlapping area.

a. Working in HyperTerminal
 When everything is physically
connected, the user should start the
HyperTerminal interface. The user
should note that the default settings

Figure 5: Port Settings

 11

do not allow you to see what you are
typing. The ‘EC’ (enable character
echo) command may be typed in to
allow the user to see what they are
typing. This command can be used
as a comfort in most cases, but is
not necessary.

In this rate experiment, it will
be beneficial to display all incoming
data. Consequently, the ‘ES’
(enable singles) command will
provide the user with more data. For
rate data experimentation specifically
on low-energy muons, the ‘SS’
(suppress singles) option can be
used instead.

The ‘WC NN’ (write
command) option will allow the user
to specify which channels to enable,
specify vetoes, and set the
coincidence level. See bit diagram
in Appendix F for explanation of
specific bit choices and their
hexadecimal notation. See
Appendix H for an explanation of the
hexadecimal system. The
combination of information given by
these appendices will allow the user
to set the ‘NN’ in the command to the
appropriate hexadecimal number.
As the default settings enable all
channels with a veto on Channel 4
and require a coincidence of two
(WC DF), a user working with two
paddles need not adjust the settings.

The ‘WW N’ option allows the
user to set the gate width (see
CPLD) from 1 to 6 simply by
replacing ‘N’ with the number
desired. In this experiment, the gate
width should be set to 1 as the user
need not concern himself with
doubles.

b. Capturing Data
 Now that everything is set up,

the user can begin recording data.
This is done by capturing the text in
a separate file. (Make sure to save
the file in a readily accessible
directory.) To start capturing the
data, select ‘Capture Text’ in the
‘Transfer’ menu. This will begin the
data sequence. When you have
collected sufficient data, find the
‘Capture Text’ option in the ‘Transfer’
menu, which will now have additional
options. Selecting stop ends the
data collection. The user can now
access this data in the designated
file.

c. Working in Excel
 The data must now be
converted to Microsoft Excel format
(or another spreadsheet based
program) for further analysis. Open
Excel and chose the open file option.
Open the captured text file. As it is a
text file, make sure to select the ‘All
Files (*.*)’ option in the ‘Files of type:’
box. The ‘Text Import Wizard’ will
appear. On the first screen select
the ‘Fixed width’ option and press
‘Next >’. The next screen will allow
the user to adjust the position of the
column breaks if desired. If
adjustment is necessary, simply
follow the instructions provided. (If
the RS-232 cable is not used
directly, the data format may not be
uniform and will be harder to
analyze.) When this is completed
press ‘Next >’. The following screen
allows you to set the data format for
each column. All columns should be
set to text format. To do this, select
each column individually and click on
the ‘Text’ option. When finished,
click the ‘Finish’ button. The data
displayed should be in two columns
with an occasional double register

 12

consisting of four columns. (For
explanations of each column, see
Microcontroller above.) If there is no
data in Row 1, delete it.

The first step in analyzing the
data is to convert the results from
hexadecimal to decimal. To do so,
an add-in application must be
enabled. In the ‘Tools’ menu, select
the ‘Add-ins…’ option. When the
screen appears, check the ‘Analysis
ToolPak’ box and select ‘OK’. Now
you can select a column to designate
to the new decimal numbers. Select
the E1 box and click on the ‘=’ button
to write a formula to it. (Column E is
suggested, but is by no means
important, and another column may
be chosen if desired. This applies to
all mention of specific Columns in
this paper.) Type “HEX2DEC(A1)” in
the formula space. This will convert
the hexadecimal results in box A1,
and place the result in E1. To apply
this conversion to all of the data,
simply click and drag the square in
the lower right-hand corner of the E1
box down to the desired point. This
step may be repeated for the data in
Column D if desired by placing the
formula in Column F.

d. Data Analysis
 The two crucial factors of rate
experimentation are the number of
hits and time interval over which they
were collected. The exact time can
be calculated by summing Column
E. As Column E records the elapsed
time since the last hit, summing
Column E will produce a total time in
20ns units. To sum Column E, click
on the button labeled 'E' above the
data in the column. This will select
the entire column. By pressing the
sigma (Σ) button, you can add up the

highlighted boxes. The result will be
placed under the last full box in that
column. If the sigma button is
unavailable, select a box and click
on the ‘=‘ button to write in a formula.
Type 'SUM(E1:ENNNN)', where
'NNNN' represents the number of the
last data box in Column E. The
average frequency can be calculated
by dividing the number of hits by the
total time. This number can be
compared to data taken under
different conditions.

ii. Average Muon Decay Time
Experiment
 This experiment uses
doubles, events interpreted as
decaying low-energy muons, to
determine the average muon decay
time.

The data must be collected in
HyperTerminal with suppressed
singles. Follow directions found in
the Working in HyperTerminal
section above. Instead of using the
‘ES’ option, suppress singles by
typing ‘SS’. The gate width (‘WW N’
option) should be adjusted
accordingly. If you have slow
scintillator paddles or phototubes,
you may feel it necessary to extend
the gate width and allow more time
for the second pulse to be picked up.
Consequentially, this causes more
noise to register and false doubles to
be recorded.

Capturing data is explained in
the Capturing Data section above.
Simply follow the instructions given.
To import the data into Excel, follow
the first paragraph of the Working in
Excel section above. (Please note
that in this experiment, all data
should be in four-column format.)

For this experiment, the

 13

primary concerns in data collection
are the elapsed Delta T time (decay
time) and the frequency of events for
each bin of Delta T times. Column D
includes the Delta T data in
hexadecimal and must be converted
to decimal format using the method
described in the Data Analysis
section above. Place the converted
numbers in Column E

As the PC board registers all
doubles, certain data points must be
thrown out. The user should
determine to which channel the
bottom paddle is connected. Only
doubles registered on the bottom
paddle are valid. Column C
describes, in hexadecimal, which
paddle received the double. (01
represents Channel 1, 02 is Channel
2, 04 is Channel 3, and 08 is
Channel 4) Delta T values that are
impossibly small (8 counts or less)
should be thrown out, as well.
Column F can be formulized to throw
out both types of invalid hits. Select
the F1 box, click on the ‘=‘ button,
and type
‘IF(OR(C1="0N",E1<8),0,E1)’ where
‘0N’ represents the hexadecimal
channel(see above) that is
connected to the bottom paddle.
This uses logic to throw out the
undesirable data. To apply this
conversion to all of the data, click
and drag the square in the lower
right-hand corner of the F1 box down
to the desired row.

To get an accurate result, the
approximate noise level must be
calculated by isolating all false
doubles. This can be done by
applying the following formula to the
G1 box, and, in turn, the entirety of
Column G in the manner explained
in the above paragraph:

‘IF(OR(C1="0X",E1<8),0,E1)’ where
‘0X’ represents the hexadecimal
channel(see above) that is
connected to the top paddle.

This data can be separated
into bins using the histogram
function. The noise level can be
graphed next to the doubles data,
and subtracted from it if desired. By
using an exponential fit line of the
subtracted data, the average muon
decay time can be calculated.
Display the formula of the fit line. It
should be in ‘y = kext ’ format. The
inverse of the t value will give you
the average muon decay time of
your data. The accepted value for
the muon lifetime is 2.19703µs.
From this information, the user can
calculate the percent error of their
calculation.

D. Default Settings
 The default settings for the
board are mentioned above in the
Working in HyperTerminal section.

 14

Suggested Readings

1. Beiser, Fred, Colleen Twitty, and Howard Matis. “Tips to Assemble the

Berkeley Lab Cosmic Ray Detector”. Lawrence Berkeley National
Laboratory, Version 1.01, 2000.\

2. Leo, William R. Techniques for Nuclear and Particle Physics Experiments: A
How-To Approach. Springer Verlag, 1994.

3. Matis, Howard, and Colleen Twitty. “Guide to Using the Berkeley Lab Cosmic
Ray Detector”. Lawrence Berkeley National Laboratory, Version 1.01,
2000.

4. “The Particle Adventure: the funadamentals of matter and forces”. Particle
Data Group, 2000. http://www.particleadventure.org/. 31 July 2001.

5. Photomultiplier Handbook. Burle Technologies, Inc., 1980.
6. "QuarkNet". http://quarknet.fnal.gov. 31July 2001.

Appendix E

Appendix E: CPLD Control and Status Registers

 All the functions of QuarkNet Coincidence Logic Board are controlled by
changing the values of bits (binary digits) that are stored electronically on the
board. For example, there is one bit on the board reserved as the Channel One
Input Enable Bit. If this bit is cleared (assigned a value of 0), the Channel One
Input is disabled. If the bit is set (assigned a value of 1), the Channel One Input
is enabled. There are also bits reserved for Channel Two Input Enable, Channel
Three Input Enable, Channel Four Input Enable and all other configuration
options for the board.

There are also bits reserved for recording information about particle
triggers. For example, there is one bit reserved as the Channel One Hit Bit. The
CPLD on the logic board sets this bit when a hit is received on the Channel One
Input. It clears the bit after the hit has been acknowledged by the board’s
microcontroller. There are also bits reserved for Channel Two Hit, Channel
Three Hit, Channel Four Hit, and all other details recorded about particle triggers.

For the sake of efficiency, bits are usually placed together into registers.
A register is a group of bits that must be written and read as a group. In other
words, in order to change the value of any bit in a register, the entire register
must be written. To check the value of any bit, the entire register must be read.
Registers that contain bits used for configuring the function of some electronic
unit are typically called control registers. Registers that contain feedback
information from an electronic unit are typically called status registers. Control
registers can be written externally to control the unit, and status registers can be
read externally to check the unit’s status.

In the coincidence logic unit of QuarkNet board, most of the control and
status registers are 8 bits wide. However, when using the text-based user
interface, nearly all numbers sent to or received from the board are expected to
be in hexadecimal format. This includes all the trigger timer intervals and delta-t
timer intervals, as well as the contents of all the control and status registers.
Therefore, when writing a value to the CPLD control register (using the WC
command) one must convert the desired 8-bit binary settings for the register to a
2-digit hexadecimal number.

As an example, if one wants to configure the coincidence logic with no
veto, a coincidence level of 2, and channels 1, 2, and 3 enabled, then one can
refer to the bit diagram for the QuarkControl register. Based on the bit diagram,
the control register must be set with the bit sequence 00010111. Converted to
hexadecimal, this is 0x17. Therefore, the user would need to enter the command
‘WC 17’ into the terminal in order to configure the board as desired.
The same is true for the feedback status registers. For each particle trigger, the
value of the QuarkStatA register is displayed to the user terminal. Say, for
example, the number displayed is 13. This must be interpreted as a hexadecimal
number. 0x13 expands to the 8-bit binary sequence 00010011. Referring to the
bit diagram for the QuarkStatA register, one can see that this sequence means a
trigger has occurred and channels 1 and 2 were hit.

Appendix E

CPLD Control and Status Registers

QuarkControl
7 6 5 4 3 2 1 0

Enable/disable input channels 1-4. Bit 0
corresponds to input 1, Bit 1 corresponds to
input 2. When the bit is 1 the channel is
enabled, when it is 0 the channel is
disabled.

Set the multiplicity
level. Options
range from 0 to 3,
corresponding with
multiplicity ranges
of 1 to 4. 0 is
represented by 00,
1 is represented by
01, etc...

Veto select bits.
Options range from
0 to 3. 0 means no
veto and is
represented by 00.
1 to 3 select vetoes
on channels 2 to 4,
respectively. 1 is
01, 2 is 10, 3 is 11.
Input 1 cannot be set
as a veto.

QuarkStatB

Specific doubles channel hit bits. 0
corresponds to a double on channel 1, 1 to
channel 2, etc...

7 6 5 4 3 2 1 0

Delta T count (low)

The lower 8 bits used in the 10-bit Delta T counter. It counts at 50MHz. Used for
measuring the interval between the two hits of a double.

Delta T count (high)

The upper 2 bits of
the Delta T counter.

QuarkWidth

Defines the number of 20ns
CPLD clock ticks in the gate
width. Only numbers 0 to 6 are
used. 0 turns gate width
function off, 1 corresponds to
001, 2 to 010… 6 to 110.

2 1 0

3 2 1 0

QuarkStatA

Specific channel hit bits for confirmation of
satisfied multiplicity requirement. 0
corresponds to channel 1, 1 to channel 2,
etc...

Set when
trigger is
satisfied.

Not usedSet
when
double
occurs
on any
channel.

7 6 5 4 3 2 1 0

Not used

1 0

C
o

n
tr

o
l R

eg
is

te
rs

S
ta

tu
s

R
eg

is
te

rs

Appendix F

Scintillator

Light Guide

Photo Multiplier
Tube (PMT)

Cockroft-Walton
High Voltage
PMT Base

Anode Signal
Cable

+5V Daisy-Chained
Power Cable

Coincidence
Logic Board

120V AC to +5V
DC Power
Adapter

Cosmic Ray
Track

PC or Terminal
with RS-232
Port

9-pin RS-232
Connection

Appendix F: QuarkNet Scintillation
System Assembly Diagram

Appendix G

Appendix G: COMMAND LIST
(as seen in QuarkNet help interface)

A list of available commands is given below:

NOTE: Leading zeroes are not needed for address or data specifications.

1. HE - Display this help menu.

2. ID - Display the date on which the current code was assembled.

3. DD or DI MMMM (NNNN) - Display data/io memory from location MMMM to NNNN.

4. WD MMMM DDDD - Write 16 bit data word DDDD to location MMMM.

5. WB or WI MMMM DD - Write 8 bit data/io word DD to location MMMM.

6. CL - Clear terminal screen.

7. DC - Display current contents of the quark control register.

8. WC NN - Write the value NN to the quark control register.

9. DS - Display current scalar counter values.

10. RS - Reset scalar counters.

11. DT - Display current trigger counter value.

12. EC - Turn character echo ON.

13. NE - Turn character echo OFF.

14. DW - Display current gate width value.

15. WW - Write gate width register (in the range of 1..6).

16. ES - Enable display of single triggers.

17. SS - Suppress display of single triggers.

18. TP NN - Timer Prescaler. Set the trigger timer interval to be prescaled by
 NN bits, where NN is a hex number from 0x0 to 0x10.

19. BS - Bin Size display. Displays the current bin size (in hex, units of ns)
 for the trigger timer and the Delta T timer. The trigger timer bin size is
 dependent on the prescaler value set using the TP command.

Appendix H

Appendix H: Binary and Hexadecimal Numbers
John Lofgren, 7/23/01

Introduction

When numbers are written down anywhere, they are written using a base.
Most of us normally think and work in base-10 or decimal numbers, where we
use 10 distinct digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. However, most computers
(or any digital electronic device, including the QuarkNet Coincidence Logic
Board) are only able to do calculations in base-2 or binary numbers, with only
two distinct digits: 0 and 1. Computers can store a single ‘binary digit,’ or ‘bit’ by
either storing charge in a physical location or not storing any charge in that
location. The computer can interpret stored charge as a 1 and no stored charge
as a 0.

When numbers are written that have to do with the operation of computers
it is most efficient to write them in a base that is most directly applicable to the
computer. Therefore, decimal numbers are no longer as useful when talking
about computers. Binary numbers are more useful, but even so, writing large
numbers using only 0’s and 1’s can be rather tiresome and hard to read. For this
reason, base-16 or hexadecimal (or simply hex) numbers are a great benefit.
Hexadecimal uses 16 distinct digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and
F. As will be shown, it is very simple to convert numbers between binary and
hexadecimal representations.

When working with number in various bases, it is important to be careful to
indicate the base of each number. So, we add prefixes or suffixes to numbers to
be clear about which base we are using. Different computer languages and
component manufacturer manuals use various syntax for base prefixes and
suffixes. Some common prefixes and suffixes are as follows:

Base Prefixes Suffixes

Binary b^, b’, %b B
Decimal d^, d’, %d D

Hexadecimal h^, h’, %h, 0x H

For this discussion we will use the prefixes ‘b^’ and ‘d^’ for binary and decimal
numbers and the prefix ‘0x’ for hexadecimal numbers.

Binary and Hexadecimal in Relation to Decimal

To begin, let us return to decimal numbers, where we are most
comfortable. When we put some decimal digits together to form a decimal
number, like d^43210, the columns of the number carry different significance.

d^10000’s
column

d^1000’s column d^100’s
column

d^10’s
column

d^1’s
column

4 3 2 1 0

Appendix H

Because there are ten choices of digits for each column, each successive
column is ten times as significant as the previous one. To find the total value of
the number, we multiply the digit in each column by its significance and find the
total sum.

(d^4 x d^10000) + (d^3 x d^1000) + (d^2 x d^100) + (d^1 x d^10) + (d^0 x d^1) =
d^43210

 The same pattern follows for binary numbers. If we put some binary digits
together to form a binary number, like b^10110, the columns of the number carry
different significance. To relate back to decimal format, we will represent the
significance of each column as a decimal number.

d^16’s column d^8’s column d^4’s column d^2’s column d^1’s column

1 0 1 1 0

In the case of binary, there are only two choices of digits for each column, so
each column is only twice as significant as the previous one. Again to find the
total value of the number, we multiply the digit in each column by its significance
and find the total sum.

(b^1 x d^16) + (b^0 x d^8) + (b^1 x d^4) + (b^1 x d^2) + (b^0 x d^1) = d^22

Therefore, the numbers b^10110 and d^22 have the same value. They are
equal, but are represented using different bases.

 Again, this can be extended to hexadecimal numbers. Let us use the
example hexadecimal number 0x5AB0F.

d^65536’s
column

d^4096’s
column

d^256’s
column

d^16’s column d^1’s
column

5 A B 0 F

Using hexadecimal, each successive column is sixteen times as significant as
the previous. When finding the total value of the number in decimal format, we
follow the same pattern as before.

(0x5 x d^65536) + (0xA x d^4096) + (0xB x d^256) + (0x0 x d^16) + (0xF x d^1) =
???

Here is where things start to get a little tricky for our brains that are used to
thinking in decimal. We aren’t used to multiplying using the digits A, B, C, D, E,
and F. Therefore, it can help our brains if we quickly convert these alphabetic
digits to their two digit decimal equivalent: 0xA = d^10, 0xB = d^11, 0xC = d^12,

Appendix H

0xD = d^13, 0xE = d^14, 0xF = d^15. (The numeric digits, 0-9, are equivalent in
either base.) Then the multiplication and summing looks more straightforward.

(d^5 x d^65536) + (d^10 x d^4096) + (d^11 x d^256) + (d^0 x d^16) + (d^15 x
d^1) = d^371471

Therefore, the numbers 0x5AB0F and d^371471 are equal.

Conversion Between Binary and Hexadecimal

 When talking about numbers stored somewhere in a computer, it is most
direct to represent these numbers as they are stored in the computer: in binary.
However, it can be very tiresome to write large binary numbers. For example,
the hexadecimal number 0x5AB0F used in the example above is written in binary
as b^1011010101100001111. This is very inefficient and difficult to read. For
these reasons, hexadecimal format is often used when talking about numbers in
a computer.
 It is very simple to convert between binary and hexadecimal
representation. Because 16 is an even 4th power of 2 (2^4 = 16), each unique
sequence of four binary digits corresponds to a single unique hexadecimal digit,
and visa-versa. The conversion of a four digit binary number to hexadecimal can
be done just as above using column significance, multiplication, and summing.
For example, take the binary number b^1010.

d^8’s column d^4’s column d^2’s column d^1’s column
1 0 1 0

Then the decimal value is:

(b^1 x d^8) + (b^0 x d^4) + (b^1 x d^2) + (b^0 x d^1) = d^10

And switching this decimal value to hexadecimal is simply a matter of converting
any two-digit decimal results to their single digit alphabetic hexadecimal
equivalent (d^10 = 0xA, d^11 = 0xB, etc.). A conversion table can therefore be
generated:

Binary Hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8

Appendix H

1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The thing that makes converting to hexadecimal so easy and convenient

is that this 4-bit grouping pattern can be followed for converting the entire length
of a binary number. Each group of four binary digits can be converted to one
hexadecimal digit. Using the same example number as above,
b^1011010101100001111, we can see how this works. The binary number is
split into groups of four digits. (You may like to imagine 0‘s filled in on the left to
make a even multiple of four digits.) Each group of four binary digits can then be
compressed to one hexadecimal digit.

Binary 101 1010 1011 0000 1111
Hexa
deci
mal

5 A B 0 F

Therefore b^1011010101100001111 = 0x5AB0F. This process is easily reversed
for converting from hexadecimal to binary, in which case each single
hexadecimal digit is expanded directly to four binary digits.

