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QuarkNet Cosmic Ray Detection System Manual 
Daniel Balick 

 
I. Introduction 
 

The cosmic ray detection 
system is designed to allow the user 
to accurately observe the rate of 
incoming charged particles, as well 
as the approximate decay time of 
each.  The vast majority of charged 
particles that reach the surface of the 
earth are muons.  Muons have a 
longer lifetime, and can travel farther 
than other particles that come from 
the atmosphere with enough energy 
to reach the detector.  Consequently, 
the detector can be used to 
determine the average muon decay 
time, or muon lifetime.   

The detectors are designed 
specifically to provide a reasonably 
priced detection system on a scale 
appropriate for classroom or home 
use.  The parts used in this device 
are standard for particle physics 
experiments, and are the most 
appropriate choices in terms of 
speed, efficiency, and cost.  The 
detectors are scintillator paddles 
which, when struck by muons, 
convert the particles' kinetic energy 
into several photons. These photons 
excite nearby electrons.  As the 
electrons return to ground state, 
photons are emitted. The number of 
photons produced is proportional to 
thickness of the scintillator.  This 
allows the connected photomultiplier 
tubes to pick up the light gathered by 
the light guides and convert it into a 
signal.  This signal is then 
transmitted to the PC board. 

The PC board's default 
settings require a coincidence, a 
signal from each paddle within a set 

amount of time, to process the event 
and consider it a charged particle hit. 
The four-digit hexadecimal LED 
display will show the number of 
triggers that has occurred since the 
device was reset. The PC board can 
transmit a full listing of data. This 
includes: the port number of the 
paddle that received the second 
pulse of the coincidence, the time 
interval between the two hits 
involved, the time interval since the 
last hit (either a coincidence or a 
single hit), and confirmation that 
either a hit or a coincidence 
occurred.  

There is a small probability 
that a low energy muon will enter the 
scintillator and be stopped. In this 
case, the muon decays and its decay 
products will cause a scintillation.  
The time interval between these two 
signals is very small.  This event is 
defined as a double. The data 
received by hits such as these can 
be used to calculate the average 
muon decay time. 

The following manual will 
serve to provide the user with a 
basic understanding of the 
electronics involved in the hardware 
of the PC board, simple set up 
instructions, and suggestions for a 
few possible uses for the apparatus. 
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II. Description of Parts 
 
A. Scintillator Paddles 
 The acrylic-based scintillator 
plastic generate a light flash in 
response to a charged particle 
transit.  Plastic scintillator was 
chosen because it is relatively 
cheap, can be made to fit any shape, 
and has a fast response time. The 
paddles are enclosed in a light tight 
wrapping to exclude ambient light 
from getting to the phototubes.   
 
B. Photomultiplier Tubes 
 The photomultiplier tube 
(PMT) picks up the light produced in 
the scintillator.  This device, by 
means of the photoelectric effect and 
a current multiplier, converts light 
into current.  The device has a very 
high gain and allows small traces of 
light to be picked up and amplified.  
Unfortunately, it tends to be quite 
expensive.  This device also has the 
disadvantage of a relatively low 
quantum efficiency (approximately 
15 to 20%).   

A photocathode is positioned 
at the front of the tube to induce the 
photoelectric effect.   Directly after 
the photocathode is an electrode that 
focuses the electrons produced into 
a beam aimed at the multiplier. (See 
Figure 1)  Through the use of a high 
voltage source, in this case the high 
voltage base attached to the PMT, a 
stepladder, so to speak, is created 
using incremental levels of potential 
energy.  An electron focused into the 
multiplier is accelerated by the 
potential difference into the first 
dynode.  A collision occurs, freeing 
several electrons that, for the most 
part, continue along the intended 
path of the original electron.  From 

here, each of these electrons is 
accelerated towards the next 
dynode, where the same result 
occurs on a bigger scale.  This 
process continues down the "ladder" 
until the electrons reach the anode.  
At this point they are collected as a 
current. 

Photocathode

Focusing electrode

First dynode

Multiplier

Anode

 
 
 
C. High Voltage Converter 
 The attached high voltage 
base uses a resonant converter and 
a Cockroft-Walton (CW) chain to 
create a high voltage source for the 
PMT safely and efficiently.  With the 
system involved, very little energy is 
lost to waste heat, and +5V is the 
only necessary supply voltage.  This 
also allows the user to reach the 
desired level of energy without the 

Figure 1: Photomultiplier 
Tube  
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use of a costly high voltage box.  
This is a great advantage and makes 
the unit quite cost effective.  A brief 
explanation of the high voltage 
converter, along with a schematic 
diagram, appears in Appendixes A 
and B, respectively. 

In addition, the high voltage 
base serves to relay the signal from 
the PMT to the PC board with as 
little interference as possible.  As this 
is done through a simulated coaxial 
cable built in to the board, the noise 
level is significantly reduced.  The 
total noise received from the high 
voltage source is less than 2mV. 

For more information on the 
high voltage base, consult “HV 
Resonant Converter for 
Photomultiplier Tube Bases” found in 
Appendix D. 

 
 

D. QuarkNet Coincidence Logic 
Board 

By following the signal chain 
received from the high voltage base 
and transmitted to the PC board, the 
reader will gain a better 
understanding of each individual 
involved part, as well as their 
combined use in the device.  A 
schematic diagram for the board can 
be found in Appendix C.  The reader 
may also refer to Figure 2 below. 
 
i. LEMO Connector 

The anode signal cables are 
attached to the coincidence logic 
board using a standard LEMO 
connected.  All input channels are 
terminated to match a 50-ohm cable. 

 
ii. x10 Amplifier 
 This amplifier converts the 
input signal to one that is big enough 

x10
Amplifier

LEMO
Connector

 Discriminator

50K POT

CPLD
(Complex Programmable

Logic Device)
  50MHz

MicrocontrollerRS-232
Driver   LED Display

Signal
from HV

Base

COMPUTER

Figure 2: Block diagram for QuarkNet Coincidence Logic Board 
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to be read by the discriminator.  
Further motivation in using an 
amplifier, as opposed to lowering the 
threshold voltage (see 50K POT for 
more information), includes the 
reduced significance of local noise to 
the signal.  Noise at 2 mV is likely to 
upset a 50mV signal; the same 
amount of noise will hardly effect a 
signal at 500mV. Figure 3 below 
shows signal patterns before and 
after passing through the x10 amp.  
Channel 1 shows the input signal 
and Channel 2 shows the output 
signal on a scale ten times as large. 
The amplifier preserves signal 
fidelity. 

 
 
iii. 50K Potentiometer (POT) 
 The purpose of this 
potentiometer is to set the threshold 
voltage for the discriminator.  As 
actual particle hits are expected to 
be close to -500mV, the threshold 
level is nominally set at 
approximately -300mV.  The 
threshold for each channel can be 
independently tuned from 0mV to 
820mV. (See discriminator for more 
information.) 
 
iv. Discriminator 
 The discriminator, also 

commonly known as a comparator, 
compares the threshold voltage 
defined by the potentiometer to the 
voltage level of the input signal.  If 
the input signal exceeds the 
threshold voltage, the discriminator 
outputs a logical '1' signal.  If the 
level is not met, it outputs a logical '0' 
signal. The Figure 4 below shows 
the signals before and after going 
through the discriminator.  Channel 1 
shows the pulse immediately after 
the x10 amplifier at the negative 
input of the discriminator.  Channel 2 
shows a logical '1' signal after the 
pulse went through the discriminator.  
The reference channel (R1) shows 
the threshold signal at the positive 
input of the discriminator.  A 
capacitor is included in positive 
feedback to the threshold signal in 
order to lengthen the pulse signal to 
80ns.  This ensures that the CPLD 
will have sufficient time to recognize 
the pulse.  

 
 
v. Complex Programmable Logic 
Device (CPLD) 
 The CPLD contains the 
coincidence logic of the board.  It 
can be dynamically changed with 
user-configurable control registers. 

Figure 3: x10 Amplifier  

Figure 4: Discriminator 
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Each of the channels can be 
individually enabled or disabled.  The 
multiplicity level can be set from one 
to four.  (A multiplicity of one 
requires that a single hit occur on 
any enabled input channel, whereas 
a multiplicity of four requires a 
coincident hit on all four channels.)  
Also, input Channels 2, 3, and 4 can 
be set as a 'veto' channel.  If a veto 
is enabled, the CPLD requires that 
the veto channel does not fire to 
trigger an event.  The veto function is 
useful when dealing with three or 
more paddles, and can be used to 
reduce background noise when 
carrying out muon lifetime 
experiments. 
 The CPLD can also be 
programmed with different 'gate 
widths'. The gate width is the amount 
of time allowed between hits 
considered coincident. The default 
gate width is one cycle, but can be 
altered from one to up to six cycles.  
 A 10-bit Delta T (∆t) counter is 
included in the CPLD.  This 
measures the time interval between 
the two pulses of a double.  The 
counter starts each time a 
coincidence is satisfied.  If the 
counter overflows before a second 
pulse is received, then the event is 
reported as a single.  If, however, a 
second pulse is received before the 
counter overflows, then the counter 
is stopped and the event is reported 
as a double.  The counter value can 
be read by the microcontroller when 
the event is processed.  The 
maximum Delta T window is 20us, or 
1000 counts. 
 
vi. 50MHz Crystal Oscillator Clock 
 This 50MHz oscillator sets the 
frequency for the CPLD at 

20ns/cycle.  This is why it is 
important to lengthen the input signal 
to 80ns with the capacitor.  It 
ensures that a signal will be 
recognized by the CPLD.  The CPLD 
also divides the clock frequency by 
eight to provide a 6.25MHz clock for 
the microcontroller. 
 
vii. Microcontroller 
 The microcontroller acts as 
the hub of the processing system 
and the main buffer between the 
user and the electronics. All 
configuration parameters for the 
CPLD can be set through the 
microcontroller.  The microcontroller 
measures trigger event timing using 
its timer capture/compare module.  A 
48-bit counter runs continuously.  
When an interrupt pulse is received 
from the CPLD, the counter value is 
recorded.  This value is subtracted 
from the previous event’s recorded 
counter value to give a time interval 
between triggers. 
 Also, after a trigger event 
interrupt, the microcontroller reads 
and buffers the contents of all status 
registers in the CPLD as well as the 
10-bit Delta T counter.  The 
microcontroller then checks the data 
to see what type of event has 
occurred.  If the event has passed 
the trigger requirements, then the 
microcontroller will display the data 
to the user terminal.  Below is an 
example of the output data. 

 
… 
0002FBFA 13 
0008AB2E 13 
0001F712 13 
0001C021 53 02 002B 
000784B5 13 
00022D4E 13 
000323FD 13 
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0002299E 13 
 … 
Each line represents a separate 
event.  All numbers involved are 
hexadecimal.  The first column is the 
elapsed time interval since the 
previous event trigger.  The second 
column is the value of the first CPLD 
status register (QuarkStatA).  The 
third and fourth columns only appear 
in the event of a double.  The third 
column is the value of the second 
CPLD status register (QuarkStatB).  
The fourth column is the value 
recorded by the Delta T counter.  
Refer to Appendix E for bit 
significance of the CPLD status 
registers. 
 In addition to the streaming 
data, the coincidence board also 
keeps track of some simple statistics 
on its own.  The microcontroller 
keeps individual scalers for each 
channel as well as a total trigger 
scaler.  These values can be 
displayed by issuing commands to 
the coincidence board with a PC.  In 
addition, for convenience, a manual 
scaler reset switch and a four-digit 
hexadecimal visual scaler are 
provided on the face of the board.  
With this switch, the LED display, 
and appropriate default settings on 
startup, the board can, in theory, be 
used to do some very simple 
experiments without the need for a 
PC. 
 
viii. RS-232 Driver 
 The RS-232 driver acts as an 
interpreter between the controlling 
PC and the microcontroller. It serves 
to convert logic pulses received from 
the microcontroller (0V/+3.3V logic) 
to RS-232 standard, higher voltage 
pulses (-10V/+10V) that are less 

likely to be distorted by outside noise 
or the resistance of the cable used.  
The RS-232 configuration used is 
9600 Baud, 8-bits, no parity, 1 stop 
bit, and no flow control. 
 
 
III. Operations 
 
A. Setting Up 

The following parts are 
necessary to fully assemble your 
QuarkNet Scintillator System: one to 
four scintillator paddles with 
connected photomultiplier tubes, one 
high voltage converter base for each 
photomultiplier tube, LEMO 
connector cables for each 
paddle/tube/base set, one +5V 
daisy-chained jumper cable for each 
set, one QuarkNet Coincidence 
Logic Board, one wall adapter power 
supply, one RS-232 connector 
ribbon cable, and a PC from which to 
run the board. 

To get started, attach the high 
voltage bases to the photomultiplier 
tubes. Plug the power supply into 
one power jack on the board and into 
a local outlet.  Connect the high 
voltage bases to the QuarkNet PC 
board by plugging one connector of 
the LEMO cable to the base and the 
other to the appropriate LEMO jack 
on the PC board.  Plug the daisy-
chained jumper cable into the other 
power jack on the board and one 
power jack of the first high voltage 
base.  To power the additional bases 
daisy chain their power jacks using 
the jumper cables.  Plug the RS-232 
ribbon cable into the 9-pin 
connectors on the board and on the 
PC. (For additional setup help, 
consult the diagram found in 
Appendix F) 
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To set up the computer 
interface, simply go to your ‘Start 
Menu’, select the ‘Find’ option, and 
select the ‘Find Files or Folders’ 
option. Search your local hard drive 
for ‘HyperTerminal’.  When the 
search is complete, select the 
‘HyperTerminal’ icon with a file size 
of 1K (it should be a ‘Shortcut’).  This 
will take you to the HyperTerminal 
interface and guide you through the 
setup procedures.  When you reach 
the ‘Port Settings’ interface, enter the 
information asked for as 9600 bits 
per second, 8 data bits, no parity, 1 
stop bit, and no flow control.  Figure 
5 below illustrates the options that 
should be chosen. 
 

 
 
 
You are now ready to begin. 
 
B. HyperTerminal 

The data must be received in 
a Terminal emulator such as 
HyperTerminal.  This program is 
included with Windows 
95/98/2000/NT and can be accessed 
easily.  You may, however use 

another terminal emulator if you 
wish.  The user will access the 
QuarkNet Coincidence Logic Board 
through this interface.  Parameters 
can be set and data can be 
displayed directly through 
HyperTerminal. For a HyperTerminal 
command list, see Appendix G.  The 
list shown is a copy of the text 
displayed in the help menu as well 
as a more detailed explanation of 
commonly used commands. 
 
C. Possible Uses 

There are countless potential 
uses for the QuarkNet Scintillation 
System.  It is up to the user to design 
experiments that take advantage of 
the resources and data provided by 
the device.  This section will outline 
two possible uses for the system, as 
well as discuss how to select and 
analyze the desired data in each 
case. 
 
i. Basic Rate Measurements 
 This simple experiment can 
be used to compare rates of 
incoming charged particles in 
different situations.  Rates can be 
compared between the inside and 
outside of a building, at different 
heights, at different times of the day, 
with different materials on top of the 
paddles, and with different paddle 
configurations.  The paddle 
configurations can be, but are not 
limited to, adjustments in angles, 
distance between paddles, and 
overlapping area. 
 
a. Working in HyperTerminal 
 When everything is physically 
connected, the user should start the 
HyperTerminal interface.  The user 
should note that the default settings 

Figure 5: Port Settings 
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do not allow you to see what you are 
typing. The ‘EC’ (enable character 
echo) command may be typed in to 
allow the user to see what they are 
typing.  This command can be used 
as a comfort in most cases, but is 
not necessary.   

In this rate experiment, it will 
be beneficial to display all incoming 
data.  Consequently, the ‘ES’ 
(enable singles) command will 
provide the user with more data.  For 
rate data experimentation specifically 
on low-energy muons, the ‘SS’ 
(suppress singles) option can be 
used instead.   

The ‘WC NN’ (write 
command) option will allow the user 
to specify which channels to enable, 
specify vetoes, and set the 
coincidence level.  See bit diagram 
in Appendix F for explanation of 
specific bit choices and their 
hexadecimal notation.  See 
Appendix H for an explanation of the 
hexadecimal system.  The 
combination of information given by 
these appendices will allow the user 
to set the ‘NN’ in the command to the 
appropriate hexadecimal number.  
As the default settings enable all 
channels with a veto on Channel 4 
and require a coincidence of two 
(WC DF), a user working with two 
paddles need not adjust the settings.   

The ‘WW N’ option allows the 
user to set the gate width (see 
CPLD) from 1 to 6 simply by 
replacing ‘N’ with the number 
desired.  In this experiment, the gate 
width should be set to 1 as the user 
need not concern himself with 
doubles. 
 
b. Capturing Data 
 Now that everything is set up, 

the user can begin recording data.  
This is done by capturing the text in 
a separate file. (Make sure to save 
the file in a readily accessible 
directory.) To start capturing the 
data, select ‘Capture Text’ in the 
‘Transfer’ menu.  This will begin the 
data sequence.  When you have 
collected sufficient data, find the 
‘Capture Text’ option in the ‘Transfer’ 
menu, which will now have additional 
options.  Selecting stop ends the 
data collection.  The user can now 
access this data in the designated 
file. 
 
c. Working in Excel 
 The data must now be 
converted to Microsoft Excel format 
(or another spreadsheet based 
program) for further analysis.  Open 
Excel and chose the open file option.  
Open the captured text file.  As it is a 
text file, make sure to select the ‘All 
Files (*.*)’ option in the ‘Files of type:’ 
box.  The ‘Text Import Wizard’ will 
appear.  On the first screen select 
the ‘Fixed width’ option and press 
‘Next >’.  The next screen will allow 
the user to adjust the position of the 
column breaks if desired.  If 
adjustment is necessary, simply 
follow the instructions provided.  (If 
the RS-232 cable is not used 
directly, the data format may not be 
uniform and will be harder to 
analyze.)  When this is completed 
press ‘Next >’.  The following screen 
allows you to set the data format for 
each column.  All columns should be 
set to text format.  To do this, select 
each column individually and click on 
the ‘Text’ option.  When finished, 
click the ‘Finish’ button.  The data 
displayed should be in two columns 
with an occasional double register 
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consisting of four columns.  (For 
explanations of each column, see 
Microcontroller above.)  If there is no 
data in Row 1, delete it.  

The first step in analyzing the 
data is to convert the results from 
hexadecimal to decimal.  To do so, 
an add-in application must be 
enabled.  In the ‘Tools’ menu, select 
the ‘Add-ins…’ option.  When the 
screen appears, check the ‘Analysis 
ToolPak’ box and select ‘OK’.  Now 
you can select a column to designate 
to the new decimal numbers.  Select 
the E1 box and click on the ‘=’ button 
to write a formula to it. (Column E is 
suggested, but is by no means 
important, and another column may 
be chosen if desired.  This applies to 
all mention of specific Columns in 
this paper.)  Type “HEX2DEC(A1)” in 
the formula space.  This will convert 
the hexadecimal results in box A1, 
and place the result in E1.  To apply 
this conversion to all of the data, 
simply click and drag the square in 
the lower right-hand corner of the E1 
box down to the desired point.  This 
step may be repeated for the data in 
Column D if desired by placing the 
formula in Column F. 
 
d. Data Analysis 
 The two crucial factors of rate 
experimentation are the number of 
hits and time interval over which they 
were collected.  The exact time can 
be calculated by summing Column 
E.  As Column E records the elapsed 
time since the last hit, summing 
Column E will produce a total time in 
20ns units.  To sum Column E, click 
on the button labeled 'E' above the 
data in the column.  This will select 
the entire column.  By pressing the 
sigma (Σ) button, you can add up the 

highlighted boxes.  The result will be 
placed under the last full box in that 
column.  If the sigma button is 
unavailable, select a box and click 
on the ‘=‘ button to write in a formula.  
Type 'SUM(E1:ENNNN)', where  
'NNNN' represents the number of the 
last data box in Column E.  The 
average frequency can be calculated 
by dividing the number of hits by the 
total time.  This number can be 
compared to data taken under 
different conditions.  
 
ii. Average Muon Decay Time 
Experiment 
 This experiment uses 
doubles, events interpreted as 
decaying low-energy muons, to 
determine the average muon decay 
time.   

The data must be collected in 
HyperTerminal with suppressed 
singles.  Follow directions found in 
the Working in HyperTerminal 
section above.  Instead of using the 
‘ES’ option, suppress singles by 
typing ‘SS’.  The gate width (‘WW N’ 
option) should be adjusted 
accordingly.  If you have slow 
scintillator paddles or phototubes, 
you may feel it necessary to extend 
the gate width and allow more time 
for the second pulse to be picked up.  
Consequentially, this causes more 
noise to register and false doubles to 
be recorded. 

Capturing data is explained in 
the Capturing Data section above.  
Simply follow the instructions given.  
To import the data into Excel, follow 
the first paragraph of the Working in 
Excel section above.  (Please note 
that in this experiment, all data 
should be in four-column format.) 

For this experiment, the 
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primary concerns in data collection 
are the elapsed Delta T time (decay 
time) and the frequency of events for 
each bin of Delta T times.  Column D 
includes the Delta T data in 
hexadecimal and must be converted 
to decimal format using the method 
described in the Data Analysis 
section above.  Place the converted 
numbers in Column E 

As the PC board registers all 
doubles, certain data points must be 
thrown out.  The user should 
determine to which channel the 
bottom paddle is connected.  Only 
doubles registered on the bottom 
paddle are valid.  Column C 
describes, in hexadecimal, which 
paddle received the double. (01 
represents Channel 1, 02 is Channel 
2, 04 is Channel 3, and 08 is 
Channel 4)  Delta T values that are 
impossibly small (8 counts or less) 
should be thrown out, as well.  
Column F can be formulized to throw 
out both types of invalid hits.  Select 
the F1 box, click on the ‘=‘ button, 
and type 
‘IF(OR(C1="0N",E1<8),0,E1)’ where 
‘0N’ represents the hexadecimal 
channel(see above) that is 
connected to the bottom paddle.  
This uses logic to throw out the 
undesirable data.  To apply this 
conversion to all of the data, click 
and drag the square in the lower 
right-hand corner of the F1 box down 
to the desired row. 

To get an accurate result, the 
approximate noise level must be 
calculated by isolating all false 
doubles.  This can be done by 
applying the following formula to the 
G1 box, and, in turn, the entirety of 
Column G in the manner explained 
in the above paragraph: 

‘IF(OR(C1="0X",E1<8),0,E1)’ where 
‘0X’ represents the hexadecimal 
channel(see above) that is 
connected to the top paddle. 

This data can be separated 
into bins using the histogram 
function.  The noise level can be 
graphed next to the doubles data, 
and subtracted from it if desired.  By 
using an exponential fit line of the 
subtracted data, the average muon 
decay time can be calculated.  
Display the formula of the fit line.  It 
should be in ‘y = kext ’ format.  The 
inverse of the t value will give you 
the average muon decay time of 
your data.  The accepted value for 
the muon lifetime is 2.19703µs.  
From this information, the user can 
calculate the percent error of their 
calculation. 
 
D. Default Settings 
 The default settings for the 
board are mentioned above in the 
Working in HyperTerminal section. 
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Appendix E 

Appendix E: CPLD Control and Status Registers 
 
 All the functions of QuarkNet Coincidence Logic Board are controlled by 
changing the values of bits (binary digits) that are stored electronically on the 
board.  For example, there is one bit on the board reserved as the Channel One 
Input Enable Bit.  If this bit is cleared (assigned a value of 0), the Channel One 
Input is disabled.  If the bit is set (assigned a value of 1), the Channel One Input 
is enabled.  There are also bits reserved for Channel Two Input Enable, Channel 
Three Input Enable, Channel Four Input Enable and all other configuration 
options for the board. 

There are also bits reserved for recording information about particle 
triggers.  For example, there is one bit reserved as the Channel One Hit Bit.  The 
CPLD on the logic board sets this bit when a hit is received on the Channel One 
Input.  It clears the bit after the hit has been acknowledged by the board’s 
microcontroller.  There are also bits reserved for Channel Two Hit, Channel 
Three Hit, Channel Four Hit, and all other details recorded about particle triggers. 

For the sake of efficiency, bits are usually placed together into registers.  
A register is a group of bits that must be written and read as a group.  In other 
words, in order to change the value of any bit in a register, the entire register 
must be written.  To check the value of any bit, the entire register must be read.  
Registers that contain bits used for configuring the function of some electronic 
unit are typically called control registers.  Registers that contain feedback 
information from an electronic unit are typically called status registers.  Control 
registers can be written externally to control the unit, and status registers can be 
read externally to check the unit’s status. 

In the coincidence logic unit of QuarkNet board, most of the control and 
status registers are 8 bits wide.  However, when using the text-based user 
interface, nearly all numbers sent to or received from the board are expected to 
be in hexadecimal format.  This includes all the trigger timer intervals and delta-t 
timer intervals, as well as the contents of all the control and status registers.  
Therefore, when writing a value to the CPLD control register (using the WC 
command) one must convert the desired 8-bit binary settings for the register to a 
2-digit hexadecimal number. 

As an example, if one wants to configure the coincidence logic with no 
veto, a coincidence level of 2, and channels 1, 2, and 3 enabled, then one can 
refer to the bit diagram for the QuarkControl register.  Based on the bit diagram, 
the control register must be set with the bit sequence 00010111.  Converted to 
hexadecimal, this is 0x17.  Therefore, the user would need to enter the command 
‘WC 17’ into the terminal in order to configure the board as desired. 
The same is true for the feedback status registers.  For each particle trigger, the 
value of the QuarkStatA register is displayed to the user terminal.  Say, for 
example, the number displayed is 13. This must be interpreted as a hexadecimal 
number.  0x13 expands to the 8-bit binary sequence 00010011.  Referring to the 
bit diagram for the QuarkStatA register, one can see that this sequence means a 
trigger has occurred and channels 1 and 2 were hit. 
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CPLD Control and Status Registers

QuarkControl
7 6 5 4 3 2 1 0

Enable/disable input channels 1-4.  Bit 0
corresponds to input 1, Bit 1 corresponds to
input 2.  When the bit is 1 the channel is
enabled, when it is 0 the channel is
disabled.

Set the multiplicity
level.  Options
range from 0 to 3,
corresponding with
multiplicity ranges
of 1 to 4. 0 is
represented by 00,
1 is represented by
01, etc...

Veto select bits.
Options range from
0 to 3.  0 means no
veto and is
represented by 00.
1 to 3 select vetoes
on channels 2 to 4,
respectively.  1 is
01, 2 is 10, 3 is 11.
Input 1 cannot be set
as a veto.

QuarkStatB

Specific doubles channel hit bits. 0
corresponds to a double on channel 1, 1 to
channel 2, etc...

7 6 5 4 3 2 1 0

Delta T count (low)

The lower 8 bits used in the 10-bit Delta T counter.  It counts at 50MHz.  Used for
measuring the interval between the two hits of a double.

Delta T count (high)

The upper 2 bits of
the Delta T counter.

QuarkWidth

Defines the number of 20ns
CPLD clock ticks in the gate
width.  Only numbers 0 to 6 are
used.  0 turns gate width
function off, 1 corresponds to
001, 2 to 010… 6 to 110.

2 1 0

3 2 1 0

QuarkStatA

Specific channel hit bits for confirmation of
satisfied multiplicity requirement.  0
corresponds to channel 1, 1 to channel 2,
etc...

Set when
trigger is
satisfied.

Not usedSet
when
double
occurs
on any
channel.

7 6 5 4 3 2 1 0

Not used

1 0
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Scintillator

Light Guide 
 

Photo Multiplier 
Tube (PMT) 

Cockroft-Walton 
High Voltage 
PMT Base 
 

Anode Signal 
Cable 

+5V Daisy-Chained 
Power Cable

Coincidence 
Logic Board 

 
120V AC to +5V 
DC Power 
Adapter 
 

Cosmic Ray 
Track 

PC or Terminal 
with RS-232 
Port 
 

9-pin RS-232 
Connection 

Appendix F: QuarkNet Scintillation 
System Assembly Diagram 
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Appendix G: COMMAND LIST  
(as seen in QuarkNet help interface) 

 
 

A list of available commands is given below: 
 
NOTE:  Leading zeroes are not needed for address or data specifications. 
 
1.  HE - Display this help menu. 
 
2.  ID - Display the date on which the current code was assembled. 
 
3.  DD or DI MMMM (NNNN) - Display data/io memory from location MMMM to NNNN. 
 
4.  WD MMMM DDDD - Write 16 bit data word DDDD to location MMMM. 
 
5.  WB or WI MMMM DD - Write 8 bit data/io word DD to location MMMM. 
 
6.  CL - Clear terminal screen. 
 
7.  DC - Display current contents of the quark control register. 
 
8.  WC NN - Write the value NN to the quark control register. 
 
9.  DS - Display current scalar counter values. 
 
10. RS - Reset scalar counters. 
 
11. DT - Display current trigger counter value. 
 
12. EC - Turn character echo ON. 
 
13. NE - Turn character echo OFF. 
 
14. DW - Display current gate width value. 
 
15. WW - Write gate width register (in the range of 1..6). 
 
16. ES - Enable display of single triggers. 
 
17. SS - Suppress display of single triggers. 
 
18. TP NN - Timer Prescaler.  Set the trigger timer interval to be prescaled by 
    NN bits, where NN is a hex number from 0x0 to 0x10. 
 
19. BS - Bin Size display.  Displays the current bin size (in hex, units of ns) 
    for the trigger timer and the Delta T timer.  The trigger timer bin size is 
    dependent on the prescaler value set using the TP command.
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Appendix H: Binary and Hexadecimal Numbers 
John Lofgren, 7/23/01 
 
Introduction 
 

When numbers are written down anywhere, they are written using a base.  
Most of us normally think and work in base-10 or decimal numbers, where we 
use 10 distinct digits:  0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.  However, most computers 
(or any digital electronic device, including the QuarkNet Coincidence Logic 
Board) are only able to do calculations in base-2 or binary numbers, with only 
two distinct digits:  0 and 1.  Computers can store a single ‘binary digit,’ or ‘bit’ by 
either storing charge in a physical location or not storing any charge in that 
location.  The computer can interpret stored charge as a 1 and no stored charge 
as a 0. 

When numbers are written that have to do with the operation of computers 
it is most efficient to write them in a base that is most directly applicable to the 
computer.  Therefore, decimal numbers are no longer as useful when talking 
about computers.  Binary numbers are more useful, but even so, writing large 
numbers using only 0’s and 1’s can be rather tiresome and hard to read.  For this 
reason, base-16 or hexadecimal (or simply hex) numbers are a great benefit.  
Hexadecimal uses 16 distinct digits:  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and 
F.  As will be shown, it is very simple to convert numbers between binary and 
hexadecimal representations. 

When working with number in various bases, it is important to be careful to 
indicate the base of each number.  So, we add prefixes or suffixes to numbers to 
be clear about which base we are using.  Different computer languages and 
component manufacturer manuals use various syntax for base prefixes and 
suffixes.  Some common prefixes and suffixes are as follows: 

 
Base Prefixes Suffixes 

Binary b^, b’, %b B 
Decimal d^, d’, %d D 

Hexadecimal h^, h’, %h, 0x H 
 
For this discussion we will use the prefixes ‘b^’ and ‘d^’ for binary and decimal 
numbers and the prefix ‘0x’ for hexadecimal numbers. 
 
Binary and Hexadecimal in Relation to Decimal 
 

To begin, let us return to decimal numbers, where we are most 
comfortable.  When we put some decimal digits together to form a decimal 
number, like d^43210, the columns of the number carry different significance. 
 

d^10000’s 
column 

d^1000’s column d^100’s 
column 

d^10’s 
column 

d^1’s 
column 

4 3 2 1 0 
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Because there are ten choices of digits for each column, each successive 
column is ten times as significant as the previous one.  To find the total value of 
the number, we multiply the digit in each column by its significance and find the 
total sum. 
 

(d^4 x d^10000) + (d^3 x d^1000) + (d^2 x d^100) + (d^1 x d^10) + (d^0 x d^1) = 
d^43210 

 
 The same pattern follows for binary numbers.  If we put some binary digits 
together to form a binary number, like b^10110, the columns of the number carry 
different significance.  To relate back to decimal format, we will represent the 
significance of each column as a decimal number. 
 
d^16’s column d^8’s column d^4’s column d^2’s column d^1’s column 

1 0 1 1 0 
 
In the case of binary, there are only two choices of digits for each column, so 
each column is only twice as significant as the previous one.  Again to find the 
total value of the number, we multiply the digit in each column by its significance 
and find the total sum. 
 

(b^1 x d^16) + (b^0 x d^8) + (b^1 x d^4) + (b^1 x d^2) + (b^0 x d^1) = d^22 
 
Therefore, the numbers b^10110 and d^22 have the same value.  They are 
equal, but are represented using different bases. 
 
 Again, this can be extended to hexadecimal numbers.  Let us use the 
example hexadecimal number 0x5AB0F. 
 

d^65536’s 
column 

d^4096’s 
column 

d^256’s 
column 

d^16’s column d^1’s 
column 

5 A B 0 F 
 
Using hexadecimal, each successive column is sixteen times as significant as 
the previous.  When finding the total value of the number in decimal format, we 
follow the same pattern as before. 
 

(0x5 x d^65536) + (0xA x d^4096) + (0xB x d^256) + (0x0 x d^16) + (0xF x d^1) = 
??? 

 
Here is where things start to get a little tricky for our brains that are used to 
thinking in decimal.   We aren’t used to multiplying using the digits A, B, C, D, E, 
and F.  Therefore, it can help our brains if we quickly convert these alphabetic 
digits to their two digit decimal equivalent:  0xA = d^10, 0xB = d^11, 0xC = d^12, 
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0xD = d^13, 0xE = d^14, 0xF = d^15.  (The numeric digits, 0-9, are equivalent in 
either base.)  Then the multiplication and summing looks more straightforward. 
 

(d^5 x d^65536) + (d^10 x d^4096) + (d^11 x d^256) + (d^0 x d^16) + (d^15 x 
d^1) = d^371471 

 
Therefore, the numbers 0x5AB0F and d^371471 are equal. 
 
Conversion Between Binary and Hexadecimal 
 
 When talking about numbers stored somewhere in a computer, it is most 
direct to represent these numbers as they are stored in the computer:  in binary.  
However, it can be very tiresome to write large binary numbers.  For example, 
the hexadecimal number 0x5AB0F used in the example above is written in binary 
as b^1011010101100001111.  This is very inefficient and difficult to read.  For 
these reasons, hexadecimal format is often used when talking about numbers in 
a computer. 
 It is very simple to convert between binary and hexadecimal 
representation.  Because 16 is an even 4th power of 2 (2^4 = 16), each unique 
sequence of four binary digits corresponds to a single unique hexadecimal digit, 
and visa-versa.  The conversion of a four digit binary number to hexadecimal can 
be done just as above using column significance, multiplication, and summing.  
For example, take the binary number b^1010. 
 

d^8’s column d^4’s column d^2’s column d^1’s column 
1 0 1 0 

 
Then the decimal value is: 
 

(b^1 x d^8) + (b^0 x d^4) + (b^1 x d^2) + (b^0 x d^1) = d^10 
 

And switching this decimal value to hexadecimal is simply a matter of converting 
any two-digit decimal results to their single digit alphabetic hexadecimal 
equivalent (d^10 = 0xA, d^11 = 0xB, etc.).  A conversion table can therefore be 
generated: 
 

Binary Hexadecimal 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 8 
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1001 9 
1010 A 
1011 B 
1100 C 
1101 D 
1110 E 
1111 F 

 
The thing that makes converting to hexadecimal so easy and convenient 

is that this 4-bit grouping pattern can be followed for converting the entire length 
of a binary number.  Each group of four binary digits can be converted to one 
hexadecimal digit.  Using the same example number as above, 
b^1011010101100001111, we can see how this works.  The binary number is 
split into groups of four digits.  (You may like to imagine 0‘s filled in on the left to 
make a even multiple of four digits.)  Each group of four binary digits can then be 
compressed to one hexadecimal digit. 
 

Binary 101 1010 1011 0000 1111 
Hexa
deci
mal 

5 A B 0 F 

 
Therefore b^1011010101100001111 = 0x5AB0F.  This process is easily reversed 
for converting from hexadecimal to binary, in which case each single 
hexadecimal digit is expanded directly to four binary digits. 
 
 


