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ABSTRACT 
 

TITLE: Advances in Cosmic Ray Muon Tomography Reconstruction Algorithms 
 
AUTHOR: Richard Hoch 
 
THESIS ADVISOR: Debasis Mitra, Ph.D. 
 
 
 

 Cosmic ray muons shower the earth at a rate of 1 per square centimeter per 

minute at sea level. Techniques have been created to use these highly penetrating 

particles as a means of non-intrusive inspection by using the multiple Coulomb 

scattering the particles experience as an information source. In this thesis the 

concept and theory of cosmic ray muon tomography are described. Past attempts at 

using muons for imaging are also discussed. Two reconstruction algorithms were 

implemented and tested on simulated data. These algorithms were based on past 

attempts at muon tomography, namely the point of closest approach (POCA) and an 

expectation maximization (EM) algorithm. Improvements were made to both 

algorithms to increase discrimination power and efficiency. The algorithms and 

implementation are presented in depth. The results they produced based on Monte 

Carlo simulations are also presented and analyzed. 
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Chapter 1 

Introduction 
 

1.1 Purpose of Study 
Muon tomography is a relatively new type of imaging process making use of high 

energy particles. There are many different techniques involving the use of high 

energy particles that can be used for imaging. This study was based upon the use of 

cosmic ray muon particles to inspect cargo containers for nuclear material. Over six 

million shipping containers enter US ports each year and not even 5% are inspected 

manually or using some type of imaging [1]. Even more containers and vehicles 

enter the country through roads, rail and air that are never inspected. The 

development of a cost and time effective method to inspect these containers would 

greatly reduce the risk of dangerous materials being smuggled into the country. The 

purpose of this study was to implement and confirm known algorithms used in 
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muon tomography, as well as to develop improvements for them.  

 

1.1.1 What Is Muon Tomography? 

Muon tomography is an outgrowth of emission tomography which has been used 

for many years, especially for medical applications [2]. Muons are elementary 

particles that are similar to, but much more massive than, electrons. Most muons 

reaching the Earth come from cosmic rays. These high energy cosmic rays strike 

the atmosphere and produce a shower of particles, one of which is the muon. Due 

to their large mass, high energy muons can pass through many meters of material 

without being absorbed, and because of their high energy, are also easily detectable. 

The basic idea of muon tomography is to detect a muon before and after it travels 

through a volume that is to be imaged. Based on information measured and inferred 

from these tracks, a 3D image can be produced as well as other types of analysis to 

estimate what is inside. Reconstruction algorithms are needed to process this 

information, which is the focus of this study. 

 

1.1.2 Importance of Muon Tomography 

There are several different ways to try to image and/or detect radioactive materials 

in a volume. What are the advantages of muon tomography over these other 

methods?  

 

Two methods the Department of Homeland Security is currently using are gamma 

ray radiography and passive gamma ray detection [1], both of which have some 

serious limitations and hazards. Gamma ray radiography makes use of gamma rays 

from radioactive isotopes of certain elements. They pass through a volume and 

through the attenuation of rays an image can be created. There is a safety issue as 

an artificial source of radiation needs to be introduced. Much care has to be taken to 

make sure humans don't get in contact with the harmful gamma rays. Besides the 
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safety hazards, gamma rays have limitations. They are not very penetrating, so 

using lead or other dense material to shield nuclear material could prevent the 

gamma rays from detecting the material. This makes hiding the presence of nuclear 

materials in containers a real possibility. 

 

Passive gamma ray detectors are widely used at border crossings and other areas. 

They work by detecting the gamma rays that are produced by radioactive material. 

With many of these types of detectors the false alarm rates are very high due to 

their detecting sources of low-radiation that are used in general commerce for non-

nefarious purposes. More sophisticated detectors can account for this, such as 

germanium based detectors, but have their own problems, like having to be 

operated at cryogenic temperatures. Also, proper shielding stops gamma rays from 

escaping these radioactive elements preventing them from being detected. 

 

Other methods for detecting radioactive materials include using x-rays, like in a 

CAT (Computerized Axial Tomography) scan. Similar to gamma ray radiography 

though, artificial radiation sources are needed. These are both costly and expensive. 

The amount of energy required to successfully image the area needed for shipping 

containers is extremely large and because of the shielding needed for safety 

purposes as well as the energy costs, these systems could reach upwards of $100 

million dollars [1]. Another problem with methods like these is that they rely on the 

skill of the person operating the systems to determine if something unusual is in the 

volume. This is not ideal as it opens the possibility for human error. 

 

This is a general overview of the main techniques used for volume imaging as well 

as detection of radioactive materials. Other techniques exist but share much of the 

same problems as the ones discussed [1]. Muon tomography avoids most of the 

problems inherent to the previous techniques. Since the muons being used are from 
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cosmic rays, there is a natural source of radiation ready to be used and a potentially 

dangerous, artificial source need not be introduced. The high energy of muons 

allow them to pass through most shielding without being absorbed, thus avoiding 

the problem of gamma ray detectors where the rays are attenuated. Even if enough 

shielding were used to absorb most muons, the lower muon flux itself would be an 

indicator of shielding or large presence of very dense material which would be a 

warning flag in and of itself. Also, the methods for muon tomography (as will be 

seen later) do not rely on the skill of the operator to determine whether a dangerous 

material is present in a volume. Based on the information that can be obtained from 

the muon detectors and the way the reconstruction algorithms use them, a good 

estimate can be made of what type of materials are contained in the area being 

imaged. All these factors also make stations used for muon tomography potentially 

less expensive than the previously mentioned methods. For these reasons, muon 

tomography is a very attractive method for cargo inspection. 

 

1.2 Scope of Study 
This study covers some of the reconstruction algorithms used for muon 

tomography. The main focus is on the validation of these algorithms as well as 

possible improvements. Much background is also provided in this thesis on muons, 

tomography, as well as different tools used in the research. The results shown in 

this paper though are based on simulations and the brunt of the work is focused on 

the software engineering side of these algorithms as opposed to the theory behind 

them. 

 

1.3 Thesis Outline 
In Chapter 2 the necessary background information is provided to explain the 

concept of muon tomography, how and why it works, as well as past work 

involving its use. Chapter 3 delves into important questions about muon 
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tomography and what the goals of the work are. Chapter 4 takes an in depth look 

into the reconstruction algorithms used and explains how and why they work. 

Chapter 5 looks into the implementation of the reconstruction algorithms, as well as 

other tools created for simulation and analysis, and finally the software testing 

techniques used for debugging. Chapter 7 discusses the simulations done and the 

results obtained from them. Chapter 8 presents conclusions based on results 

obtained, as well as a look into future work. 
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Chapter 2 

Background Information 
 

2.1 Introduction 
Chapter 2 relates important information about cosmic ray muons and other 

information that is important to know in order to understand muon tomography. 

Section 2.2 explores the general category of tomography and what it is used for. 

Section 2.3 gives a detailed description of muons and the physics relevant to them 

and this study. Section 2.4 combines the information from the previous two sections 

to illustrate the muon tomography concept. Section 2.5 concludes the chapter by 

taking a look at past work involving muon and emission tomography. 

 

2.2 Tomography 
Tomography can be defined as imaging by sections. One of the first uses of 

tomography was using X-rays to get images of areas inside the human body by 

moving the X-ray source and film in differing directions. Today there are many 

varied uses for tomography in a wide array of fields. Medical imaging still makes 

much use of tomography [3][4][2] with techniques now common to most of us like 

PET (Positron emission tomography), SPECT (Single photon emission computed 

tomography), and CT (Computed Tomography) scans. Other fields making use of 

tomography range from archeology for non-invasive surveying of ancient ruins [5], 

to geophysics which uses seismic tomography to estimate what the inside of the 

earth looks like, and even oceanography which makes use of sound waves from 

different projections to model objects in the ocean [6]. Many other types of 

tomography exists, but modern tomography generally involves gathering 
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projections from many directions and using a reconstruction algorithm to produce 

the results desired (i.e. a 3D image). These algorithms are a large area of research 

in tomography, as they can be very computationally expensive, and the balance 

between time and accuracy becomes a large issue. Muon tomography is a unique 

new method, but the issue of time and accuracy in reconstruction algorithms still 

remains. 

 

2.3 Muons 
Almost all naturally occurring muons on the earth are produced from cosmic rays. 

These are the muons that are of interest to muon tomography as they do not require 

an artificial source and have several attributes that can be taken advantage of. These 

attributes will be looked at in this section. 

 

2.3.1 Basics 

Muons are elementary particles similar to an electron from the lepton family of 

particles. They may be positively or negatively charged. Muons have a rest mass of 

105.7 MeV/c2 [7], which makes them almost 200 times more massive than  

electrons. They have a lifetime of 2.2μs which makes it the second longest living 

unstable subatomic particle, behind the neutron which has a lifetime of 

approximately 15 minutes [7].  

 

The previous two facts about muons play a large role in their use for tomographic 

applications. Since muons are so massive, they don't give off as much 

electromagnetic radiation while traveling through matter as lighter particles do. 

This allows them to penetrate many meters of material before fully giving off their 

energy and being absorbed, which is important if some volume is to be probed. 

Also, since the muons being used are from cosmic rays, their relatively long 

lifetime is important as well, as most particles produced from cosmic ray decay are 
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short lived and don't reach the surface of the Earth. This will be explored in the 

next section. 

 

2.3.2 Cosmic Ray Muons 

The Earth is constantly being bombarded by high energy particles originating 

outside of our solar system. These particles (we will call them primary) are 

generally stable and when they strike our atmosphere interactions occur that 

produce other secondary particles, which in turn interact with the atmosphere and 

produce more particles themselves. This process is illustrated in Figure 2.1. 

 

 

The primary particles, usually highly energetic protons, enter the atmosphere and 

interact with other atmospheric nuclei and produce secondary particles called pions. 

Pions are short lived and do not usually reach the Earth before decaying into other 

particles. Charged pions decay into charged muons and the neutral ones decay into 

gamma rays, which may convert into electrons and positrons. Many of these 

particles lose their energy and dissipate in the atmosphere. However, most cosmic 

ray muons have sufficient energy to reach the Earth and since they have a longer 

Figure 2.1: Cosmic Ray 
Shower Cascade [8]
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lifetime than the other particles produced in these showers, they are the most 

prevalent particles seen at sea level. This is illustrated by Figure 2.2, which shows 

the intensity fluxes of different cosmic ray particles at varying altitudes. 

 

 

Muons arrive at the surface from a wide range of angles and energies. These 

distributions are dependent on many factors including how the particle is generated, 

the energy loss it experiences traveling through the atmosphere, as well as how the 

particle decays. The actual spectrum also is dependent on factors such as altitude, 

physical location on the Earth (for example the Earth's magnetic field filters out 

lower energy muons [10]), as well as solar activity which can alter the cosmic ray 

spectrum.  

 

Many experiments have been done to measure the energy and angle distributions of 

muons. There are certain accepted tenets about cosmic ray muons though that 

experimentalists go by. They are listed here from the Review of Particle Physics by 

Figure 2.2: Flux of cosmic ray particles at different 
altitudes [9] 
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the Particle Data Group [7]. The first is that the energy distribution for muons is 

relatively flat for energies lower than 1 GeV while it declines for those over 10 

GeV, which results in the mean muon energy being between 3-4 GeV. This 

distribution is illustrated in Figure 2.3. Second, the muon flux is highest at the 

zenith and if θ is chosen to represent the angle between the muon path and the 

vertical then the drop off can be approximated as cos2(θ). Lastly, the muon flux at 

sea level for horizontally oriented detectors is about 1 per cm2 per minute. 

 

 
 
2.3.3 Muon Physics 

 

Figure 2.3: Energy distribution of cosmic ray muons at sea level [10] 
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The way muons interact with matter is the prime reason they can be useful for the 

purposes of probing for certain materials. There are multiple ways muons are 

affected by their passage through some medium. As muons travel through atoms 

they can lose their energy through electromagnetic interactions. If enough energy is 

lost, the muon will stop. Muons are also diverted from their course as they pass 

atomic nuclei, which is called multiple Coulomb scattering. Both these interactions 

will be explained in more detail to show how they are relevant to muon 

tomography. 

 

As muons pass through atoms they may strike electrons which are generally thrown 

out of their orbit and exit the atom. Based on the ionization energy of the electron, 

the muon will lose an equivalent amount. The amount of energy a muon loses 

passing through a material is dependent on the material itself, its thickness, as well 

as the momentum of the muon. Figure 2.4 shows the mean energy loss for muons 

of varying momenta traveling through several different materials. 

 

Figure 2.4: Mean energy loss (-dE/dx) for muons traveling 
through liquid hydrogen, gaseous helium, carbon, aluminum, 
iron, tin, and lead [7] 
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Using the energy loss as a means for scanning cargo is not currently a feasible 

strategy for imaging materials even though the energy loss does provide 

information on the material passed through. The issue is that precisely measuring 

muon energy is not a simple task and is unlikely to be a cost effective method [11]. 

 

When muons lose all energy they are absorbed into the material they pass through. 

A muons stoppage is also dependent on the type and depth of material, as well as its 

initial momentum. However, this feature of muons is not practical to use for cargo 

scanning either since muons are so penetrating. A cosmic ray muon at 3 GeV (the 

mean energy) can penetrate a meter of dense material, like lead or uranium, and 

higher energy muons can penetrate upwards of tens of meters of rock and medium 

density metals [11]. This would make measuring the loss of muon flux through 

only a few meters of material not very useful, which is the volume size of interest 

in cargo inspection. However,  change of muon flux can be useful in imaging larger 

areas, as the spectrum of cosmic ray muon momenta is very wide and the loss of 

lower momentum muons passing through many meters of denser material would be 

apparent in comparison to a less dense (or open) area. In fact, some of the first 

attempts at using muons for imaging did exactly this and these attempts will be 

looked at in section 2.4. 

 

As shown, energy loss does not provide a practical way to inspect small areas. 

Fortunately the second main interaction muons have while traversing matter could 

prove to be more useful. As muons pass near atomic nuclei their courses are altered 

from their paths many times. The scattering a muon experiences is non-

deterministic. The distribution can be estimated as a zero mean Gaussian for the 

central 98% of the angles [7]. The width of the distribution can be defined as: 

( )[ ]000 ln038.016.13 XxXxz
cp
MeV

+=
β

θ  
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Here, p is the momentum, βc is the velocity, and z is the charge number of the 

incoming muon. The x/X0 term is the thickness of the material being traversed in 

radiation lengths. For our purposes, β equals 1, and the particles are singly charged 

so z is equal to one as well. The value for θ0 is actually a fit to the Moliere 

distribution for scattering angles [7]. There are many different theories for the 

theory of multiple scattering. Moliere's holds up well to experimentation while 

remaining transparent [5]. Figure 2.5 shows experiments validating how well 

Moliere's theory actually compares with real results.  

 

Radiation length (the units of the x/X0 term) generally decreases as Z, the atomic 

number of an element, increases. This is important because radiation length is 

representative of how much matter there is for electromagnetic interactions. As the 

Figure 2.5: The line represents the predicted distribution of scattering 
angles by Moliere plotted against the ratio of thin and thick Au foils. 
The dots represent actual experimental result [12].
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radiation length increases, the angular distribution of the scattering widens. This is 

illustrated in Figure 2.6. Like energy loss, multiple Coulomb scattering is very 

sensitive to the material being traversed. Fortunately, unlike energy loss, muon 

detectors can precisely measure scattering more easily than energy loss. Thus this is 

the information that shall be made most use of in muon tomography.  

 

2.3.4 Muon Detectors 

As described in the last section, there are two types of information muons can be 

mined for: energy loss and scattering. Scattering was said to be much easier to 

determine precisely. This section will explain how detecting the muons is actually 

done. There are several types of detectors. This is not a comprehensive overview, 

but will briefly explain about how some of the different detectors work, as well as 

the gas electron multiplier (GEM) detectors that will be used in our projects. The 

advantages and disadvantages of each will also be explained. 

 

Drift tubes are a type of gas detector.  They are cylinders made of some light metal 

with a thin wire stretching through the center. When a muon enters the tube it 

Figure 2.6: Amount of scattering for a muon passing through 10cm of different 
materials [1] 
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ionizes the gas, which leads to an avalanche that ends when the electrons from the 

ionization reach the center wire. Based on the time it takes for the electrons to drift 

to the wire, the position of the muon can be determined [13]. These are the type of 

detectors used by Los Alamos National Laboratory [14].  Although drift tube 

detectors are a proven technology, because they rely on timing information their 

maximum precision is not as high as some other detectors. Figure 2.7 shows the 

drift tube detector system used at Los Alamos National Laboratory. 

 

 

GEM detectors [15] are a newer type of detector relative to drift tubes in the 

category of micropattern gas chambers. Generally gas chamber detectors amplify 

the electrons knocked out of a gas by charged particles as they pass through. Unlike 

drift tubes, which rely on timing information after the gas is ionized, micropattern 

detectors measure the spatial coordinates of where the electron avalanche reaches 

the signal induction strip. The distance between these sensitive elements can be 

Figure 2.7: Drift tube chambers used at Los Alamos National Laboratory 
[14]
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reduced to a fractions of millimeters based on photolithography [16] allowing 

measurements with very high precision. GEM detectors improve upon this 

performance by using a thin sheet of plastic coated with metal on both sides on 

which tiny holes are bored into only microns apart. Applying a voltage across the 

foil causes an avalanche of ions and electrons pour through the holes [15]. Then the 

typical process of gas chambers with micropattern readout takes over as was 

described before. Since spatial information is being used rather than timing, the 

overall resolution can be about 50 microns [17][16]. In the High Energy Physics lab 

at the Florida Institute of Technology, small prototypes of muon tomography 

systems employing GEM detectors are being developed [17], and the 

reconstruction algorithms being developed in this study will receive their input data 

from these detectors when they are complete instead of getting them from 

simulations as is our current practice. Figure 2.8 shows the first GEM detector built 

by the HEP lab at Florida Tech. 

 

 

Figure 2.8: GEM detector constructed by HEP Lab at Florida Tech 
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2.4 Muon Tomography 
Now that the relevant physics applying to muons is described, as well as the way to 

detect them, we have the background information to explain muon tomography.  

 

2.4.1 Concept 

The idea is to put the volume to be probed between two sets of detectors (or more, 

if lateral detectors are added), detect muon events for a certain amount of time, 

determine the scattering angle between the tracks as well as other useful 

information (which will be discussed later), and then pass the information to 

algorithms to reconstruct it into a 3D image or some other form of output. Figure 

2.9 displays the concept. 

 

 

2.4.1 Reconstruction Algorithms 

 

Figure 2.9: The muon tomography concept. A muon passing through uranium 
has the potential to scatter more than one that passes through iron. [18] 
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By the combination of the scattering information with other measurable 

information, assumptions, and heuristics, reconstruction algorithms can be 

developed for producing 3D images of the area being scanned, as well as for 

discriminating between different materials. Some reconstruction algorithms for 

muon tomography will be discussed in section 2.5, but the ones explored mainly in 

this thesis are the Point of Closest Approach algorithm and an Expectation 

Maximization algorithm created by Los Alamos National Laboratory [19]. These 

will be looked at in depth in chapter 3. 

 

2.5 Past Work 
Muon tomography is a relatively new type of imaging technique, although the 

methods themselves have been around for quite some time. Muons have been used 

for imaging large structures for several decades. Emission tomography has been 

around since the 1980's when Positron Emission Tomography was introduced. 

From these methods, as well as a couple other novel ideas, sprung the concept of 

muon tomography. These past attempts will be explored in more detail, starting 

with muon radiography. 

 

2.5.1 Muon Radiography 

Because of the energy spectrum of cosmic ray muons being well established, 

measuring the muon flux before and after they pass through a large mass could 

provide much information about the objects traversed since the change in muon 

flux would relate directly to the material and its depth. Several researchers have 

taken advantage of this technique. 

 

The first to do so was E.P. George in 1955 [20].  He wanted to measure the depth of 

an underground tunnel, so he measured the cosmic ray muon flux inside and 

outside the tunnel. Based on the ratios of the attenuation of the muon flux he made 
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a good estimate of the depth of the tunnel.  A similar and more famous example of 

this technique was used by Luis Alvarez in the 1960's [21]. What Alvarez intended 

to do was use muon radiography to determine if there were any hidden chambers in 

the Pyramid of Chepren at Giza, as there were many in the pyramids of both 

Chepren's father and grandfather. By placing muon counters in already discovered 

hidden chambers, Alvarez looked to match the muon flux measured at different 

angles with the muon flux that would be expected from the depth of rock being 

traveled through. Based on the information gathered he was able to confirm that no 

other hidden chambers existed in the pyramid.  

 

Many researchers have followed similar approaches. An ambitious attempt was 

made by Nagamine [22] to predict whether or not Mt. Tsukaba and Mt. Asama in 

Japan would erupt. He used large detectors oriented horizontally (this was because 

large angle muons with almost flat trajectories were needed) spaced 2 kilometers 

apart on the sides of the mountains to image the internal structure of the volcanoes. 

In another attempt at making use of muons for imaging, Minato [23] managed to 

radiograph Higashi-Honganji Temple Gate in Nagoya, Japan, armed with only a 

hand held muon counter. 

 

A different approach using muons for radiography was made by Frlez and his 

colleagues [24]. Their interest was in measuring how efficient cesium iodide 

crystals were for calorimetry. Several crystals were placed between muon detectors 

and the rays were measured as they passed through the volume and the crystals. For 

the tracks that went through the crystals, the path length and energy loss in the 

crystal were measured. Based on this, the energy deposition into the crystals could 

be analyzed and the efficiency of the crystals determined.  

 

All these previous examples were novel ways to use muons to probe volumes using 
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radiography, but none made use of multiple Coulomb scattering to image smaller 

areas. Past attempts at using this information source will be looked at next. 

 

2.5.2 Muon Tomography 

The first attempt at using multiple Coulomb scattering of muons for homeland 

security purposes was started in 2001 by a group at Los Alamos National 

Laboratory (LANL) [11]. A description of their early work and results with simple 

scenarios was published in an issue of the science magazine Nature in 2003 [25]. 

Here a tungsten cylinder was reconstructed using a simple reconstruction 

algorithm. Continuing research has brought about more sophisticated algorithms 

and muon tomography systems the past several years. 

 

Part of the original group was Larry J. Schultz who went on to develop a much 

more in depth algorithm detailed in his dissertation [11]. In it he describes a 

maximum likelihood algorithm (a method of fitting statistical data to a model) 

based on the scattering and displacement of muons. The results produced by the 

algorithm were very good, though the computation time and memory usage posed 

major issues for use in larger, more realistic scenarios [11][19]. The original LANL 

group continued work on this maximum likelihood algorithm, improving its 

robustness and running time while also developing a small prototype muon 

tomography system [26][27][28]. Eventually an expectation maximization 

algorithm (this type of algorithm will be looked at more closely in the next section 

and chapter 4) was created by Dr. Schultz and the LANL group, which improved 

the computational performance of finding the maximum likelihood estimates as 

well as the handling of the non-Gaussian scattering of muons [19]. This is the 

approach that the reconstruction algorithms in this study are based upon. 

 

Another technique was proposed by Dr. Wang and Dr. Qi from the University of 
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California, Davis. While the LANL approach did not involve modeling the non-

Gaussian scattering of muons, Wang and Qi fully modeled the scattering 

distribution of muons by using a Gaussian scale mixture (a combination of multiple 

probabilistic models). They also used maximum likelihood estimates for 

reconstruction based on the mixture model created, but Bayesian statistics were 

also incorporated to increase the quality of the results [29].  

 

Other attempts have been made to verify results seen in literature based on existing 

algorithms, like the simple, geometry based reconstruction algorithm, Point of 

Closest Approach (POCA). Gnanvo, et al., [17] have used Geant4 simulations 

along with POCA to show that discrimination of different materials using muon 

tomography is feasible with a high enough detector resolution. C. Motooka and Y. 

Watanabe have also experimented with the POCA algorithm and concluded that 

cosmic ray muon tomography is a viable way to discriminate between materials 

[30]. This author has done work with Dr. Debasis Mitra and Dr. Marcus Hohlmann, 

coming to similar conclusions about cosmic ray muon tomography being a real 

possibility for cargo inspection based.  This is based upon on results seen from 

POCA and the EM algorithm developed at LANL [31]. In addition to the 

reconstruction algorithms, companies such as Mu-Vision have plans to construct 

portable muon tomography stations that can be easily deployed and taken apart for 

use at ports or border crossings [1]. 

 

This section has displayed that the use of muon tomography for material 

discrimination is well founded, based on the results from many disparate groups. 

Although not making use of muons, emission tomography has been heavily used in 

medical applications, and many of the techniques are also applicable to muon 

tomography. These types of methods will be looked at next. 
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2.5.3 Emission Tomography 

Medical imaging has made great use of emission tomography to help diagnose 

patients over the past couple decades. One of the first of these was positron 

emission tomography (PET), developed by Vardi, Shepp and Kaufman in the early 

1980's [2]. The idea is to place positron emitting material into some organ to be 

imaged. When the positron is emitted and it strikes an electron both are annihilated 

and two X-ray photons are created traveling in opposite directions. Cylindrical 

detectors are placed around the patients body (usually the head) and the number of 

photons detected is counted. Pinpointing where the positron came from is 

impossible, but based on the density of photon emissions at different angles, a 

mathematical model can be developed. It is assumed that the emissions occur as a 

spatial Poisson process [2]. Based on the emission density and Poisson model, a 

maximum likelihood method using an expectation maximization (EM) algorithm 

(the general class of EM algorithms will be looked at more thoroughly in chapter 4) 

is used to reconstruct the 3D cylindrical image of the organ being looked at. They 

also developed a method of moments (a method of estimation of population 

parameters like mean, variance, median, etc.) and a least squares reconstruction.  

This work heavily influenced much emission tomography to follow and provided a 

huge contribution to statistics. Today, the EM algorithm is one of the most used 

methods for reconstruction in emission tomography. 

 

The EM algorithm has also been used successfully in Single Photon Emission 

Computed Tomography (SPECT), which uses gamma ray emissions for its probe, 

as well as X-ray computed tomography (CT) [3]. These scans typically make use of 

filtered back projection (FBP) techniques for reconstruction, which is based on the 

Fourier Slice Theorem and makes use of the Fourier transform, making them fast 

and reliable. However, with the advancement of non-radon based scanners, 
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problems have arisen with FBP techniques that statistical algorithms like EM can 

better handle [3]. EM is not always the best choice of reconstruction algorithm for 

emission tomography, but it is continually being used more frequently and has done 

well when tested against competing algorithms [32].   

 

Since EM has provided such good results in terms of accuracy and robustness, it 

has also been the area of much research, and many improvements and variations for 

it exist. For SPECT scans, the EM algorithm has been modified to incorporate 

Bayesian statistics to smooth out the results and has been shown to be successful by 

Green [3] and has been improved upon itself using other novel ideas like Markov 

random fields and Gibb functions by Herbert and Leahy [33]. Hudson and Larkin 

[34] developed an ordered subsets (OS) EM algorithm that breaks the input data 

into subsets, runs an iteration on a set, and feeds that data to the next subset until all 

are processed. This sped up computation immensely while still producing 

acceptable results. This OS-EM was shown to be useful for both PET and SPECT 

scans, but the concept itself can be applied to many different versions of EM and 

ML methods [34].   More recently, Sangtae Ahn, et al., developed an OS-EM 

algorithm that converges faster (previous OS-EM's did not converge and had to be 

arbitrarily stopped) than normal EM without loss in accuracy [35].   

 

Emission tomography has enjoyed much success in the medical field, and has been 

used to diagnose and treat a multitude of illnesses. Besides the actual benefits 

though, the research done into this area has a lot of application in other fields, 

which made studying tomography a target topic of this thesis. 
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Chapter 3 

Research Question 
 

3.1 Research Questions 
Although muon tomography is a relatively new type of technique used for cargo 

inspection, much research has been done in the area. Many different approaches 

have been used to develop reconstruction algorithms that are accurate and run in a 

reasonable amount of time. Balancing these criteria is essential in creating a useful 

reconstruction algorithm. This leads to the purpose of this chapter which is to 

define the goal of this study, the expected results, and the potential advantages this 

approach has over past approaches. 

 

3.1.1 What is the goal of this work? 

There are several goals this study intends to accomplish.  
 

3. Confirm previous results from current algorithms, namely POCA and the 

EM algorithm proposed by LANL. 

4. Propose an improvement to the median version of the EM algorithm 

5. Do a detailed analysis into the accuracy of the various EM methods 

6. Analyze the varying run times of the algorithms 

 

Although these are the main goals of the work, other goals were met in the course 

of research. These will be brought up in the appropriate sections and discussed for 

their merit and why they didn't end up being part of the main focus of the project. 

 

3.1.2 What are the expected or wanted results? 

The overriding conclusion based on results from past work was that cosmic ray 
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muon tomography is definitely a practical way to unobtrusively probe unknown 

volumes. Desired results from this study would lead to the same conclusion. More 

specifically, the results should show the ability of the algorithms to discriminate 

between different materials. Since this has already been found by other groups, 

these results are also expected. What this study looks to add to the field is 

improvements on the existing algorithms (mainly the EM), so that they run faster 

and more efficiently, without sacrificing their ability to discriminate materials.  

 

3.1.3 What are the potential advantages of this approach over others? 

Expectation maximization algorithms in general take a long time to run in 

comparison to non-statistical reconstruction algorithms like the filtered back 

projection techniques that were briefly described in chapter 2. This is the case for 

the LANL EM algorithm as well. Run times of the EM algorithm have been 

acceptable for reasonably sized jobs. For large scenarios with lots of statistics 

though, reconstructions can take very long times (upwards of 12 hours in our 

simulations), making it impractical to test a scenario with many parameters. One 

aim of this study was to improve the runtime of the algorithm by removing 

unnecessary computation. This is one area where the approach detailed in this 

thesis can provide an advantage over existing techniques. 

 

The memory issue is also extremely important because the resource requirement is 

so large that it limits the size of scenarios that can be run, as well as the number of 

muons that can be simulated. The High Energy Physics lab here at Florida Tech has 

a high performance computing cluster [57], yet several times scenarios were run 

that overwhelmed the system due to memory constraints. The aim will be to 

eliminate the memory waste inherent in the EM algorithm, as well as finding 

implementation techniques that further reduce the memory load. This would be 

another potential improvement over the other methods. 
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Chapter 4 

Reconstruction Algorithms 
 

4.1 Overview 
In general there are two classes of reconstruction algorithms available for 

tomography: filtered backprojection (FBP) and iterative reconstruction (IR). Both 

types were briefly seen in section 2.5.3. The choice of algorithm mainly depends on 

the information source being used. FBP algorithms are relatively fast algorithms 

that make use of the fast Fourier transform, but need a set of evenly spaced 

projections around a wide area (usually at least 180 degrees) with straight ray paths 

[11]. This requirement makes FBP algorithms unsuitable for muon tomography as 

the cosmic ray muon angle spectrum is less than 180 degrees and not evenly spaced 

as was shown in chapter 2, and the tracks being used are not straight because of 

multiple Coulomb scattering. IR algorithms are algebraic and work by defining the 

volume being probed as a set of parameters. Sets of equations are created in terms 

of those parameters and the measured data (muon scattering in this case), and the 

reconstruction problem becomes solving these equations. The EM algorithm 

developed at LANL is one of these IR algorithms and will be explained in depth 

later in this chapter in section 4.3. First however, a more primitive, heuristic 

reconstruction algorithm that doesn't fit into either category is explored. 

 

4.2 Point of Closest Approach 
The Point of Closest Approach (POCA) is a geometrical algorithm with many 

applications.  One of these is computer gaming where it is used heavily because of 

its usefulness  for 3D imaging [37][38][39]. For muon tomography purposes, 

POCA is a heuristic algorithm that was developed by Los Alamos National 

Laboratory [32][25]. It was intended as a proof of concept algorithm to show the 
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possibilities of muon tomography. It has shown promising results and has been 

validated [17][30] as well as improved upon by different sources [11].  

 

The concept of POCA is simple. It ignores multiple coulomb scattering and 

assumes a muon scattered at a single point. Based on projected the incoming and 

outgoing tracks, find the points where they came closest, estimate the scattering 

point as the midpoint of the line between the points of closest approach, and 

measure the angle between the incoming and outgoing tracks. The concept is 

illustrated in Figure 4.1. 

 

 

Many types of analysis can be done on the information gathered from POCA, but 

the general way is to plot the point and color it according to the magnitude of the 

scattering angle. Results from POCA will be shown in chapter 7. Next the POCA 

Figure 4.1: POCA Concept: Measure incoming and outgoing tracks and estimate 
where the muon scatters as the point where the tracks come closest 
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algorithm used will be explained in detail. 

 

4.2.1 POCA Algorithm 

There are many ways to determine the points of closest approach. The goal is to 

find the shortest line between two vectors and there are ways to do this using 

calculus [38] or geometry [39]. The algorithm implemented in this study was 

developed by Dan Sunday [37]. It was chosen because it works in any dimension 

and is comparatively faster than other algorithms researched [38][39].  

 

Consider two infinite lines (line L1 represented by P and line L2 represented by Q) 

using parametric equations, L1: P(s) = P0 + s (P1−P0) = P0 + su and L2: Q(t) = Q0 + 

t (Q1−Q0) = Q0 + tv. Create a vector between any points on the two lines, w(s,t) = 

P(s)−Q(t).  L1 and L2 are closest at the unique points P(sc) and Q(tc) for which 

w(sc,tc) has its minimum length. Also, the line segment connecting P(sc)Q(tc) is 

perpendicular to both lines at the same time and is the only line segment between 

the lines that has this property. In other terms, the vector wc = w(sc,tc) is 

perpendicular to the line direction vectors of L1 and L2,  u and v, and finding this 

vector is the same as solving the two equations: u · wc = 0 and v · wc = 0. Figure 

4.2 graphically shows this concept. 
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By substituting  wc = P(sc)−Q(tc) = w0 + scu − tcv, where w0 = P0−Q0, into those 

two equations we can get two simultaneous linear equations so that the original two 

can be solved for: (u·u)sc – (u·v)tc = - u· w0 and (v·u)sc – (v·v)tc = - v· w0. Next 

algebra is used to solve for sc and tc. Let a = u · u, b = u · v, c = v · v, d = u · w0, 

and e = v · w0. This gives: sc = be-cd / ac-b2 and  tc = ae-bd / ac-b2. Whenever  

ac-b2=0 the lines are parallel and all points are points of closest approach.  How 

this is implemented will be explained in chapter 5. Now that sc and tc are solved 

for, the points of closest approach can be determined by using the original 

equations for the line, P(sc) and Q(tc). 

 

4.2.2 POCA Analysis 

As stated before, POCA was designed as a proof-of-principle algorithm and is not 

based on the actual physics of multiple coulomb scattering. In fact, POCA assumes 

a single scattering event. Thus, POCA should work best in scenarios where a muon 

experiences few closely spaced scattering events, which would be when a muon 

travels through limited amounts of material. When a muon travels through multiple 

objects, the scattering point would tend to be located between the objects as 

Figure 4.2: Points of closest approach 
(P(Sc), Q(Tc)) are the end points of the line 
segment where the length of Wc is at a 
minimum [40]
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opposed to a single point from either object. This would seem to limit POCA to 

cases where there is little material or few obstructions in the target volume. The 

results of POCA run on different scenarios will be shown in chapter 7. 

 

POCA is a relatively quick algorithm in comparison to other statistical algorithms 

generally used in reconstruction. The running time of POCA is based strictly on the 

number of muon events as every event is processed sequentially and once the 

points of closest of approach are found the event is discarded. The algorithm thus 

runs in O(n) time. The only memory usage is storing the information needed for a 

single muon event, so the memory usage is constant and is O(1). 

 

4.3 Expectation Maximization (EM) 
In general, the EM algorithm is used to find maximum likelihood estimates 

(methods used to fit data to a statistical model) of parameters in some probabilistic 

model, where the model is dependent on some other parameters that can't be 

directly measured but only inferred. EM is an iterative method with two steps. The 

first step is the expectation (E) step that takes the current estimate of the model for 

the “hidden” parameters and computes an expectation of the log likelihood for it. 

Next comes the maximization (M) step, that computes the parameters which will 

maximize the expected log likelihood found on the previous step. These parameters 

are then passed back to the E step to determine the new distribution of the hidden 

parameters. These two steps are done until the parameters converge or for a 

predetermined number of iterations. This framework can be adapted for many uses 

as previously shown as long as the data can be described by some probabilistic 

model based on some estimated parameters. How this was done for an EM 

algorithm for muon tomography will be explained next. 

 

4.3.1 EM Model 
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The EM algorithm used in this study was originally developed at Los Alamos 

National Laboratory by Larry Schultz, et al. [19]. It was based on earlier work by 

Larry Schultz in his dissertation where he created maximum likelihood estimates 

based on the scattering angle and ray displacement information [11]. The 

information displayed here on the EM algorithm is taken mostly from from the 

former, but all the information on the algorithm in this section is taken from these 

sources. 

 

The width of the distribution of the central 98% of scattering angles was described 

as a function of the material it was passing through. This was taken from the 

Review of Particle Physics [7], but as was stated, many have developed a theory of 

multiple scattering. The scattering function used for this algorithm was a simpler 

one found by Bruno Rossi [34]:  

radL
H

cp
MeV
β

σθ
15

≅  

As in the equation from the Review of Particle Physics, p is the momentum, and βc 

(β=1) is the velocity. H represents the depth of the material being traversed, and 

Lrad is the radiation length of the material. 

 

A scattering density function is introduced in terms of the material being traversed 

for a particular momentum. This function describes the mean square scattering 

angle a muon would go through after passing through a unit depth of this material. 

So for some nominal momentum  p0 in GeV, and some material described in terms 

of Lrad the scattering density function is 
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with units  in milliradians2 per cm. 
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The variance of the scattering distribution can be described in terms of λ: 
22
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Besides the scattering angle of a muon, more information exists that can shed light 

on the muon's path through the volume. This is the displacement of the muon, 

which represents the distance between where a muon enters a volume and where an 

unscattered muon would have exited the volume. This is illustrated in Figure 4.3. 

It has been shown that the scattering and displacement are correlated and the 

distribution can be described as jointly Gaussian with zero mean [42] and the 

width's equated by: 

θσσ ΔΔ =
3
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The covariance matrix can be expressed by: 

22
32

2

32

2
rr App

HH

HH
λλ =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
≡Σ  

The amount of scattering and displacement gone through in the x and y directions 

are completely independent and distributed identically. For three dimensions the 

algorithm uses information broken down into these two directions, represented by 

Δθx and Δθy for the scattering, and Δx and Δy for the displacement. Figure 4.3 shows 

this information for one direction as well as other important parameters related to a 

muon's path through a single layer of material. 
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Parameter L represents the estimated 3D path length of the muon through a  layer 

of material. The actual path length is different because of the multiple coulomb 

scattering that goes on as the muon traverses the volume. This estimated path 

length can be found by the following equation using the initial incoming angles: 

( ) ( ) xyyx HLHL ≡++= 0
2

0
2 tantan1 θθ  

Naively, by looking at figure 4.3 it would seem the displacement would be equal to 

x1 – xp, however this needs to be adjusted for 3D path length as well as be oriented 

in the proper direction. Thus the displacement should be defined as: 
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F
igure 4.3: Parameters used for 3D adjustment 
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where,  
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Schultz gives a derivation for this result [11].  

 

Now instead of using H, the depth of a material passed through, the 3D path length 

through the material, L, can be used and the following redefined: 
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The same process is used to determine scattering and displacement in the y 

direction. The rest of the algorithm will be described for only the x coordinate and 

then at the end y coordinate information will be introduced. It is noted as well that 

this model is valid only for small angle scattering [19]. 

 

A muon will travel through many different materials in a volume in a realistic 

situation, so a model needs to be developed that accounts for the many different 

layers a muon might pass through. This is accomplished by breaking the volume 

into many smaller rectangular sub-volumes called voxels and the scattering density 

for each will be attempted to be found. Now the hidden information for the EM 

algorithms comes into play. The amount of scattering or displacement a muon goes 

through a particular voxel cannot be measured directly. However, it can be 

described in terms of the measurable information. Figure 4.4 helps show the 

concept. 
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The total scattering can be thought of as the sum of the scattering through each 

voxel with N representing the set of all voxels. 

∑
<

Δ=Δ
Nj

jθθ  

Using the assumption of small angle scattering, the total displacement can be 

defined as the sum of the displacements as well as the sum of parameter T 

multiplied by the corresponding scattering angle in that voxel.  

( )∑
<

Δ+Δ=Δ
Nj

jjj Txx θ  

T represents the the 3D ray path-length from the exit point of a voxel to the exit 

point from the reconstruction volume. According to Schultz, T for a specific voxel 

can also be defined as the sum of all L values for the muon track after the voxel in 

question [11]. 

 

Let us set i as the number of muon rays and j as the number of voxels. 

The covariance of aggregate scattering and displacement can be described for the ith 

muon for the jth voxel by [11]: 

Figure 4.4: Scattering and displacement  
through many layers of material
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with the weights (the w parameters) defined by: 

22
3

,

2
,

,

3

2

ijijijij
ij

ijx

ijijijijx

ijij

TLTLLw

TLLw

Lw

++=

+=

=

θ

θ

 

Where Lij is the 3D path length of the ith muon through the jth voxel or zero if the 

muon does not pass through that voxel and N is the total number of voxels. 

Defining λ and the weights in terms of vectors, the covariance matrix can be 

expressed as: 
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The muon path through the volume must be estimated of course to obtain the 

previous information. Simply connecting the entering and exiting points of the 

muon is one alternative, but due to the multiple scattering a muon goes through this 

is  obviously not a true representation of the path. We used POCA [19] as a way to 

estimate the muon's path through the volume by connecting the entering point to 

the scattering point and the scattering point to the exit point.  

 

Lastly, let the data vector for all the measured muon events be defined by: 
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Thus the likelihood of a particular scattering density for a set of data can be 

expressed as: 
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with M representing all muon measurements and, 
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where P(Di | λ) is the probability density function in terms of the measured data, Di  

,   and the scattering density, λ. 

 

Thus finding an estimate for  λ that maximizes the likelihood is the goal. Many 

different techniques exist for finding such a  λ, but the ones explored by those at 

LANL did not work well for large, real life scenarios [19]. Thus an EM approach 

was developed. This is described in the next section. 

 

4.3.2 EM Development 

The EM algorithm begins with an auxiliary function which is to be maximized. For 

the EM algorithm for muon tomography the auxiliary function used is: 
( )( ) ( ) ( )( )[ ]λλλ
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Here E is the expected value of the log likelihood of both the hidden and observed 

data. After some advanced statistical analysis and derivation(which is beyond the 

scope of this study), the expectation step can be defined as: 
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This expectation step can then be substituted into the update equation which is also 

the maximization step: 
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Here Mj represents the number of rays that traveled through the jth voxel. The 

results of the expectation step are called correction values. The average correction 

value for all muons that pass through the jth voxel is used to update  λ. The new  λ 

values can then be passed back to the expectation step and used to compute the new 

correction values. The algorithm in general is displayed in the next section. 
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Since the model behind the EM was described for only 98% of of the scattering 

distribution, results where  λ values were too large occurred [19]. This is because 

2% of the angles scattered more than the model accounts for. Since the mean of the 

correction values is used to update  λ, the larger than expected scattering angles 

causes the mean to come out too large. To account for the data that doesn't fit into 

the Gaussian model, a median correction value is used as opposed to the mean: 
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4.3.3 EM Algorithm 

Input: Scattering and displacement in x and y of each muons as well 
as the momentum parameter for each muon (Δθx, Δθy, Δx, Δy, pr

2) 
 
Estimate (L,T) for every voxel of every muon track; 
Compute weights (wθ, wθx, wx) for every voxel of every muon track 
Initialize �  for each voxel; 
Set max iterations I; 
 
(1) for each iteration k = 1 to I do 
 (2) for each muon-track i = 1 to M do 
  (3) for each voxel j = 1 to N do 
   (4) Compute Cij, E-step 
 (5) for each voxel j = 1 to N do 
  (6) Compute λj,new, M-step 

   (7)  λj,old =λj,new 
(8) return vector λ 

 

4.3.4 EM Analysis 

Whereas POCA was purely a heuristic algorithm that ignores the underlying 

physics of muons interaction, the EM algorithm is based on the theory of multiple 

scattering. Thus, while POCA performs well in simple situations where not much 

far spaced scattering occurs, EM should be able to better handle situations where 

multiple scattering is more frequent. This should result in EM being able to 
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discriminate between materials in realistic scenarios better than POCA can. 

 

However, unlike POCA, EM is not a fast algorithm. The running time of the 

average EM algorithm is based on the number of muon events (M), the number of 

voxels (N), and the number of iterations run (I). Thus, the algorithm runs in 

O(IMN) time. Information for every muon and every voxel also needs to be stored, 

so the memory usage is O(MN). For the median EM, the performance degrades 

even more. Whereas the average method does not need to store all the correction 

values (C) for a voxel, the median method does. To find the median the values then 

need to be sorted. Assuming an optimal sorting routine is used this would result in a 

running time of O(IMN[Clog(C)]) and memory usage of O(MNC). 

 

The running times of the EM methods will be explored further in chapter 6. 

However, various ways to increase the running time of the algorithms were made in 

the implementation, both for the average and median methods. In fact, the original 

implementation of the median method resulted in running times so poor (over 24 

hours) and memory usage so high (over 30 gigabytes depending on the scenario), 

the development of a faster method was necessary. These improvements and others 

will be discussed in section 4.3.5. 

 

4.3.5 Improvements 

The EM algorithm has advantages over other reconstruction techniques, but these 

come at a price. The EM algorithm has a slow run time in comparison to POCA and 

other reconstruction algorithms. In the course of research though, ways to alleviate 

these issues have been found. Some of these were implementation specific and will 

be explored in chapter 5, but a major change to the median method will be 

described here. 
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Using the median of the correction values as opposed to the average posed a hurdle 

because of the memory needed for storing the values as well as the extra 

computation time needed to sort them. Using the median method in this form was 

unfeasible. Instead an approximate median approach was developed. The aim was 

to find a way to lessen the impact of the non-Gaussian scattering (which the median 

method was supposed to do),  without having to store all the correction values and 

needing to sort them. Techniques for finding the approximate median do exist but 

no guarantee is given to the quality of estimate. Since the EM is very sensitive to 

even small fluctuations in its internal calculations, more stability was needed from 

the approximation method. This led to the idea of using a binning method. The 

general concept of binning is to keep track of sums of similar values (eliminates the 

need for storage of all values) and then take the average of the group that would 

contain the median. It's illustrated graphically in figure 4.5. 

 

 

The number of bins and the size of the bins are set before the algorithm begins 

running.  The bins are symmetric for negative and positive values, so if there were 

100 bins the first 50 would be for negative values and the last 50 for positive ones. 

Figure 4.5: Using binning to find the approximate median 
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The first and last bins are reserved for all values that exceed the minimum or 

maximum values that can be stored based on the number of bins and bin size, thus 

if there were 50 positive bins and the bin size was 10, any value over 490 would be 

stored in the last bin. When a correction value is found it is added to the appropriate 

bin based on its size and the size of the bin. For example, if there are 100 bins with 

a bin size of 10 and the correction value computed was 37, it would be added to bin 

54 (the fourth positive bin in this case stores values between 30 and 40). The 

number of values in a particular bin also needs to be kept track of. Once all the 

correction values are processed, the bin containing the median (the total number of 

correction values for a voxel is already known, enabling it to be known which 

element would be the median; see section 4.3.2) is found and the total value in that 

bin is divided by the number of correction values that were added to the bin. For 

example, if there were three bins with 11 values each, the median would be the 17th 

value as there are  33 total values which has a median of 17. The 17th value would 

be in the second bin as the first bin has 11 values and the second bin has 11 for a 

total of 22 values in the first two bins. The average value of the second bin is then 

approximated as the median. This number is used to update lambda instead of the 

average or true median correction value.  

 

To get a good estimation of the median the number of bins and their size is of high 

importance. The distributions of correction values of many voxels were studied to 

determine what these parameters should be. Fortunately the absolute values in the 

distributions were very similar and evenly divided in the first several iterations for 

most voxels. This meant that having a static number of bins and bin size would not 

cause uneven binning depending on the voxel. Eventually as the lambda values for 

the voxels converge, the correction values decrease. As they decrease they tend to 

be binned together more because the bin size is static throughout the entire run. 

Thus the approximate median shifts from being closer to the true median to being 
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closer to the average. However, since this happens once the algorithm approaches 

convergence, the average and median values are relatively close and this does not 

pose as large a problem as it would if it happened in the earlier iterations. After this 

study was done 200 was decided on as the number of bins to use and 100000 as the 

bin size for Cij. 

 

Chapter 6 details experiments done to compare the run times of the different 

methods, but the approximate median algorithm should run faster and make more 

efficient use of memory based on complexity analysis. Since the number of bins (B) 

is constant, no matter how many rays pass through a voxel the storage needed  

remains the same. This means memory consumption is O(MNB) as opposed to 

O(MNC). This doesn't necessarily mean the approximate median will always have 

the advantage over the true median as the number of correction values could be less 

than the number of bins. In the course of experiments though, this has rarely been 

the case as the number of bins has been at most 200, and in simulations the typical 

number of correction values is in the thousands. Besides the savings in memory the 

biggest improvement of the approximate median over the true median is the 

decrease in the running time. The approximate median requires no sorting and the 

worst case scenario would be that when finding the median it's stored in the last 

bin, as all the bins would have to be processed. This makes the runtime O(IMNB), 

which for the experiments of this study has been much better than the runtime of 

the true median which was shown to be O(IMN[Clog(C)]).   

 

The approximate median was an important development in the course of research 

into the EM algorithm and was tested thoroughly. The results obtained from this 

new method will be discussed extensively in chapter 6 and compared against 

results from POCA and the average EM. The run times of the different EM methods 

will also be explored. 
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Chapter 5 
Implementation and Methodology 

 

5.1 Simulation Overview 
All the results from the algorithms that will be shown are run from data created in 

simulations. The process from simulating data to analyzing results has been fine 

tuned over the course of the research. Currently the general course is to first create 

a simulation in Geant4. Next, compile and run the program and output the data to a 

file. Finally the reconstruction algorithms are run on the data which write the 

results to another file, to then be analyzed with the appropriate tools.  

 

5.2 Tools 
Besides the reconstruction algorithms themselves, a variety of tools are used for 

simulation and analysis. Geant4 and CRY are the software packages used to 

produce the input data for the reconstruction algorithms to be run on. ROOT is then 

used to plot and analyze the output from the algorithms. The simulation tools will 

be described first. 

 

5.2.1 Geant4 

The Geant4 software package is used to simulate the passage of particles through 

matter [43]. All aspects of detector simulation are covered as it contains the 

following tools: geometry, tracking including multiple scattering, detector response, 

run, event and track management, visualization and user interface [44]. To handle 

the multitude of different fields and applications Geant4 can be used for, it models 

a massive set of physics processes that oversee a vast array of interactions of 

particles with matter over an extensive energy spectrum. It is written in C++ and 

has an object-oriented design which facilitates easier understanding, extension, and 



lvi 

customization of the toolkit. It was developed by RD44, a collaboration of over 100 

scientists from all over the world [45]. Geant4's physics have been validated 

multiple times and the tests it has gone through are detailed thoroughly in “Geant4 

Developments and Applications,” by J. Allison, et al. [43]. 

 

For the purpose of this study, Geant4 was used to create simulations modeling the 

passage of muons through matter. This involves creating the geometry of the 

scenario, such as the detectors and objects inside, as well as modeling the physics 

processes relevant to muons (i.e. the Coulomb force). Much work is done writing 

the code for the scenarios. Besides the geometry itself, a driver and stepping action 

for the program need to be created as well which are used to guide the program, 

and track particles and output data. Once the program is complete, it is compiled 

and run. The program then uses Monte Carlo methods and advanced random 

number generators [44] to simulate the passage of the muon through the user 

created geometry. 

 

In the stepping action the muon particle can be tracked discretely. This is where the 

events are output to file. In the current set up, only events that hit both sets of 

detectors in a scenario are printed to file. Generally the scenarios run have three top 

and bottom detectors as seen in figure 5.1 

 

The point where the muon hits each detector is output to file sequentially. Also, 

before the points of the top detector are output, the momentums of the muon at the 

top and bottom of the volume is printed out. This is all the data needed to begin 

running the reconstruction algorithms.  



lvii 

 

One thing Geant4 doesn't provide is a built in package that models cosmic ray 

muon energy and angle distributions. Another software package that was used to do 

this is described in the next section. 

 

5.2.2 Cosmic-Ray Shower Generator (CRY) 

CRY is a software library that generates cosmic-ray particle shower distributions at 

different elevations for use as input to software that simulates the passage of 

particles through matter, like Geant4. It was designed primarily for use in transport 

and detector simulation code [46]. It uses Monte Carlo methods to model the 

Earth's atmosphere and to produce the corresponding cosmic ray showers [10]. It is 

callable from C++ and FORTRAN and interfaces smoothly with Geant4 [46]. It has 

been shown to produce distributions that match up quite well with results obtained 

experimentally [10][46]. Figure 5.2 shows how the energy distribution of muons at 

sea level produced by CRY compares with the experimental results found by B.C. 

Rastin [51]: 

Figure 5.1: Simple Geant4 scenario: three detector planes 
above and below an uranium block
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For our purposes, CRY was interfaced with Geant4 so that when the scenarios were 

run they used the true distribution of cosmic ray muons with respect to the energies 

and incoming angles at sea level. This provided the reconstruction algorithms to be 

tested on more real life data than Geant4 could have provided alone. 

 

5.3.3 ROOT 

ROOT is a data analysis tool developed at the European Organization for Nuclear 

Research (also known as CERN) [47]. The ROOT system provides a set of object 

oriented frameworks that offer the functionality needed to process and analyze 

huge amounts of data as efficiently as possible. ROOT has a built in CINT C++ 

interpreter so the command, scripting, and programming language are all  

Figure 5.2: CRY generated muon spectrum at sea level against 
experimentally determined spectrum [46] 
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C++ and the tedious compile and link paradigm is avoided.  Some of the features 

included in ROOT are histogramming methods in any number of dimensions, curve 

fitting, function evaluation, minimization, graphics and visualization classes that 

allow easy querying and processing of the data interactively or in batch mode [47]. 

 

ROOT is the analysis tool used most by this study. Scripts were written that 

processed the data produced by the reconstruction algorithms and displayed it in a 

variety of ways. Chapter 7 shows the results from the reconstruction algorithms and 

there the full power of ROOT will be seen.  

 

5.3 Muon Tomography Suite 
The muon tomography suite (MTS) was built as a standalone application written in 

C that would run the POCA and EM reconstruction algorithms. It had one major 

revision as well as countless updates and improvements, but was developed 

modularly and using stepwise refinement. Apart from producing reconstruction 

output, the suite has evolved and can be used for many other processing needs as 

well. The general working of the program will be described in this section as well 

as interesting implementation details. 

 

5.3.1 Driver Implementation 

The MTS was going to be an expansive program with many options on how to run. 

Thus it was developed as modularly as possible. A driver module was created that 

handled all input, parameter setting, and file manipulation. MTS may be run by 

using command line options or through use of a configuration file provided as the 

only argument to the program. Getopts, a very useful C tool for Unix systems, was 

used to provide the great array of options available to the program while keeping 

the code from getting unwieldy and maintaining it to be easily understandable. The 

main parameters needed to run are the input file and the reconstruction or analysis 
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to be done, but the following options were also able to be set on the command line 

or configuration file (otherwise default options would be used): 

 

4. input file name 

5. reconstruction algorithm to be run (EM median/average or POCA) 

6. various EM parameters (voxel size, bin size, number of bins, iterations, 

nominal momentum) 

7. optional output (non-reconstruction information like data distributions, 

internal calculations to the algorithms, and debugging information) 

8. the metric units to run the algorithms with 

9. cuts to use in the algorithm (such as momentum and angle cuts) 

 

Other options were included or taken out as well, but the ones listed were the main 

options that are still included in the program and are useful. All parameters were 

stored in a single array. The pointer to the array was passed to all other modules of 

the program so that access to all options and settings were available everywhere in 

a consistent and succinct way. 

 

The driver module also handled all file manipulation. All needed files were opened 

in this module, whose pointers were stored in an array and passed to all modules 

needing file access. The same was done for output files. All standard output file 

names were created by the driver module. They contained the same pre-extension 

name as the input file, but different extensions were added depending on the 

options run with the program to enable easier organization and the ability to 

recognize what type of reconstruction was done. All optional output had the file 

names included as an option or were given default file names. Once all the 

parameter setting and file manipulation is done, the reconstruction algorithm to run 

is called. POCA and EM can be run independently for reconstruction, but the 
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POCA module is run for both algorithms as the input for EM is based on POCA 

results. The next sections will show how they were implemented. 

 

5.3.2 POCA Implementation 

The implementation of the POCA algorithm is quite straight forward. The 

algorithm is simple geometry and translates well to code. A separate library of 

vector functions was created for use in the operations needed in POCA and other 

parts of the MTS, like dot product and angle calculations. Besides this, the POCA 

algorithm module is very simple. However, when the POCA module is called by 

the driver it's much larger and in depth than just the POCA algorithm. It does a 

variety of analysis as well as preparation for EM. 

 

After initializing all necessary data structures, a header function is called that reads 

the first several lines of the input file. This gets information such as reconstruction 

volume size, as well as number of events. It then sets parameters based on this 

information such as the number of voxels and the range of distances in the different 

coordinate directions. Next, a while loop is entered that runs until all data from the 

Geant4 input file is read. Each event is handled independently. The six points 

where the muon hits the top and bottom detectors are read in as well as the 

momentum for the muon. Next, a least mean squares algorithm is run that fits the 

points from the top and bottom detectors into two vectors. Finally the POCA 

algorithm is called on the two vectors and the scattering point is determined. The 

POCA algorithm module returns the scattering points and the distance of closest 

approach (the length of the line segment between the points of closest approach) or 

some error value, such as lines being parallel, that will tell the program whether to 

continue with analysis of this event or not. If the lines are parallel, or there was 

some other error, then all other analysis is ignored and the next event is processed, 

otherwise the scattering angle is determined using the following equation: 
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where  a and b are the vectors of the incoming and outgoing muon rays. 

 

After the scatter point and scattering angle is found, more work is left to do 

depending on the options selected including formatted output written to file. The 

other main purpose of the POCA module is to do the preprocessing work needed 

for EM, such as collecting the input and estimating the muon path in the volume 

and collecting the needed information in regards to that. This preprocessing for EM 

will be covered in the following sections, but first the data structure created for EM 

will be analyzed. 

 

5.3.4 EM Data Structure 

The EM algorithm needs a substantial amount of data while running. Information 

for every voxel that a muon passes through needs to be stored. This poses a 

significant memory issue as scenario's may be run where there are millions of 

muons and hundreds of thousands of voxels. The structure for EM was developed 

to be as memory efficient as possible as well as to provide easy implementation of 

the EM algorithm, while allowing the ability to fluidly add functionality to the 

program. It is a C struct and is displayed in the next figure. 

 

This structure contains all the information about a particular muon. All muon 

events are independent of each other, so they can be accessed sequentially and no 

random access to a particular muon is needed, thus a linked list structure was used 

to hold all the different muon events.  
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The first line is the event variable that was used  for debugging purposes. This 

number remains the same through the data handling in the POCA module until the 

EM algorithm finishes, so it allows easy event tracking which proved quite useful 

as will be highlighted in chapter 6. The input information,  Δθx, Δθy, Δx, Δy,  and 

pr
2, are stored respectively in the variables on the second line. The third line 

contains two arrays that store the covariance matrix. There is one each for the 

average method (sigma) and the approximate median method (sigmaMed)  so that 

both can be run simultaneously. This is one area where a moderate amount of 

memory was saved compared to the straight forward implementation of the EM 

algorithm. The covariance matrix has four elements but the second and third 

elements always contain the same element, so having four elements in the array is 

superfluous. In addition to storing the covariance matrix, the arrays are also used to 

store the parameter Vij (the inverse of the covariance matrix) as the original 

covariance is not needed after its' inverse is found. This saves a sizable amount of 

memory. Doubles on our 64-bit systems are 8 bytes, so 80 total bytes per muons are 

saved . The largest scenario we attempted to run contained 10 million muon events 

so this one change can save upwards of 800 megabytes for large runs. The next line 

 

Figure 5.3: Main structure used to encapsulate data for 
the EM algorithm. The structure contains the information 
regarding a particular muon. 
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is another important part where much memory was saved relative to the normal 

implementation of the EM algorithm. It is a pointer to another structure that 

contains the information needed for each voxel. It's illustrated in figure 5.4. 

 

 

The EM algorithm was shown to require estimates of a muon's path through the 

reconstruction volume. From this path two parameters are gleaned. L, which is the 

path length of a muon through the current voxel, and T, which is the length of the 

muon paths from after it exits the current voxel until it exits the reconstruction 

volume. However, these parameters are static throughout the entire algorithm and 

are only needed to determine the weights (used for the calculation of the covariance 

matrix and are also static) for the voxel. This makes storage of the L and T 

parameters unneeded after the weights for the voxels are determined. Since the 

number of voxels a muon can possibly travel through can be quite large (hundreds 

of thousands), and the number of muon events high as well (millions), this provides 

a substantial memory saving compared to the normal implementation of the EM 

algorithm. The voxel structure also is a linked list that contains all voxels a 

particular muon hit, and the last line in the structure is the pointer to the next voxel. 

 

Now that the data structure used for this implementation of the EM algorithm is 

Figure 5.4: Sub-structure used for EM 
algorithm data. This structure contains 
all information needed for a voxel that a 
muon passes through. 
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detailed, the EM algorithm implementation itself can be explained. First the 

computation of the input data for the algorithm will be displayed. 

 

5.3.4 EM Preprocessing Implementation 

The EM algorithm requires that a sizable amount of data be processed before the 

iterative phase begins. This information is based upon the estimated track of the 

muon through the volume it's passing. The path used in this implementation is 

determined by finding the scattering point of the muon and connection the 

incoming muon track to this point, and then connecting the point to the exiting 

muon track. If there is no scatter point (i.e the tracks are parallel) then the straight 

line projection is used by connecting the incoming muon track to the outgoing 

track. This process takes place in the POCA module as detailed in section 5.3.2. 

Once this is done, the new instance of the muon data structure  is created and the 

first part of the preprocessing for EM is done. 

 

The EM algorithm requires the displacement and scattering angle in the x and y 

directions for a particular muon, as well as the momentum parameter, for input. The 

process of determining these was explained in chapter 4. The implementation was 

done in the exact manner laid out. Once the parameters are determined they are 

stored in the muon data structure. This structure is then passed to another module 

for determining the voxels a muon passes through on its course through the 

volume.  

 

Tracking a muon's actual path through the volume is not possible, but a good 

prediction can be made of what voxels the muon traveled through. This is necessary 

for the EM as well as determining a muon's path length through a voxel and 

distance left it has to travel through the volume (parameters L and T). This is 

handled by creating a line from the incoming muon track to the scatter point (or the 
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incoming track to the outgoing track if there was no scatter point) and a line from 

the scatter point to the outgoing track. These lines are defined parametrically. The 

muons initial position in the volume is determined and then what voxel it is in can 

be calculated by an arbitrary predetermined numbering scheme. The boundary 

coordinates of the adjacent voxels are then computed, and the time parameter (t) is 

calculated for the parametric equations for when the track is at boundary 

coordinate. The voxel with the minimum time parameter is chosen as the next voxel 

that is reached. The coordinates of the current voxel are then set to the entry point 

point of the new voxel and the process is repeated. This is done until the end of the 

volume is reached.  

 

When the next voxel to be traveled to is found, L can be determined by using the 

distance formula with the initial point the muon entered the current voxel and the 

point where it exits the voxel. The same concept can be use to find T, except using 

the point where the muon exits the current voxel and the point where it exits the 

volume. As was explained in the section on the EM data structure, these parameters 

are not stored and just used to determine the weights for the voxels and then 

discarded. 

 

Once the input data is processed, the muon track estimated, and the weights for the 

voxels ascertained, the preprocessing is finished and the EM algorithm may begin. 

 

5.3.5 EM Implementation 

The EM algorithm is relatively straightforward to implement, after the input data is 

determined. After all data structures are initialized and the input data passed in, the 

main “for” loop is entered where the expectation and maximization steps are 

iteratively run. Here computation time is saved by altering how the algorithm 

calculates the correction values for the expectation step. The inverse of the 
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covariance matrix is needed to get the correction value for a particular voxel (see 

section 4.3.2) and the algorithm calls for getting the inverse covariance matrix for 

all muons first, then going through all muons again to calculate the correction value 

for all the voxels they went through. All correction values are based on the 

information provided by a single muon and all muon events are independent, so 

redundant work can be avoided by determining the inverse covariance matrix for a 

muon and then immediately determining correction values for all voxels that muon 

goes through. These are either added to a variable storing a running tally of 

correction values for a voxel in the average method, or are binned for a voxel if the 

approximate median method is being run. This change prevents processing all 

muons twice, which is significant as millions of muon events are typically used in 

reconstructions.   

 

After the correction values are processed, the average or approximate median is 

found described by the methods in the chapter 4, and the lambda value for each 

voxel is updated. Once all iterations are complete, the final values of lambda along 

with other voxel information is output to file and the suite takes care of freeing data 

structures and the program ends. 

 

5.4 Software Testing 
The reconstruction process requires the sharing of information between many 

different programs and modules. This unfortunately results in the process having 

many areas for failure. Due to this, software testing was a large part of MTS 

development and ended up illuminating better ways to structure the suite as well as 

fixing bugs that produced inaccurate results. The software techniques used to 

analyze the MTS are explored in this section. 
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5.4.1 General Techniques 

Testing was implemented throughout the software development cycle. General 

techniques included both black box and white box methods. Unit testing was used 

extensively to validate the output of modules after they were developed. This was 

used with good results on the vector functions that were implemented as well as on 

internal routines needed for the reconstruction algorithms such as the POCA 

algorithm module, the preprocessor for the EM input, and the modules that 

produced the correction values for the EM algorithm. The output of the individual 

modules was produced on known input and compared to what the output should be 

(calculated by hand). The same process was used with boundary values on the 

modules where it was applicable (for example the module that estimates the muon 

tracks) to ensure that they behaved correctly on extreme cases. This enabled 

validation of the modules as well as uncovering bugs that were fixed before the 

entire reconstruction implementation was even complete. 

 

A white box technique that was heavily used in the testing of the EM algorithm was 

the analysis of the convergence of the lambda values of voxels inside and outside 

the targets in a simulation. The lambda value of the voxel being analyzed was 

output at certain iterations. Voxels that displayed interesting behavior (such as not 

converging, or converging to an unlikely value) were then looked at more in depth. 

This resulted in the discovery of several small bugs and implementation issues that 

were fixed. Similarly, the correction values of particular voxels were also explored 

which resulted in several interesting findings (a specific example will be given in 

section 5.4.2). 

 

Static techniques were also used, and this included code review. Dr. Debasis Mitra 

regularly reviewed the MTS code to ensure proper implementation of the algorithm 

in addition to checking for mistakes. This resulted in high assurance that the 
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algorithms were implemented correctly. 

 

Besides testing to ensure accurate results, the stability of the program was also 

examined. The program in general was coded defensively to make sure crashes and 

unpredictable behavior was kept to a minimum. This was an important issue 

because the EM algorithm has a relatively long run time and regular crashes of the 

program would have seriously hampered research as certain simulations took many 

hours to reconstruct. To test the stability of the MTS, fuzz testing was used on the 

modules that handled input and output. This involved giving random or incorrect 

input to see how the program handled it.  Mutation testing was also used to alter 

internal data and see how the program responded. Through these kinds of testing 

several faults were found in the I/O and other routines and were fixed. This resulted 

in few unexpected program terminations and the MTS running stably.  

 

The techniques described in this section were mostly used from the beginning of 

development to help minimize errors in the code and prevent more complex testing 

and difficult debugging later on in the cycle. Some other interesting techniques 

were used for specific larger problems and will be detailed in the next section. 

 

5.4.2 Specific Examples of Software Testing 

A successful black box method used for debugging the MTS code was comparing 

the results of two different implementations of the same algorithms. Dr. Kondo 

Gnanvo also used the POCA algorithm to reconstruct Geant4 simulations [17]. His 

output for POCA was compared to the output from the POCA in the MTS and it 

was discovered that the scattering angle distribution for the MTS was incorrect, 

which caused problems in the results for POCA and for EM as they both use this 

information. Once this was determined the module for angle calculation was found 

to have improperly handled the vectors representing the muon tracks. This was 
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fixed and the distributions compared again, revealing a proper distribution. A 

ROOT plot showing the distributions from Dr. Gnanvo's code and the MTS code is 

found in figure 5.5. 

 

After fixing the problem with the scattering angles, the reconstructions produced 

were much better than the ones produced before in terms of discrimination of 

targets and noise reduction. 

 

A source of contention throughout the research of this study was whether or not 

certain inconsistent behavior was due to implementation errors or faulty input from 

Geant4. The output directly from Geant4 was verified to be correct many times 

throughout the course of this study. However, there were still found certain strange 

results that couldn't be explained by a fault in the MTS. One of these issues was 

that incoming and outgoing tracks that were in essence parallel, were still being 

 

Figure 5.5: Scattering angle distributions from Dr. Gnanvo's 
POCA and the MTS POCA. The x-axis represents the magnitude 
of the scattering angle while the y-axis represents the number of 
scattering angles. 
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used to find POCA points (review section 4.2 to see why this shouldn't happen).  

These tracks were unscattered and thus should have had no scatter point. Also since 

scatter points were found, the scattering angle and displacement were found as 

well. This led to poor results in both POCA and EM reconstructions. As mentioned, 

Geant4 output had been verified as correct in the past, so this led to the belief that 

there was a problem with the least mean squares fit of the tracks. This function had 

been independently tested by the techniques described in the previous section, so it 

would have been surprising if it had a problem with so many 'normal' tracks. A test 

idea was then devised.  

 

The Geant4 simulations were run with ideal conditions, so that no scattering occurs 

in the GEM detectors and all detector points are on the same line. If the parallel 

tracks were used directly from Geant4 and not fit, they should produce the correct 

behavior in terms of parallel track detection. Once this test was run it was 

determined that the parallel tracks were still not detected properly, proving there 

was an issue with the input data from Geant4. Analysis of the data from Geant4 

revealed that the precision of the coordinates printed to file was not perfect and the 

values were being truncated. This meant that even though the tracks truly were 

parallel, the level of precision prevented the MTS POCA from detecting them. 

After this was found the precision of output was increased and the issue of parallel 

tracks with scatter points was resolved. 

 

One problem that was fixed used a mix of both black and white box testing. Based 

on reconstruction plots from the EM algorithm run on many different simulations it 

was seen that some voxels were getting high values of lambda yet did not contain 

any material and were unlikely to contain tracks that were scattered at all. This was 

an odd observation and led to analyzing those voxels specifically and the correction 

values they contained. After pouring through the correction values it was found that 
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a few events had extremely high values that were many magnitudes larger than the 

majority of values. More in-depth analysis revealed that these tracks had 

displacements in the X direction of several meters which would be nearly 

impossible if no scattering occurred and highly unlikely even if some small 

scattering did. This led a review of the module handling the computation of the 

displacement values. It was determined that these large displacement values 

occurred when the tracks were completely perpendicular to the Y-axis. This 

observation led to the idea that the least mean squares fitting of the muon tracks 

had a bug. Careful review of this routine led to the discovery of an incorrect 

condition check for when tracks were perpendicular to the Y-axis. Once this was 

rectified, the large displacements disappeared and along with them all the problem 

voxels. 
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Chapter 6 

Experiments and Results 
 

6.1 Introduction 
The following are results produced from ROOT visualization based on the data 

provided by the MTS program. They are divided into results from POCA 

reconstruction, EM reconstruction with the average method and EM reconstruction 

with the approximate median method. Preceding the results is a brief brief section 

describing the scenarios to be modeled. The results are followed by a section 

further analyzing them and a final section that analyzes the algorithms' 

computational performances.  

 

6.2 Scenarios 
The next several sections will define the scenarios that were simulated with Geant4 

to run the reconstruction algorithms on. The specifics of the scenarios will be 

described in the appropriate sections, but they all share some similarities detailed 

here. All of the scenarios are run with ideal conditions. They are run with vacuum 

as the background; the only material being the target objects inside the volume. The 

detectors are modeled in such a way that they provide no scattering. In addition, the 

detectors operate at perfect spatial resolution. Every simulation was run with the 

equivalent of 10 minutes exposure time. The reconstruction parameters used for the 

EM algorithms are also the same. All scenarios use 5cm X 5cm X 5cm sized voxels 

except for the vertical clutter scenario which uses 10cm X 10cm X 10cm voxels. 

The number of iterations run is 200. One feature that not all the scenarios share is 

reconstruction volume size. This information will be provided with the description 

of each simulation. 
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For all plots shown in this chapter, the Z-axis is oriented vertically, with the Y-axis 

being on the left side of the plot and the X-axis on the right. The unit of length used 

in the plots are millimeters. 

 

6.2.1 Basic Scenario 

The basic scenarios are all of the same geometry, namely a 10cm X 10cm X 10cm 

box in a volume sized 200cm X 200cm X 110cm as seen in figure 6.1 produced 

directly from Geant4 simulation codes: 

 

 

Five different materials were modeled, aluminum, iron, lead, tungsten and uranium. 

These were chosen as aluminum and iron are low and medium Z type materials, 

respectively, that would most likely be encountered in the types of cargo being 

imaged. uranium was obviously chosen to represent a threat object while lead and 

tungsten were used to represent high Z materials that might be found in real world 

Figure 6.1: Prototype of the basic scenarios: A single 10cm X 
10cm X 10cm box of varying materials in a 200cm X 200cm X 
110cm volume 
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scenarios that come closest to having the same properties uranium has in regards to 

muon scattering.  

 

For the EM algorithm these scenarios will be used as a baseline for other scenarios. 

Accuracy analysis is done to find a threshold for lambda where the reconstruction 

comes out best in terms of the properly reconstructed voxel versus false positives 

and false negatives. For example, if a threshold of 10,000 is chosen for uranium, all 

voxels inside the target that are above this value will be counted as true positives 

and those below will be considered false negatives. Any voxels not in the target that 

are above this value will be categorized as false positives. Once the thresholds are 

determined for each material in the basic scenarios, this analysis can be used in the 

more complex scenarios to see how well the algorithm is discriminating between 

different materials, which is its most important goal. 

 

6.2.2 Five Target Scenario 

The five target scenario consists of five 10cm X 10cm X 10cm boxes in a 200cm X 

200cm X 110cm volume placed symmetrically on the same z-plane, using the same 

materials found in the basic scenarios. aluminum is centered at -500cm x, -500cm 

y, 0cm z, iron at -500cm x, 500cm y, 0cm z, lead at 0cm x, 0cm y, 0cm z, tungsten 

at 500cm x, -500 y, 0cm z, uranium at 500cm x, 500cm y, 0cm z.  The Geant4 

geometry is displayed in figure 6.2. 

 

The thresholds for the materials that were found using the basic scenarios will be 

used first in this scenario to see how well discrimination can be done in a relatively 

simplistic situation.  
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6.2.3 LANL Scenario 

This simulation is an attempt at recreating a scenario used by the team at Los 

Alamos National Laboratory in their paper introducing the EM algorithm [19]. The 

200cm X 200cm X 110cm volume contains three 10cm X 10cm X 10cm boxes. 

The materials used are tungsten (-300cm, -300cm, 300cm), iron (0cm, 0cm, 0cm), 

and aluminum (300cm, 300cm, -300cm). This setup is displayed in figure 6.3. 

 

This scenario will be used to generally compare how this studies implementation of 

the EM algorithms compares to the original. Accuracy analysis will also be done 

with the thresholds calculated in the first scenario. 

Figure 6.2: Geometry of the five target scenario: Five 10cm X 
10cm X 10cm boxes of varying materials (Al, Fe, Pb, W, U) in a 
200cm X 200cm X 110cm volume 
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6.2.4 Vertical Clutter Scenario 

The vertical clutter scenario is significantly different from the preceding 

simulations. The reconstruction volume is significantly larger at 400cm X 400cm X 

300cm. It contains three 50cm X 50cm X 20cm rectangular boxes stacked 

vertically. An iron box is centered at 0cm x, 0cm y, 0cm z. Above the iron box is a 

tungsten one centered at 0cm x, 0cm y, 30cm z, while below is an aluminum box 

centered at 0cm x, 0cm y, -30cm z. Also, for the reconstruction, 10cm X 10cm X 

10cm voxels were used due to larger targets objects being reconstructed. The 

geometry for this scenario is displayed in figure 6.4. 

 

Scenarios with vertical clutter are a situation that POCA has been shown to have 

trouble with reconstructing well in comparison to how it performs with non-

vertically oriented scenarios [11]. The EM algorithm is supposed to have less 

Figure 6.3: Geometry of the LANL scenario: Three 10cm X 10cm 
X 10cm boxes of varying materials (W, Fe, Al) in a 200cm X 
200cm X 110cm volume 
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trouble dealing with this type of setup; the analysis of this simulation and its 

comparison with POCA will show if this is the case. 

  

 

6.2.5 Truck Scenario 

This scenario is a simulation of potentially what muon tomography is being 

developed for. A truck containing various liter sized objects (10cm X 10cm X 

10cm) placed at different positions was created using Geant4. The reconstruction 

volume is very large at 720cm X 360cm X 360cm. Features of the truck include the 

engine, frame and chassis consisting of iron, a battery made out of lead, a 

windshield containing glass, and tires of rubber with iron in the center modeling the 

rims. The liter sized objects in the truck are made up of 12 uranium blocks, 3 

tungsten blocks, 3 lead blocks, 7 iron blocks, and 3 aluminum blocks. The 

geometry is displayed in figure 6.5: 

Figure 6.4: Geometry of the vertical clutter scenario: Three 50cm 
X 50cm X 20cm boxes of varying materials (W, Fe, Al) stacked 
vertically in a 400cm X 400cm X 300cm volume
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This scenario is the most realistic of all the simulations. The main analysis of this 

situation will be to see how well EM can differentiate higher Z materials from 

medium and low Z materials, using the thresholds found in the basic scenarios. 

 

6.3 POCA Results 
This section consists of the results of the POCA reconstruction algorithm used on 

the simulations produced by Geant4 that were detailed in section 6.2. The color 

scale for the plots (seen on the right side of the figures) represents the magnitude of 

the scattering angle in degrees.  

Figure 6.5: Geometry of the truck scenario: The blue and red 
boxes in the figure are 10cm X 10cm X 10cm. The red boxes are 
high-Z material like uranium and tungsten. The blue boxes are 
medium-Z material like iron.
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6.3.1 Basic Scenario 

  
Geometry of basic scenario POCA reconstruction of basic scenario 

with aluminum block 

  

POCA reconstruction of basic scenario 
with iron block 

POCA reconstruction of basic scenario 
with lead block 

  
POCA reconstruction of basic scenario 
with tungsten block 

POCA reconstruction of basic scenario 
with uranium block 

Figure 6.6: POCA reconstruction of basic scenario with different materials 
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The POCA reconstructions for these simple scenarios come out quite well as seen 

in figure 6.6. The shape of the box is definitely made out in all the plots, though it 

is not quite as apparent in the aluminum reconstruction. This is due to the lesser 

scattering of the muons through the aluminum block and more tracks being 

calculated as being parallel and thus fewer muon tracks having scatter points. Also, 

the relative scattering for the materials is clear. The plots are normalized to each 

other and as the material changes between elements of higher atomic number, the 

number of higher scattering angles can be seen to increase. However determining 

what a material is based only on the 3D plot of its scatter points is a difficult 

proposition due to the nature of the POCA algorithm. 

 

6.3.2 Five Target Scenario 

  

Geometry of five target scenario POCA reconstruction of five target 
scenario 

Figure 6.7: POCA reconstruction of five target scenario 

 

The POCA reconstruction of the five target scenario (Table 6.2) shows similar 

results to the basic scenarios. The five targets are reconstructed in a box shape with 

the higher Z materials (uranium, tungsten and lead) displaying more scatter points 

with high scattering angles than the medium and low Z materials (iron and 

aluminum respectively). This again shows the success of POCA at constructing 
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simple scenarios. 

 

6.3.3 LANL Scenario 

  
Geometry of LANL scenario POCA reconstruction of LANL five 

target scenario 

Figure 6.8: POCA reconstruction of LANL scenario 

 

The POCA reconstruction of the LANL scenario (figure 6.8) again displays the 

ability of this algorithm to reconstruct simple scenarios with little material very 

well, as all three materials are reconstructed with the higher Z of the material 

getting scatter points with higher scattering angle.  

 

6.3.4 Vertical Clutter Scenario 

  

Geometry of vertical clutter scenario POCA reconstruction of vertical clutter scenario 

Figure 6.9: POCA reconstruction of vertical clutter scenario 
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The POCA reconstruction of the vertical clutter scenario in figure 6.9 shows one of 

the main problems with the algorithm. When large amount of materials are stacked 

vertically, the POCA algorithm tends to place many scatter points between the 

objects. Here the blocks of different material cannot be as easily discriminated as in 

the other scenarios and many large scattering muons are placed in areas where there 

is no material or in the iron block where high scattering should not occur as 

frequently. 

 

6.3.5 Truck Scenario 

 

 

Geometry of truck scenario POCA reconstruction of truck scenario 

Figure 6.10: POCA reconstruction of truck scenario 

 

Figure 6.10 shows the POCA reconstruction of the truck scenario. This 

reconstruction shows both what POCA does well and does not do well. The small 

blocks of material that are placed around the truck without much surrounding 

material are reconstructed with definitive box shapes with materials having larger 

scattering angles according to their atomic number. However, for the targets that are 

surrounded (especially vertically) with much material, like the uranium blocks near 

the lead battery and iron engine, the reconstruction cannot discriminate them well 
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from their surroundings.  

 

6.4 Average-EM Results 
This section describes the results of the average EM method reconstruction 

algorithm which was described in section 4.3.2.  The color scale for the plots (seen 

on the right side of the figures) represents the magnitude of the scattering density of 

the voxels in milliradians2 per cm. The plots for the EM methods look quite 

different from the POCA plots as their output consists of lambda values for 

rectangular voxels as opposed to single points. These voxels are of a predefined 

size (in the following scenarios 5cm X 5cm X 5cm)  and the entire voxel is colored 

according to its lambda value. 

 

6.4.1 Basic Scenario 

Figure 6.11 displays the results produced by the average-EM method on the basic 

scenarios. The reconstructions clearly show the square shapes of the objects. The 

absolute lambda values vary wildly, but increase in value as expected as the 

materials increase in atomic number.  
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Geometry of basic scenario Average-EM reconstruction of basic 

scenario with aluminum block 

  
Average-EM reconstruction of basic 
scenario with iron block 

Average-EM reconstruction of basic 
scenario with lead block 

  
Average-EM reconstruction of basic 
scenario with tungsten block 

Average-EM reconstruction of basic 
scenario with uranium block 

Figure 6.11: Average-EM reconstruction of basic scenario with different materials 
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Table 6.1 goes further into showing how well the targets are discriminated from 

their surroundings as it provides thresholds for the materials that will be used in the 

following scenarios to provide a base value for discrimination between objects. 

 

Materials λ-Threshold 
(mrad2/cm) 

True 
Positives

True  
Positive 
% 

False 
Positives

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

Aluminu
m 

8000 8 100 0 0 0 0 

Iron 295000 8 100 0 0 0 0 

Lead 800000 8 100 0 0 0 0 

Tungsten 1300000 8 100 0 0 0 0 

Uranium 1800000 6 75 0 0 2 5.68e-5

Table 6.1: Accuracy analysis of the average-EM method reconstruction of the basic 
scenario 

 

Before analyzing the accuracy results, the table columns should be explained.  The 

threshold is the chosen minimum value for a material that needs to be surpassed for 

a voxel to be registered as that material. True positives are the the number of voxels 

in the target that surpassed the threshold value. The true positive percentage is 

determined by dividing the number of voxels in the target that attained the 

threshold by the total number of voxels in the target. False positives are voxels that 

surpassed the threshold value that weren't in the target with the false positive 

percentage determined by dividing the number of voxels in the volume that 

surpassed the threshold by the total number of voxels in the volume. False 

negatives are the number of voxels in the target that did not surpass the threshold 

value. 

 

The basic scenarios show excellent results in terms of accuracy for the average-EM 

method. Aluminum, iron, lead and tungsten all show perfect detection for the 
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thresholds chosen without incurring any false positives. Uranium had one voxel 

reconstructed with a relatively low value of lambda and one with a value near the  

tungsten threshold, preventing it from getting perfect detection although with its 

chosen threshold it also avoided any false positives. A large difference in threshold 

values for the materials even for tungsten and uranium, which is one of the tougher 

pair of materials to distinguish between, as they are both high-Z and are very close 

in density. However, now we have a baseline to distinguish between the materials. 

Also, as was mentioned earlier, the simulations are run in vacuum. Any voxel not 

containing material will instead have in it the density equivalent of the galactic 

background. These voxels will be considered reconstructed correctly if they have a 

value less than one, as very little scattering should occur through these voxels. 

 

6.4.2 Five Target Scenario 

  

Geometry of five target scenario Average-EM reconstruction of five 
target scenario 

Figure 6.12: Average-EM reconstruction of five target scenario 

 

The 3D image of the five target scenario is recreated well as seen in figure 6.12. 

The boxlike shape of the objects are apparent and the values of lambda appear 

appropriate in terms of the the higher Z materials getting higher values. The 

accuracy of the scenario is displayed in Table 6.2. 
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Material λ-Threshold 
(mrad2/cm) 

True 
Positives

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

High-Z 800000 16 66.6 0 0 8 2.27e-4
U 1800000 5 62.5 4 0.00012 3 8.52e-5

Table 6.2: Accuracy analysis of the average-EM method reconstruction of the five 
target scenario 

 

The five target scenario doesn't hold up as well in terms of the voxels obtaining the 

thresholds chosen with the basic scenarios. Only two-thirds of the voxels were 

reconstructed with at least a lambda value of 800000 – the threshold for lead, the 

lowest high-Z material modeled. However the discrimination still exists as there 

were no false positives and if the threshold is lowered to 350000, all voxels 

containing high-Z material are present with zero false positive values. Still, this is 

not the ideal result as it would be best if a material had a single threshold value for 

lambda that would remain constant  and be able to be used regardless of scenario. 

 

The result of the accuracy for uranium is uneven as more than half of the voxels are 

over the threshold, but a few of the voxels from the lead and tungsten targets are 

over the the threshold as well. This scenario shows the difficulty of distinguishing 

between similar materials (lead, tungsten and uranium are high-Z and very dense), 

but that overall uranium produces higher scattering densities than the others.  

 

Another noticeable feature of this scenario is the lack of noise. There are 40 total 

voxels out of 32000 in the reconstruction that contain material. All forty had 

lambda values above one and only one voxel without material got a value above 

one, and it was by a very slight amount. Overall this reconstruction did very well in 

terms of placing material in the appropriate voxels. 
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6.4.3 LANL Scenario 

 
 

Geometry of LANL scenario Average-EM reconstruction of LANL 
scenario 

Figure 6.13: Average-EM reconstruction of LANL scenario 

 

Like the previous scenarios the 3D reconstruction of the LANL simulation looks 

almost identical to the original geometry as seen in figure 6.13. The definition of 

the targets is easily seen and the image contains almost no noise. The tungsten 

target gets the higher lambda values with the iron and aluminum lambda values 

being much smaller. Table 6.3 details the accuracy of the reconstruction. 

 

Material λ-Threshold 
(mrad2/cm) 

True 
Positives 

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

W 1300000 6 75 0 0 2 5.68e-5 

Table 6.3: Accuracy analysis of the average-EM method reconstruction of the 
LANL scenario 

 

The LANL scenario holds up better in terms of accuracy than the five target 

scenario. Here three fourths of the tungsten voxels are reconstructed above the 
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threshold determined for the element with zero of the voxels being mistakenly 

classified as being tungsten. Only two voxels – both right above the tungsten object 

– that contain no material receive a lambda value above one, so this scenario is 

reconstructed with very little noise. 

 

6.4.4 Vertical Clutter Scenario 

 
 

Geometry of vertical clutter scenario Average-EM reconstruction of vertical 
clutter scenario 

Figure 6.14: Average-EM reconstruction of vertical clutter scenario 

 

In the 3D plot found at the top of figure 6.14, it is evident that the tungsten block is 

reconstructed in the proper place, though noise can be seen around the block. Both 

the iron and aluminum targets are harder to make out, but the lego plots in figure 

6.15 show that they are being reconstructed properly as well.  
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Voxel lambda values of tungsten block 
at Z = 350cm 

Voxel lambda values of tungsten block 
at Z = 250cm 

Voxel lambda values of iron block at  
Z = 50cm 

Voxel lambda values of iron block at  
Z = -50cm 

Voxel lambda values of aluminum block 
at Z = -250cm 

Voxel lambda values of aluminum block 
at Z = -350cm 

Figure 6.15: Lego plots of the average-EM reconstruction of the vertical clutter 
scenario 



xcii 

The plots in figure 6.15 are slices of the volume in the XY plane at different Z. 

Since the voxel size is 10cm X 10cm X 10cm and the blocks are 20cm thick, the 

blocks contain two voxels in the Z direction. The plots on the left show the value of 

the voxels on the higher level of the block, and the plots on the left show the value 

of the voxels on the lower level. Judging by these it is apparent that the algorithm 

'finds' the different materials. The tungsten voxels all have higher values than the 

iron voxels, and the iron voxels all have higher lambdas than the aluminum voxels. 

However, 150 voxels have material present in them, yet 354 get reconstructed with 

a lambda value above 1, which was established before as a cutoff between the 

background vacuum and some type of material. The average-EM method seems to 

be able to discriminate well in this situation, but does also produce a lot of leakage 

into voxels adjacent to the block. 

 

This scenario used larger voxels than the other due to the larger sized objects. In   

experiments it has been observed that the size of the voxel chosen can alter the 

value of lambda. Due to this the lego plots were used in lieu of of the accuracy 

analysis of the scenarios. 
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6.4.5 Truck Scenario 

 

  
Geometry of truck scenario Average-EM reconstruction of truck 

scenario 

Figure 6.16: Average-EM reconstruction of truck scenario 

 

The reconstruction of the truck scenario is one of the more obvious differences that 

can be seen between the average-EM method and the median-EM method. Figure 

6.16 shows that the reconstruction constructed the truck well. The tires, engine, and 

battery are visible. Also, the targets themselves were generally found at the right 

spots. What's not quite as distinct is the discrimination between the different 

materials. Also, the reconstruction is very noisy. Table 6.4 makes these issues more 

apparent.  

Material λ-Threshold 
 (mrad2/cm) 

True 
Positives

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

High-Z 800000 52 36.1 0 0 92 1.23e-4
U 1300000 33 34.4 8 8.80e-7 69 9.20e-5

Table 6.4: Accuracy analysis of the average-EM method reconstruction of the truck 
scenario 
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With the thresholds chosen, less than half of the voxels are reconstructed correctly 

for the high-Z and uranium analysis. As seen in the five target scenario, the high-Z 

voxels have higher values than all the voxels of lower Z material, but their absolute 

values are lower than the threshold chosen. However, no voxels that do not contain 

high-Z material are reconstructed as if they did, keeping the false positive rate at 

zero. For the uranium threshold, some tungsten and lead voxels do get larger than 

expected values and thus show up as uranium. Overall there still is discrimination 

between materials, but the lambda values for these materials are not staying as 

constant between scenarios as we would like them to. 

 

6.5 EM Approximate Median Results 
This section displays the results of the approximate EM method reconstruction 

algorithm.  The color scale for the plots (seen on the right side of the figures) 

represents the magnitude of the scattering density of the voxels in milliradians2 per 

cm. 

 

6.5.1 Basic Scenario 

Figure 6.17 displays the results produced by the approximate median method on the 

basic scenarios. Like the average method, the reconstructions clearly show the 

square shapes of the objects. 
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Geometry of basic scenario Approximate median-EM reconstruction 

of basic scenario with aluminum block 

  
Approximate median-EM reconstruction 
of basic scenario with iron block 

Approximate median-EM reconstruction 
of basic scenario with lead block 

  
Approximate median reconstruction of 
basic scenario with tungsten block 

Approximate median reconstruction of 
basic scenario with uranium block 

Table 6.17: Approximate median-EM reconstruction of basic scenario with different 
materials 
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Unlike the average method, the absolute lambda values vary less, as seen in table 

6.5. 

 

Material λ-Threshold 
(mrad2/cm) 

True 
Positives 

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

Al 38 8 100 0 0 0 0 
Fe 1500 8 100 0 0 0 0 
Pb 2000 8 100 0 0 0 0 
W 5000 7 87.5 0 0 1 3.08e-5
U 20000 7 87.5 0 0 1 3.08e-5

Table 6.5: Accuracy analysis of the approximate median-EM method reconstruction 
of the basic scenario 

 

The basic scenarios show similar results in terms of accuracy for the approximate 

median method. No false positive voxels was incurred for any of the thresholds 

found. Aluminum, iron and lead were discriminated perfectly, while tungsten and 

uranium both had one voxel receive a low value of lambda with respect to the 

chosen threshold.  A large difference in threshold values for the materials is 

apparent in this method as well and the difference for tungsten and uranium is even 

more pronounced. Now with the baselines established for this method, the other 

scenarios can be analyzed and a good comparison of the accuracy between the 

methods can be made. 

 

6.5.2 Five Target Scenario 

The 3D image of the five target scenario is again constructed well as seen in figure 

6.18. Like the average method, the block shape of the objects can be seen and the 

lambda values appear correct in comparison of the different materials. The 

accuracy of the scenario is displayed in table 6.8. 
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Geometry of five target scenario Approximate median-EM reconstruction 
of five target scenario 

Figure 6.18: Approximate median-EM reconstruction of five target scenario 

 

Material λ-Threshold 
(mrad2/2) 

True 
Positives

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

High-Z 2000 20 83.3 0 0 4 1.23e-4 
U 20000 7 82.5 2 0.0000

6 
0 0 

Table 6.6: Accuracy analysis of the approximate median-EM method reconstruction 
of the five target scenario 

 

Here the median method improves upon the average. For discrimination of high Z 

material the median method reconstructs four more voxels correctly than the 

average method for an 83.3% detection rate with zero false positives. All high Z 

voxels have  lambda values above all non high Z voxels as well, so total 

discrimination remains perfect. The detection of uranium also improves for the 

median method as all but one voxel exceeds the threshold, while the average 

method had three misses. The false positives also decreased by half from four for 

the average method to two for the median. 
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For the first comparison scenario it appears that the median method improved upon 

the average. The effect of the non-Gaussian scattering is lessened by using the 

approximate median-EM as opposed to the average-EM, and the high variance of 

lambda values from voxel to voxel is not as readily seen with this method. 

 

6.5.3 LANL Scenario 

 
 

Geometry of LANL scenario Approximate median-EM reconstruction 
of LANL scenario 

Figure 6.19: Approximate median-EM reconstruction of LANL scenario 

 

Figure 6.19 shows that the 3D image produced looks almost identical to the 

geometry and contains minimal noise. The tungsten target gets higher lambda 

values than iron and aluminum, and the iron is higher than aluminum. Table 6.7 

shows the accuracy of the reconstruction. 

 

Materia
l 

λ-Threshold 
(mrad2/cm) 

True 
Positives

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 

W 5000 8 100 0 0 0 0 

Table 6.7: Accuracy analysis of the approximate median-EM method reconstruction 
of the LANL scenario 
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The discrimination of tungsten versus the other materials with the threshold found 

is perfect. All voxels passed the threshold and no voxels containing material other 

than tungsten did. There were two voxels above the tungsten block that did get 

lambda values above one, but they were very low values. Little noise overall 

appeared in this scenario, and like the five target scenario, the discrimination for 

the median method appears superior to the average method which only constructed 

75% of the tungsten voxels above the threshold found. 

 

6.5.4 Vertical Clutter Scenario 

 
 

Geometry of vertical clutter scenario Approximate median-EM reconstruction 
of vertical clutter scenario 

Figure 6.20: Approximate median-EM reconstruction of vertical clutter scenario 

 

Much like the average method, judging by the 3D plot found at the top of Figure 

6.20, it is evident that the tungsten block is reconstructed correctly, though 

discrimination between the boxes is not easily seen. However, unlike for average 

method much less noise is seen in the plot as well. The lego plots in figure 6.21 

show definite discrimination between the materials. 
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Voxel lambda values of tungsten block 
at Z = 350cm 

Voxel lambda values of tungsten block 
at Z = 250cm 

Voxel lambda values of iron block at  
Z = 50cm 

Voxel lambda values of iron block at  
Z = -50cm 

Voxel lambda values of aluminum block 
at Z = -250cm 

Voxel lambda values of aluminum block 
at Z = -350cm 

Figure 6.21: Lego plots of the approximate median-EM reconstruction of the 
vertical clutter scenario 

The lego plots in figure 6.21 show the tungsten voxels having higher lambda values 

than the iron voxels, and the iron voxels higher lambda values than the aluminum. 

In comparison to POCA both the average and median methods of EM do well in 

discriminating between materials in scenarios with vertical clutter. Between the two 

EM algorithms though, the median method does a much better job of leakage 

control. The average method had 204 voxels reconstructed with a lambda value 

above 1 that contained no material. The approximate median method only 

reconstructed 17 of such voxels. As the average method, the approximate median 
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seems to be able to discriminate well even with vertical clutter, but does so with 

producing much less leakage. 

 

6.5.5 Truck Scenario 

 

 

Geometry of truck scenario Average-EM reconstruction of truck 
scenario 

Figure 6.22: Approximate median-EM reconstruction of truck scenario 

 

 Figure 6.22 shows the 3D image of the truck scenario reconstruction for the 

approximate median. The improvement the approximate median offers over the 

average-EM method is very obvious with this scenario.  All car components are 

reconstructed properly and the targets are clearly seen as well. What is also 

different from the average-EM method, is the total lack of leakage. The targets are 

distinct and can be clearly distinguished from the background; something that was 

difficult to do in the 3D image of the average method reconstruction. Table 6.8 

shows the improvement of the accuracy as well. 

 

Material λ-Threshold 
(mrad2/cm) 

True 
Positives

True  
Positive 
% 

False 
Positives 

False 
Positive 
% 

False 
Negatives 

False 
Negative 
% 
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High-Z 2000 127 88.2 0 0 17 2.27e-5
U 20000 55 57.2 0 0 41 5.46e-5

Table 6.8: Accuracy analysis of the approximate median-EM method reconstruction 
of the truck scenario 

 

The accuracy rate for high-Z materials more than doubled from 33% to over 88%  

in changing from the average-EM to the approximate median-EM. The 

approximate median-EM does a much better job than the average-EM in 

discriminating these high-Z materials from the other objects in the truck and does 

so without reconstructing any voxels as high-Z that aren't. The accuracy for using 

the uranium threshold doesn't improve as dramatically as the high-Z threshold, but 

it is still a marked improvement from about 32% detection with the average-EM 

method to over 57% detection with the median method. Also gone are all the 

tungsten and lead voxels that passed the uranium threshold in the average-EM 

method. Overall the discrimination and cleanliness of the approximate median-EM 

method is far superior to the reconstruction of this scenario with the average 

method. 

 

 

 

 

6.5 Analysis of Results 
With these results from simulations for all three reconstruction methods, it has been 

shown that muon tomography is a feasible alternative for cargo inspection. The 

POCA algorithm shows very nice results for simple scenarios and gives a nice base 

for comparison purposes with the EM methods. However, it is not robust enough to 

deal with the issue of multiple scattering without additional work being done on it. 
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As far as the EM methods go, both show definite discrimination of high Z targets 

from non-high Z targets, although discrimination of uranium from other high Z 

materials was not quite as apparent. However, the approximate median method 

does a much better job overall than the average method in these regards. The 

discrimination of high Z from non-high Z materials and of uranium from other high 

Z materials is better in every scenario, and it also is vastly superior in terms of 

creating less noise than the average method.  

 

It is important to note however, that despite the high level of discrimination 

obtained from the results based on the threshold values of lambda, the absolute 

values of lambda are much different than would be expected. Using the equation 

for scattering density shown in chapter 4, the absolute value of  λ can be 

determined for a material based on it's radiation length and a nominal momentum. 

For a nominal momentum of 3 GeV, Aluminum should have a scattering density of 

2.8 mrad2/cm, while Iron and Tungsten should have scattering densities of 14.2 

mrad2/cm and 71.5 mrad2/cm  respectively. As seen in this chapter, the λ  values 

determined by our reconstructions were much higher than the true values of λ. 

Experiments at LANL [7] produced  λ's much closer to the actual values, though  

the average EM produced estimates that were too high, while the median EM gave 

results closer to the true values. Work is ongoing to produce scattering densities 

from our reconstructions that are closer to the real values. Despite this problem the 

differences in scattering densities between materials that were created in our 

experiments were enough to get clear discrimination between targets. 

 

However, there are other issues in addition to the actual reconstruction results 

produced that are highly relevant to the algorithms, such as computation and 

memory usage. Memory consumption for the true median and approximate median 

methods was discussed in chapters 4 and 5, but the run times for the algorithms will 
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be explored in the next section. 

 

6.6 Algorithms 
The EM algorithm is computationally expensive as shown in chapter 4. The 

running time is influenced by the number of muon events, the number of the voxels 

(itself dependent on volume and voxel size), and the number of iterations the 

algorithm is run over. Changes to the implementation of the algorithm were made 

in an effort to make it more efficient as detailed in chapter 5. The development of 

the approximate median-EM method actually came about due to the computation 

and memory problems the true-median EM method brought forth. The true-median 

EM method requires storage of all correction values for every voxel so that they 

can be sorted and the median found. This mandates both a large memory and 

computational time increase compared to the average method as there may be 

millions of voxels containing thousands of muon events, all of which need to be 

stored and sorted. 

 

Table 6.9 compares the running times of the implementation of both the improved 

average-EM and approximate median-EM algorithms, against the naive 

implementations of the average-EM and true median-EM algorithms. The basic 

scenario described in section 6.2.1 is used for the tests and is run with uranium. 

This scenario is of a 10cm X 10cm X 10cm box placed in the center of a 200cm X 

200cm X 110cm volume. The voxel size is 5cm X 5cm X 5cm. 10 minutes 

exposure time was used (1,000,000 muon events) and 100 iterations were run. 

Twenty runs were made (except for the true median-EM method) for each 

algorithms and the times averaged to ensure accurate results and to account for 

anomalous high or low run times: 

 

Algorithm Time (Average of 20 runs except for 
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true median) 
Average-EM (LANL implementation) 523 seconds 

Average-EM (improved 
implementation) 

316 seconds 

Approximate Median-EM 1173 seconds 

True-median EM 25.5 hours 

Table 6.9: Timing comparison of the different implementations and methods of the 
EM algorithm 

 

Both methods used in this study run much quicker than the naive methods. The 

average-EM of this study saves almost 40% computation time against its 

counterpart. The results of the approximate median are even more stark. When the 

true median method was originally implemented using insertion sort, it took 

twenty-five and a half hours to complete. This necessitated the development of the 

approximate median method which  runs exceptionally faster than the true median 

implementation. The changes made in the implementation of the EM algorithm 

appear to have significantly improved the running times of both methods. However, 

despite its better reconstruction results, the approximate median-EM lags far behind 

the average-EM in terms of runtime. 
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Chapter 7 

Conclusions and Future Work 
 

7.1 Summary 
This thesis explored the current state of cosmic ray muon tomography, detailed the 

improvements and additions to existing reconstruction algorithms and their 

implementation, and showed results from the POCA, average-EM and new 

approximate median-EM methods. Chapter 1 explained the purpose of muon 

tomography and its importance, which included the description of its advantages 

over other techniques. Chapter 2 gave much background information about muon 

tomograpy: it defined what tomography is and how tomographic reconstruction 

generally works, showed what muons are and the physics pertaining to their 

passage through matter, discussed how the physics are used to form the concept of 

muon tomography, and detailed the past work done with muons and other emission 

tomography for imaging purposes. Chapter 3 described pertinent research questions 

and laid out the expectations of the study as well as the additions it could 

potentially make to the field. Chapter 4 took a thorough look at the reconstruction 

algorithms used in this study by explaining how the POCA, average-EM, true 

median-EM, and approximate median-EM methods work, as well as analyzing the 

advantages and disadvantages each method possesses. In Chapter 5 was an 

overview of the tools used for the entire process from simulation to reconstruction. 

It also gave a detailed look into the implementation of the muon tomography suite 

and the software testing techniques used to debug it. Lastly, Chapter 6 displayed the 

results obtained from the reconstruction algorithms run on different scenarios as 

well as an analysis of the run times of the EM methods. 

 

It was concluded that the use of muon tomography for cargo inspection is definitely 
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a feasible idea and that our implementation of the approximate median-EM 

algorithm does a better job of discriminating between materials than the simplistic 

POCA and average-EM methods, and does so without the poor running time of the 

true median-EM algorithm.  

 

7.2 Future Work 
In the course of research many ideas for improvements or additions to the POCA 

and EM algorithms were suggested. Some were even implemented, but because of 

time restraints weren't tested extensively. This final section details these 

developments and the future work that can be done to continue the research found 

in this thesis. 

 

7.2.1 Real Time EM 

The current status of the EM algorithm for muon tomography is that it needs all 

input data before the iterations between the expectation and maximization steps 

begin. Also, there is no output until the max iterations are reached or the lambda 

values converge. This means that no analysis of the reconstruction can be done 

until the algorithm finishes. POCA on the other hand can be updated after every 

event is processed. Finding a way to add this feature to EM would be helpful as it 

would speed up reconstruction and on-the-fly analysis of a volume could be done. 

 

The idea proposed here is to run the EM algorithm in parallel. One thread would 

continually collect and process the input data while another thread would run the 

expectation and maximization steps on the already collected idea. Experimentally a 

threshold would be determined for how much data to collect before passing it to the 

EM algorithm, and whenever this threshold is reached a signal would be sent to the 

EM telling it to stop after its next iteration, output the current lambda values and 

collect the next batch of data. A similar concept was explored by Ahn, et al. [35] 
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that used ordered subsets to speed up maximum likelihood estimations. These types 

of algorithms have been developed in the past, but had problems with convergence 

until the approach by Ahn had been developed [35].  

 

The MTS is not implemented on parallel architecture so a true parallel EM that 

runs in real time could not be tested. However, a way to simulate the process was 

created instead. While the data collection and EM are not run simultaneously, a 

predetermined set of events are processed at which point the EM begins to run. 

After a set number of iterations the EM stops, but the lambda values of the voxels 

and the already received data is saved. The current lambdas are output and then 

more data is collected and passed back to the EM. The algorithm continues until all 

the data are received. Very few tests were run on this real time EM, and the lambda 

values did not converge well as has been the case with similar approaches [35]. 

However, the testing was not thorough and the real time EM seems to be a good 

avenue of research for potential improvements to the reconstruction algorithms. 

 

7.3.2 POCA/EM Integration 

POCA provides good results in simple scenarios and is already used in our 

implementation as a base for EM to predict a muon track through a volume. Other 

ways were considered to use POCA to improve the performance of the EM 

algorithm.  

 

One such way was to bias voxels based on their distance from the scatter point. 

Several ways exist to do this. Instead of considering all voxels a muon track passed, 

through, use only the voxel that the scatter point was reconstructed in. 

Alternatively, the voxels can be weighted based on how far they are from the voxel 

containing the scatter point. This technique was implemented but not extensively 

tested. It is another area that could provide a performance increase to EM if 
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researched is continued. 

 

Several other techniques based on POCA have been proposed and were possibilities 

for study by the author but not implemented, and are actually being worked on by 

other students at Florida Tech. One idea is filtering events based on the distance of 

closest approach (DOCA) between the incoming and outgoing tracks. Another 

attempt is being made at clustering the scatter points obtained from POCA and 

using them to either calculate lambda values directly or running EM only on the 

voxels contained in the clusters. Initial results have been promising and the 

decrease in running time has been drastic. 

 
7.3.2 Other Work 

Besides improvements to reconstruction algorithms there is much work to be done 

continuing the research in this study. So far all of the reconstruction work has been 

done on simulations from Geant4. The High Energy Physics lab at Florida Tech is 

currently developing GEM detectors to be used in muon tomography systems. 

Eventually the reconstruction algorithms from this study will be used on real world 

data produced from these systems. Also, until the detectors are finished more 

detailed analysis can be done using simulations, such as testing the effect of 

changing parameters in the reconstruction algorithms (like initial lambda) or 

implementing input filters (like momentum or angle cuts). In addition, more 

realistic simulations can be tested in which the scenarios don't have ideal conditions 

and detector resolution becomes an issue. 
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The appendix contains all files needed for the MTS suite. It also contains the 

makefile necessary to build the program. The files should be in a directory called 

“src” and the makefile should be in thedirectory containing “src”. The command 

'make' can then be entered when in the the directory containing “src” and the 

program will be built. The programs name is “mts”. To run, first the appropriate 

options should be set in the file “config.tst”. To then run the program the command 

is './mts config.tst'.  
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//makefile for MTS 

all: mts 

 

mts: src/driver.o src/mtserr.o src/preprocessing.o src/vecfunc.o src/em.o src/mtsio.o 

 g++ -lm src/driver.o src/mtserr.o src/preprocessing.o src/vecfunc.o src/em.o src/mtsio.o -o 

mts 

 

driver.o: src/driver.c src/mts.h src/preprocessing.h src/mtserr.h src/em.h 

 g++ -c drive.c 

 

mtserr.o: src/mtserr.c src/mts.h src/mtserr.h 

 g++ -c src/mtserr.c 

 

preprocessing.o: src/preprocessing.c src/mts.h src/preprocessing.h src/mtsio.h src/mtserr.h src/em.h 

src/vecfunc.h 

 g++ -lm -c src/preprocessing.c 

 

vecfunc.o: src/vecfunc.c src/vecfunc.h src/mts.h 

 g++ -lm -c src/vecfunc.c 

 

em.o: src/em.c src/mts.h src/em.h src/mtsio.h 

 g++ -lm -c src/em.c 

 

mtsio.o: src/mtsio.c src/mts.h src/mtsio.h src/mtserr.h src/vecfunc.c 

 g++ -c src/mtsio.c 

 

clean: 

 rm src/*.o 
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###              Configuration file for MTS                 ### 

### The '#' symbol declare the proceeding line as a comment ### 

### To run MTS, first enter 'make' in the same directory of makefile ### 

### Then enter command - './mts config.tst' ### 

 

### Input File - Required (output has same name but with .em extension) ### 

input input/test.txt 

 

### Voxel Sizes - Millimeters - Optional (default is 100) ### 

x_voxel_size 50 

y_voxel_size 50 

z_voxel_size 50 

 

#### Em - 3 Options (average, median, 3D) - All may be run concurrently ### 

em average 

em median 

#em 3D 

 

#### Bin Info for Median EM (default number of bins are 100 and default size per bin is 10000) ### 

bins     200 

bin_size 100000 

 

### Iterations for EM - Optional (default is 100) ### 

iterations 200 

 

### Iterations for EM - Optional (default is 100) ### 

#online 100000 

 

### Initial lambda value for EM in units of mrad^2/cm - Optional (default is 0.1) ### 

### If STD option is chosen, intial lambda is based off of poca results ### 

lambda 0.1 

 

### Milliradians option uses milliradians instead of radians in EM calculations ### 

#milliradians 



cxx 

 

### Nominal option lets user set the nomimal momentum used in EM (default is 3) ### 

#nominal 3 

 

### Weighted EM - Optional selection will turn on weighting voxels in EM based on POCA (default 

is turned off) ### 

### Option 1 is pure POCA weight; i.e. voxel where POCA is found is weighted 1, all others 0### 

### Option 2 is linear POCA weight; weight is determined by the formula (n - |c - p|) /n, n = voxels 

before or after poca voxel, c = current voxel, p = poca voxel ### 

#weight 2 

 

### Output file - Optional ### 

### Contains all information from EM preprocessing ### 

#output pleasework.txt 

 

### Standard deviation - Optional (default is off) - Can provide filename to output to separate file 

(Used as intial value for EM lambda regardless) ### 

#std test.std 

 

### Angle distribution - Optional (default is off) - Can provide filename to output to separate file 

### 

#dist EMDIST.txt 

 

### POCA - Optional (default is off) - Can provide filename to output to separate file ### 

#poca VertSmallNew.txt 

 

### Precise L & T - Use these options to estimate the L and T for every voxel rather than for every 

event ### 

precise_l 

precise_t 

 

#### Units - the metric units of length to run EM in relative to mm (i.e. 1m is 1000mm, so for meter 

units use 1000 as the parameter) - default value is 10 (i.e. cm) 

#units 10 
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MTS Suite 

//mts.h 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <string.h> 

#include <time.h> 

 

//define various program constants 

#define DELIMS " \n\t" 

#define ERR_PREC 0.000001 

 

//define various maximum constants 

#define MAX_COMMAND   100 

#define MAX_FILENAME  200 

#define MAX_LINE      1000 

 

//define constants used for validation 

#define CONTINUE     1 

#define END          0 

#define PARALLEL    -1 

 

//define file pointer constants 

#define FP_IN            0 

#define FP_OUT           1 

#define FP_OP_OUT        2 

#define FP_STD_OUT       3 

#define FP_DIST_OUT      4 

#define FP_POCA_OUT      5 

#define FP_OUT_AVG       6 

#define FP_OUT_MED       7 

#define MAX_FILEPOINTERS 8 

 

//define constants for error return values 
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#define ERR_CODE_COMMAND_LINE       1 

#define ERR_CODE_EMPTY_FILE         2 

#define ERR_CODE_INVALID_COMMAND    3 

#define ERR_CODE_INVALID_FILE       4 

#define ERR_CODE_INVALID_INPUT      5 

#define ERR_CODE_MEM                6 

#define ERR_CODE_NO_FILE            7 

#define ERR_CODE_OPTIONAL_REQUIRED  8 

#define ERR_CODE_UNIX               9 

#define ERR_CODE_UNUSED_FILE       10 

 

//define constant for where to print error messages 

#define ERR_OUT stderr 

 

//define array indexes for various command line option flags 

#define PARAM_DETAILS       0 

#define PARAM_DEPENDENT     1 

#define PARAM_DIST          2 

#define PARAM_EM_AVERAGE    3 

#define PARAM_EM_MEDIAN     4 

#define PARAM_EM_3D         5 

#define PARAM_EM_WEIGHTED   6 

#define PARAM_END_OF_PATH   7 

#define PARAM_HIT_TARGET    8 

#define PARAM_INDEPENDENT   9 

#define PARAM_ITERATIONS    10 

#define PARAM_INIT_LAMBDA   11 

#define PARAM_PRECISE_L     12 

#define PARAM_PRECISE_T     13 

#define PARAM_STD           14 

#define PARAM_X_LENGTH      15 

#define PARAM_Y_LENGTH      16 

#define PARAM_Z_LENGTH      17 

#define PARAM_X_VOXEL_SIZE  18 
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#define PARAM_Y_VOXEL_SIZE  19 

#define PARAM_Z_VOXEL_SIZE  20 

#define PARAM_X_VOXEL_TOTAL 21 

#define PARAM_Y_VOXEL_TOTAL 22 

#define PARAM_Z_VOXEL_TOTAL 23 

#define PARAM_ALL_VOXELS    24 

#define PARAM_X_MIN         25 

#define PARAM_Y_MIN         26 

#define PARAM_Z_MIN         27 

#define PARAM_X_MAX         28 

#define PARAM_Y_MAX         29 

#define PARAM_Z_MAX         30 

#define PARAM_EVENTS        31 

#define PARAM_INC_DECT      32 

#define PARAM_OUT_DECT      33 

#define PARAM_MOMENTUM      34 

#define PARAM_LINE          35 

#define PARAM_HITS          36 

#define PARAM_PARALLEL      37 

#define PARAM_SCAT_ANG      38 

#define PARAM_L             39 

#define PARAM_EM            40 

#define PARAM_IN_VOLUME     41 

#define PARAM_CUR_EVENT     42 

#define PARAM_CONTINUE      43 

#define PARAM_NOM_MOMENTUM  44 

#define PARAM_MILLIRADIANS  45 

#define PARAM_MIN_MOMENTUM  46 

#define PARAM_CUTOFF_ANGLE  47 

#define PARAM_OP_OUT        48 

#define PARAM_POCA          49 

#define PARAM_DOCA          50 

#define PARAM_DTX           51 

#define PARAM_DTY           52 
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#define PARAM_DX            53 

#define PARAM_DY            54 

#define PARAM_OUT           55 

#define PARAM_C_PRINT       56 

#define PARAM_EM_BINS       57 

#define PARAM_EM_BIN_SIZE   58 

#define PARAM_EM_ONLINE     59 

#define PARAM_UNITS_LENGTH  60 

#define PARAM_MOM_CUT       61 

#define PARAM_MOM_HIGH_CUT  62 

#define PARAM_MOM_LOW_CUT   63 

#define PARAM_PREV_VOXEL    64 

#define MAX_PARAMS          65 

 

//define constants for command line options 

#define LONG_BINS         "bins" 

#define LONG_BIN_SIZE     "bin_size" 

#define LONG_C_PRINT      "c_print" 

#define LONG_CUTOFF       "cutoff" 

#define LONG_DETAILS      "details" 

#define LONG_DIST         "dist" 

#define LONG_EM           "em" 

#define LONG_EM_AVERAGE   "average" 

#define LONG_EM_MEDIAN    "median" 

#define LONG_EM_3D        "3D" 

#define LONG_EM_WEIGHTED  "weight" 

#define LONG_HELP         "help" 

#define LONG_INPUT        "input" 

#define LONG_ITERATIONS   "iterations" 

#define LONG_LAMBDA       "lambda" 

#define LONG_MILLIRADIANS "milliradians" 

#define LONG_MOM_HIGH_CUT "mom_cut_high" 

#define LONG_MOM_LOW_CUT  "mom_cut_low" 

#define LONG_NOMINAL      "nominal" 
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#define LONG_ONLINE       "online" 

#define LONG_OUTPUT       "output" 

#define LONG_POCA         "poca" 

#define LONG_PRECISE_L    "precise_l" 

#define LONG_PRECISE_T    "precise_t" 

#define LONG_STD          "std" 

#define LONG_UNITS_LENGTH "units" 

#define LONG_X            "x_voxel_size" 

#define LONG_Y            "y_voxel_size" 

#define LONG_Z            "z_voxel_size" 

 

#define SHORT_BINS         'B' 

#define SHORT_BIN_SIZE     'b' 

#define SHORT_C_PRINT      'C' 

#define SHORT_CUTOFF       'c' 

#define SHORT_DETAILS      'd' 

#define SHORT_DIST         'D' 

#define SHORT_EM           'e' 

#define SHORT_EM_WEIGHTED  'w' 

#define SHORT_HELP         'h' 

#define SHORT_INPUT        'i' 

#define SHORT_ITERATIONS   'I' 

#define SHORT_LAMBDA       'l' 

#define SHORT_MILLIRADIANS 'm' 

#define SHORT_MOM_HIGH_CUT 'K' 

#define SHORT_MOM_LOW_CUT  'k' 

#define SHORT_NOMINAL      'n' 

#define SHORT_ONLINE       'O' 

#define SHORT_OUTPUT       'o' 

#define SHORT_POCA         'p' 

#define SHORT_PRECISE_L    'L' 

#define SHORT_PRECISE_T    'T' 

#define SHORT_STD          's' 

#define SHORT_UNITS_LENGTH 'u' 
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#define SHORT_X            'x' 

#define SHORT_Y            'y' 

#define SHORT_Z            'z' 

 

#define SHORT_OPTIONS  "B:b:c:dD::e::whi:I:k:K:l:Lmn:O:o::p::s::Tu:x:y:z:" 

 

#define SAMPLE_VOXELS {24603, 23384, 23385, 23386, 23413, 23414, 23415, 24584, 24585, 

24613, 24614, 24615, 24626, -1} 

//#define SAMPLE_VOXELS {14374, 17994, 20638, 22735,  -1} 

#define NUMOF_SAMP_VOX 13 

 

//cosmetic constants 

#define BANNER "======================" 

 

struct Point { 

   double x, y, z; 

}; 
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//driver.c 

#include "mts.h" 

#include "mtserr.h" 

#include "preprocessing.h" 

#include "em.h" 

#include <getopt.h> 

 

void set_default_parameters(double**); 

int get_opts(int, double**, char**, FILE**); 

int getopt_file(FILE*, struct option*); 

FILE* fopen_ext(char*, char*, char*); 

char* create_file_ext(char*, int, int, double**); 

 

int main (int argc, char **argv) { 

 

   int i, errCode; 

   double *params[MAX_PARAMS], *lambda, *lambdaMed, *M; 

   FILE *filepointers[MAX_FILEPOINTERS]; 

   struct muon* head;    

 

   for (i=0;i<MAX_PARAMS;i++) if ((params[i] = (double*) malloc(sizeof(double)))==NULL) 

return memError(); 

   for (i=0;i<MAX_FILEPOINTERS;i++) if ((filepointers[i] = (FILE*) 

malloc(sizeof(FILE)))==NULL) return memError(); 

   if ((head=(struct muon*) malloc(sizeof(struct muon)))==NULL) return memError(); 

 

   set_default_parameters(params); 

 

   if (get_opts(argc, params, argv, filepointers)!=CONTINUE) return 

ERR_CODE_COMMAND_LINE; 

   free(optarg); 

 

   preprocessing(lambda, M, head, params, filepointers); 

   if (*params[PARAM_EM] && !*params[PARAM_EM_ONLINE]) em(lambda, lambdaMed, 
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head, params, filepointers); 

 

   for (i=0;i<MAX_PARAMS;i++) free(params[i]);  

   for (i=0;i<MAX_FILEPOINTERS;i++) free(filepointers[i]); 

 

   fprintf(stderr, "\n"); 

 

   return errCode; 

} 

 

void set_default_parameters (double** params) { 

 

   int i; 

 

   //all paramaters are intially zero unless otherwise set in this modle 

   for (i=0;i<MAX_PARAMS;i++) *params[i] = 0; 

 

   *params[PARAM_X_LENGTH] = 4000; 

   *params[PARAM_Y_LENGTH] = 4000; 

   *params[PARAM_Z_LENGTH] = 3000; 

 

   *params[PARAM_X_VOXEL_SIZE] = 100; 

   *params[PARAM_Y_VOXEL_SIZE] = 100; 

   *params[PARAM_Z_VOXEL_SIZE] = 100; 

 

   *params[PARAM_X_VOXEL_TOTAL] = *params[PARAM_X_LENGTH] / 

*params[PARAM_X_VOXEL_SIZE]; 

   *params[PARAM_Y_VOXEL_TOTAL] = *params[PARAM_Y_LENGTH] / 

*params[PARAM_Y_VOXEL_SIZE]; 

   *params[PARAM_Z_VOXEL_TOTAL] = *params[PARAM_Z_LENGTH] / 

*params[PARAM_Z_VOXEL_SIZE]; 

   *params[PARAM_ALL_VOXELS]    = *params[PARAM_X_VOXEL_TOTAL] * 

*params[PARAM_Y_VOXEL_TOTAL] * *params[PARAM_Z_VOXEL_TOTAL]; 
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   *params[PARAM_X_MIN]         = *params[PARAM_X_LENGTH] / -2; 

   *params[PARAM_Y_MIN]         = *params[PARAM_Y_LENGTH] / -2; 

   *params[PARAM_Z_MIN]         = *params[PARAM_Z_LENGTH] / -2; 

 

   *params[PARAM_X_MAX]         = *params[PARAM_X_LENGTH] / 2; 

   *params[PARAM_Y_MAX]         = *params[PARAM_Y_LENGTH] / 2; 

   *params[PARAM_Z_MAX]         = *params[PARAM_Z_LENGTH] / 2; 

 

   *params[PARAM_CONTINUE] = 1; 

 

   *params[PARAM_ITERATIONS]  = 100; 

   *params[PARAM_INIT_LAMBDA] = 0.1; 

 

   *params[PARAM_NOM_MOMENTUM] = 3; 

   *params[PARAM_MIN_MOMENTUM] = 1; 

   *params[PARAM_MILLIRADIANS] = 1; 

 

   *params[PARAM_EM] = 0; 

   *params[PARAM_EM_BIN_SIZE] = 10000; 

   *params[PARAM_EM_BINS] = 100; 

 

   *params[PARAM_UNITS_LENGTH] = 10; 

 

   return; 

} 

 

int get_opts (int argc, double** params, char** argv, FILE** fps) { 

 

   char fnOut[MAX_FILENAME], extAvg[MAX_FILENAME], extMed[MAX_FILENAME]; 

   int option, argvIndex=0, i=0, places=0, zeros; 

   FILE* config = NULL; 

 

   static struct option long_options[] = { 

      {LONG_BINS,         required_argument, NULL,         SHORT_BINS}, 
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      {LONG_BIN_SIZE,     required_argument, NULL,     SHORT_BIN_SIZE}, 

      {LONG_C_PRINT,      required_argument, NULL,      SHORT_C_PRINT}, 

      {LONG_CUTOFF,       required_argument, NULL,       SHORT_CUTOFF}, 

      {LONG_DETAILS,      no_argument,       NULL,      SHORT_DETAILS}, 

      {LONG_DIST,         required_argument, NULL,         SHORT_DIST}, 

      {LONG_EM,           optional_argument, NULL,           SHORT_EM}, 

      {LONG_EM_WEIGHTED,  no_argument,       NULL,  SHORT_EM_WEIGHTED}, 

      {LONG_HELP,         no_argument,       NULL,         SHORT_HELP}, 

      {LONG_INPUT,        required_argument, NULL,        SHORT_INPUT}, 

      {LONG_ITERATIONS,   required_argument, NULL,   SHORT_ITERATIONS}, 

      {LONG_LAMBDA,       required_argument, NULL,       SHORT_LAMBDA}, 

      {LONG_MILLIRADIANS, no_argument,       NULL, SHORT_MILLIRADIANS}, 

      {LONG_MOM_HIGH_CUT, required_argument, NULL, SHORT_MOM_HIGH_CUT}, 

      {LONG_MOM_LOW_CUT,  required_argument, NULL,  SHORT_MOM_LOW_CUT}, 

      {LONG_NOMINAL,      required_argument, NULL,      SHORT_NOMINAL}, 

      {LONG_ONLINE,       required_argument, NULL,       SHORT_ONLINE}, 

      {LONG_OUTPUT,       required_argument, NULL,       SHORT_OUTPUT}, 

      {LONG_POCA,         required_argument, NULL,         SHORT_POCA}, 

      {LONG_PRECISE_L,    no_argument,       NULL,    SHORT_PRECISE_L}, 

      {LONG_PRECISE_T,    no_argument,       NULL,    SHORT_PRECISE_T}, 

      {LONG_STD,          optional_argument, NULL,          SHORT_STD}, 

      {LONG_UNITS_LENGTH, required_argument, NULL, SHORT_UNITS_LENGTH}, 

      {LONG_X,            required_argument, NULL,            SHORT_X}, 

      {LONG_Y,            required_argument, NULL,            SHORT_Y}, 

      {LONG_Z,            required_argument, NULL,            SHORT_Z}, 

      {0, 0, 0, 0} 

   };  

 

   if (argc<=1) return commandError(SHORT_HELP, SHORT_HELP); 

   if (argv[1][0]!='-') if ((config=fopen(argv[1], "r"))==NULL) return 

commandError(SHORT_HELP, SHORT_HELP); 

 

   while (1) { 

       



cxxxi 

      if (config==NULL) option = getopt_long (argc, argv, SHORT_OPTIONS, long_options, 

&argvIndex); 

      else option = getopt_file (config, long_options); 

      if (option == -1) break; 

 

      switch (option) { 

         case SHORT_BINS: 

            *params[PARAM_EM_BINS] = atof(optarg); 

            break; 

         case SHORT_BIN_SIZE: 

            *params[PARAM_EM_BIN_SIZE] = atof(optarg); 

            break; 

         case SHORT_C_PRINT: 

            *params[PARAM_C_PRINT] = 1; 

            break; 

         case SHORT_CUTOFF: 

            *params[PARAM_CUTOFF_ANGLE] = atof(optarg); 

            break; 

         case SHORT_DETAILS: 

            *params[PARAM_DETAILS] = 1; 

            break; 

         case SHORT_DIST: 

            if (optarg!=NULL) fps[FP_DIST_OUT] = fopen(optarg, "w"); 

            else              fps[FP_DIST_OUT] = fopen("default.dist", "w"); 

            *params[PARAM_OUT] = *params[PARAM_DIST] = 1; 

            break; 

         case SHORT_EM: 

            *params[PARAM_EM] = 2; 

            if (optarg==NULL) *params[PARAM_EM_AVERAGE] = 1; 

            else if (strcmp(optarg, LONG_EM_AVERAGE)==0) *params[PARAM_EM_AVERAGE] = 

1; 

            else if (strcmp(optarg, LONG_EM_MEDIAN)==0) *params[PARAM_EM_MEDIAN] = 1; 

            else if (strcmp(optarg, LONG_EM_3D)==0) *params[PARAM_EM_3D] = 1; 

            break; 
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         case SHORT_EM_WEIGHTED: 

            *params[PARAM_EM_WEIGHTED] = 1; 

            break; 

         case SHORT_HELP: 

            return (commandError(option, option)); 

            break; 

         case SHORT_INPUT: 

            if ((fps[FP_IN] = fopen(optarg, "r"))==NULL) return fileError(optarg); 

            strcpy(fnOut, optarg); 

            break; 

         case SHORT_ITERATIONS: 

            *params[PARAM_ITERATIONS] = atof(optarg); 

            break; 

         case SHORT_LAMBDA: 

            *params[PARAM_INIT_LAMBDA] = atof(optarg); 

            for (i=0; optarg[i]!='.' && optarg[i]!='\0'; i++); 

            for (i=i+1, places=0, zeros=0; optarg[i]=='0'; places++, zeros++, i++); 

            for (;optarg[i]!='\0'; places++, i++); 

            break; 

         case SHORT_MILLIRADIANS: 

            *params[PARAM_MILLIRADIANS] = 1000; 

            break; 

         case SHORT_MOM_HIGH_CUT: 

            *params[PARAM_MOM_HIGH_CUT] = atof(optarg); 

            *params[PARAM_MOM_CUT] = 1; 

            break; 

         case SHORT_MOM_LOW_CUT: 

            *params[PARAM_MOM_LOW_CUT] = atof(optarg); 

            *params[PARAM_MOM_CUT] = 1; 

            break; 

         case SHORT_NOMINAL: 

            *params[PARAM_NOM_MOMENTUM] = atof(optarg); 

            break; 

         case SHORT_ONLINE: 
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            *params[PARAM_EM_ONLINE] = atof(optarg); 

            break; 

         case SHORT_OUTPUT: 

            if (optarg!=NULL) fps[FP_OP_OUT] = fopen(optarg, "w"); 

            else              fps[FP_OP_OUT] = fopen("default.opout", "w"); 

            *params[PARAM_OUT] = *params[PARAM_OP_OUT] = 1; 

            break; 

         case SHORT_POCA: 

            if (optarg!=NULL) fps[FP_POCA_OUT] = fopen(optarg, "w"); 

            else              fps[FP_POCA_OUT] = fopen("default.poca", "w"); 

            *params[PARAM_OUT] = *params[PARAM_POCA] = 1; 

            break; 

         case SHORT_PRECISE_L: 

            *params[PARAM_PRECISE_L] = 1; 

            break; 

         case SHORT_PRECISE_T: 

            *params[PARAM_PRECISE_T] = 1; 

            break; 

         case SHORT_STD: 

            if (optarg!=NULL) fps[FP_STD_OUT] = fopen(optarg, "w"); 

            else fps[FP_STD_OUT] = NULL; 

            *params[PARAM_STD] = 1; 

            break; 

         case SHORT_UNITS_LENGTH: 

            *params[PARAM_UNITS_LENGTH] = atof(optarg); 

            break; 

         case SHORT_X: 

            *params[PARAM_X_VOXEL_SIZE] = atof(optarg); 

            break; 

         case SHORT_Y: 

            *params[PARAM_Y_VOXEL_SIZE] = atof(optarg); 

            break; 

         case SHORT_Z: 

            *params[PARAM_Z_VOXEL_SIZE] = atof(optarg); 
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            break; 

         case '?': 

            return (commandError(optopt, optopt)); 

            break; 

         default: 

            printf ("\n\nIf you are seeing this then quantum mechanics is for real: %c", option); 

       } 

       free(optarg); 

   } 

   if (config!=NULL) fclose(config);    

 

   if (*params[PARAM_EM_3D]) *params[PARAM_EM] = 1; 

 

   if (*params[PARAM_EM_AVERAGE]) { 

      sprintf(extAvg, "avg"); 

      if ((fps[FP_OUT_AVG] = fopen_ext(fnOut, create_file_ext(extAvg, places, zeros, params), 

"w"))==NULL) return fileError(fnOut); 

   } 

   if (*params[PARAM_EM_MEDIAN]) { 

      sprintf(extMed, "med%dbins%dsize", (int) *params[PARAM_EM_BINS], (int) 

*params[PARAM_EM_BIN_SIZE]); 

      if ((fps[FP_OUT_MED] = fopen_ext(fnOut, create_file_ext(extMed, places, zeros, params), 

"w"))==NULL) return fileError(fnOut); 

   } 

 

   if (*params[PARAM_MILLIRADIANS]==1)  *params[PARAM_INIT_LAMBDA] = 

*params[PARAM_INIT_LAMBDA] / 1000000; 

   if (*params[PARAM_UNITS_LENGTH]!=10) *params[PARAM_INIT_LAMBDA] = 

*params[PARAM_INIT_LAMBDA] / (10 / *params[PARAM_UNITS_LENGTH]);  

 

   return CONTINUE; 

} 
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int getopt_file(FILE* config, struct option* options) { 

 

   int i; 

   char line[MAX_LINE], *token; 

 

   optarg = (char*) malloc(MAX_LINE); 

   while (1) { 

      if (fgets(line, MAX_LINE-1, config)==NULL) return -1; 

 

      if ((token = strtok(line, DELIMS))==NULL) continue; 

      if (token[0]=='#') continue; 

 

      for (i=0; options[i].val!=0; i++) { 

         if (strcmp(token, options[i].name)==0) { 

            if ((token = strtok(NULL, DELIMS))!=NULL) strcpy(optarg, token); 

            else { 

               free(optarg); 

               optarg=NULL; 

            } 

            return options[i].val; 

         } 

      } 

      return '?'; 

   } 

} 

 

FILE* fopen_ext(char* fn, char* ext, char* param) { 

 

   char newFn[200]; 

   int i, j; 

 

   strcpy(newFn, fn); 

   j = 0; 

   i = strcspn(fn, "."); 
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   while (ext[j]!='\0') newFn[++i] = ext[j++]; 

   newFn[++i]='\0'; 

 

   return fopen(newFn, param); 

 

} 

 

char* create_file_ext(char* ext, int places, int zeros, double** params) { 

 

   int i, after_zero = (int) (ceil((((double) (*params[PARAM_INIT_LAMBDA] - ((int) 

*params[PARAM_INIT_LAMBDA]))) * pow(10, ((double) places))))); 

 

   if (*params[PARAM_EM_3D])              sprintf(ext, "%s-3D", ext); 

   if (*params[PARAM_X_VOXEL_SIZE])       sprintf(ext, "%s-vox%dcm", ext, (int) 

(*params[PARAM_X_VOXEL_SIZE]/10)); 

   if (*params[PARAM_ITERATIONS])         sprintf(ext, "%s-itr%d", ext, (int) 

*params[PARAM_ITERATIONS]); 

  

   if (*params[PARAM_INIT_LAMBDA]) { 

       sprintf(ext, "%s-lam%i.", ext, (int) *params[PARAM_INIT_LAMBDA]); 

       for (i=0; i<zeros; i++) sprintf(ext, "%s0", ext); 

       sprintf(ext, "%s%i", ext, after_zero); 

   } 

 

   if (*params[PARAM_CUTOFF_ANGLE])       sprintf(ext, "%s-angcut%d", ext, (int) 

*params[PARAM_CUTOFF_ANGLE]); 

   if (*params[PARAM_EM_WEIGHTED])        sprintf(ext, "%s-weight%d", ext, (int) 

*params[PARAM_EM_WEIGHTED]); 

   if (*params[PARAM_EM_ONLINE])          sprintf(ext, "%s-inc%d", ext, (int) 

*params[PARAM_EM_ONLINE]); 

   if (*params[PARAM_PRECISE_L])          sprintf(ext, "%s-pL", ext); 

   if (*params[PARAM_PRECISE_T])          sprintf(ext, "%s-pT", ext); 

   if (*params[PARAM_MOM_CUT] = 1)        sprintf(ext, "%s-momcutHi%dLo%d", ext, (int) 
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*params[PARAM_MOM_HIGH_CUT], (int) *params[PARAM_MOM_LOW_CUT]); 

   if (*params[PARAM_UNITS_LENGTH])       sprintf(ext, "%s-units%fmm", ext, 

*params[PARAM_UNITS_LENGTH]); 

   if (*params[PARAM_MILLIRADIANS]==1000) sprintf(ext, "%s-mrad", ext); 

  

   return ext; 

} 
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//preprocessing.h 

#define TRACK_PUSH 0.00000001 

#define SMALL_NUM  0.1 

#define INPUT_FILE "geant_input_file" 

 

int preprocessing(double*, double*, struct muon*, double**, FILE**); 

int header(double*, double*, double**, FILE**); 

int em_data(struct Line*, struct Line*, struct muon*, double**, FILE**); 

double pocaLtoL(struct Line*, struct Line*, struct Point*, double**); 

void travel(struct Point*, struct Point*, int, double); 

double in_volume(struct Point*, double**); 

struct voxel* track(struct Point*, struct Point*, struct Point*, struct muon*, struct voxel*, double*, 

double**, FILE**); 



cxxxix 

//preprocess.c 

#include "mts.h" 

#include "preprocessing.h" 

#include "mtserr.h" 

#include "mtsio.h" 

#include "vecfunc.h" 

 

int preprocessing(double* lambda, double* M, struct muon* head, double** params, FILE** fps) { 

 

   fprintf(ERR_OUT, "%s POCA RECONSTRUCTION %s\n\n", BANNER, BANNER); 

 

   int i, j, voxel, xVox, yVox, zVox, errCode = CONTINUE; 

   double *voxel_std, *voxel_avg, *voxel_n, *doca, *lambdaLocal, *lambdaMedLocal; 

 

   //pointers to incoming and outgoing muon tracks 

   struct Line *muonInc, *muonOut; 

 

   //create pointers to detector points on incoming/outgoing muon tracks 

   struct Point *incPoints[MAX_DETECTORS], *outPoints[MAX_DETECTORS]; 

   struct Point *scatPt, *tempP; 

 

   struct muon *curMuon; 

   struct voxel *trackHead, *dummy = (struct voxel*) malloc(sizeof(struct voxel)); 

 

   //set aside memory for the different structs 

   if ((muonInc = (struct Line*) malloc(sizeof(struct Line)))==NULL) return memError(); 

   if (((*muonInc).P1 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if (((*muonInc).P2 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((muonOut = (struct Line*) malloc(sizeof(struct Line)))==NULL) return memError(); 

   if (((*muonOut).P1 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if (((*muonOut).P2 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((scatPt = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   for (i = 0; i < MAX_DETECTORS; i++) { 

      if ((incPoints[i] = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 
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      if ((outPoints[i] = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   } 

 

   if (header(lambda, M, params, fps) != CONTINUE) return 0; 

 

   if ((doca = (double*) malloc(sizeof(double) * *params[PARAM_EVENTS]/5))==NULL) return 

memError(); 

 

   if (*params[PARAM_STD]) { 

      if ((voxel_std = (double*) malloc(sizeof(double) * 

*params[PARAM_ALL_VOXELS]))==NULL) return memError(); 

      if ((voxel_avg = (double*) malloc(sizeof(double) * 

*params[PARAM_ALL_VOXELS]))==NULL) return memError(); 

      if ((voxel_n   = (double*) malloc(sizeof(double) * 

*params[PARAM_ALL_VOXELS]))==NULL) return memError(); 

 

      memset(voxel_std, '\0', sizeof(double) * *params[PARAM_ALL_VOXELS]); 

      memset(voxel_avg, '\0', sizeof(double) * *params[PARAM_ALL_VOXELS]); 

      memset(voxel_n, '\0', sizeof(double) * *params[PARAM_ALL_VOXELS]); 

   } 

 

   curMuon = head; 

   while(errCode!=END) { 

 

      //get muon tracks from either input file or manual input 

      errCode = get_geant_input(incPoints, outPoints, params, fps); 

      if (*params[PARAM_MOM_CUT]) { 

          if ((*params[PARAM_MOMENTUM] > *params[PARAM_MOM_HIGH_CUT]) && 

(*params[PARAM_MOM_HIGH_CUT])) continue; 

          if ((*params[PARAM_MOMENTUM] < *params[PARAM_MOM_LOW_CUT]) && 

(*params[PARAM_MOM_LOW_CUT])) continue; 

      } 

 

      if (errCode==END) { 
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        if (*params[PARAM_STD]==1) { 

           (*params[PARAM_STD])++; 

           *params[PARAM_CUR_EVENT]=0; 

           rewind(fps[FP_IN]); 

           for (i=0;i<*params[PARAM_ALL_VOXELS];i++) voxel_avg[i] = voxel_avg[i] / voxel_n[i]; 

           errCode=CONTINUE; 

           continue; 

        } else break; 

      } 

      (*params[PARAM_CUR_EVENT])++; 

 

      if (errCode==ERR_CODE_INVALID_INPUT) continue; 

 

      vec_fit(incPoints, muonInc, (int) *params[PARAM_INC_DECT], FIT_X); 

      vec_fit(incPoints, muonInc, (int) *params[PARAM_INC_DECT], FIT_Y); 

      vec_fit(outPoints, muonOut, (int) *params[PARAM_OUT_DECT], FIT_X); 

      vec_fit(outPoints, muonOut, (int) *params[PARAM_OUT_DECT], FIT_Y); 

 

      //find point of closest approach between incoming/outgoing muon tracks and return doca 

      *params[PARAM_DOCA] = pocaLtoL(muonInc, muonOut, scatPt, params); 

 

      //check if tracks were parallel and if the scatter point is inside the detector volume and set flag to 

0 if not 

      if (*params[PARAM_DOCA]==PARALLEL)*params[PARAM_CONTINUE] = 0; 

      if (!(in_volume(scatPt, params))) *params[PARAM_CONTINUE] = 0; 

 

      *params[PARAM_SCAT_ANG] = vec_angle(muonInc, muonOut, ALL_COMPONENTS); 

 

      if (*params[PARAM_STD] && *params[PARAM_CONTINUE]) { 

 

         xVox = (int) floor((((*scatPt).x + *params[PARAM_X_MAX]) / 

*params[PARAM_X_VOXEL_SIZE])); 

         yVox = (int) floor((((*scatPt).y + *params[PARAM_Y_MAX]) / 

*params[PARAM_Y_VOXEL_SIZE])); 
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         zVox = (int) floor((((*scatPt).z + *params[PARAM_Z_MAX]) / 

*params[PARAM_Z_VOXEL_SIZE])); 

  

         //voxel number determined in z direction first, then y, then x 

         voxel = (xVox * *params[PARAM_Y_VOXEL_TOTAL] * 

*params[PARAM_Z_VOXEL_TOTAL]) + (yVox * *params[PARAM_Z_VOXEL_TOTAL]) + 

zVox; 

 

         if (*params[PARAM_STD]==1) { 

            voxel_avg[voxel] = voxel_avg[voxel] + *params[PARAM_SCAT_ANG]; 

            voxel_n[voxel]++; 

         } 

 

         if (*params[PARAM_STD]==2) voxel_std[voxel] = voxel_std[voxel] + 

pow((*params[PARAM_SCAT_ANG] - voxel_avg[voxel]), 2); 

 

      } 

 

      //if em analysis is to be done, print the appropriate data to file or store it in the appropriate data 

structures 

      if (((*curMuon).nextMuon=(struct muon*) malloc(sizeof(struct muon)))==NULL) return 

memError(); 

      curMuon = (*curMuon).nextMuon; 

      if ((errCode = em_data(muonInc, muonOut, curMuon, params, fps))!=CONTINUE) return 

errCode; 

         

      if ((*curMuon).event==7699) fprintf(stderr, "angle %f dx %f\n", (*curMuon).dX, 

(*curMuon).dtX); 

 

      if (*params[PARAM_OUT]) write_optional((*muonInc).P2, scatPt, (*muonOut).P1, params, 

fps); 

 

      if (((*curMuon).muonTrack=(struct voxel*) malloc(sizeof(struct voxel)))==NULL) return 

memError(); 
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      //the following block of code takes care of track analysis; if the scatter point was valid then the 

track is calculate along the POCA 

      //path, if not then the path between the entering and exiting tracks is used 

      trackHead = dummy; 

      (*trackHead).nextVoxel = (*curMuon).muonTrack; 

      if (*params[PARAM_CONTINUE]) { 

         if ((trackHead = track((*muonInc).P2, scatPt, (*muonOut).P1, curMuon, trackHead, M, 

params, fps))==NULL) return memError(); 

         if (((*trackHead).nextVoxel=(struct voxel*) malloc(sizeof(struct voxel)))==NULL) return 

memError(); 

         if ((trackHead = track(scatPt, (*muonOut).P1, NULL, curMuon, trackHead, M, params, 

fps))==NULL) return memError(); 

      } else { 

         if ((trackHead = track((*muonInc).P2, (*muonOut).P1, NULL, curMuon, trackHead, M, 

params, fps))==NULL) return memError(); 

      } 

 

      if (*params[PARAM_EM_ONLINE]) { 

         if (fmod(*params[PARAM_CUR_EVENT], *params[PARAM_EM_ONLINE])==0) 

em(lambdaLocal, lambdaMedLocal, head, params, fps); 

      } 

 

      *params[PARAM_PREV_VOXEL] = -1; 

      *params[PARAM_CONTINUE]=1; 

      //break; 

   } 

   (*curMuon).nextMuon = NULL; 

 

   if (*params[PARAM_EM_ONLINE]) { 

      if (fmod(*params[PARAM_CUR_EVENT], *params[PARAM_EM_ONLINE])!=0) 

em(lambdaLocal, lambdaMedLocal, head, params, fps); 

      free(lambdaLocal); 

      free(lambdaMedLocal); 
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   } 

 

   fprintf(stderr, "\n\nPARALLEL PARAM: %.10f\n\n", SMALL_NUM); 

   fprintf(stderr, "PARALLEL TRACKS: %f\n", *params[PARAM_PARALLEL]); 

   fprintf(stderr, "TOTAL    TRACKS: %f\n", *params[PARAM_CUR_EVENT]); 

 

   double max = 0; 

   if (*params[PARAM_STD]) { 

      for (i=0;i<*params[PARAM_ALL_VOXELS];i++) {  

         voxel_std[i] = pow((voxel_std[i] / voxel_n[i]), 0.5); 

         if (voxel_std[i]>max) max=voxel_std[i]; 

         //if (*params[PARAM_EM]) lambda[i] = voxel_std[i]; 

      } 

      fprintf(stderr, "max = %f\n\n", max); 

      if (fps[FP_STD_OUT]!=NULL) write_lambda(voxel_std, voxel_n, NULL, params, 

fps[FP_STD_OUT]); 

      free(voxel_avg); 

      free(voxel_n); 

      free(voxel_std); 

   } 

 

   free(dummy); 

   free(doca); 

   free((*muonInc).P1); 

   free((*muonInc).P2); 

   free((*muonOut).P1); 

   free((*muonOut).P2); 

   free(muonInc); 

   free(muonOut); 

 

   for (i = 0; i <MAX_DETECTORS; i++) { 

      free(incPoints[i]); 

      free(outPoints[i]); 

   } 
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   return errCode; 

} 

 

//header processes the first 2 lines from the input file which containts the number of events in 

//the run and the lenght of the detector volume in x, y and z and then determines other paramaters 

//based on available information 

int header(double* lambda, double* M, double** params, FILE** fps) { 

 

   int i; 

   char numEvents[20]; //string which contains number of *params[PARAM_EVENTS] in 

simulation 

 

   //gets the number of total *params[PARAM_EVENTS] from the second *params[PARAM_LINE] 

in the input file 

   if ((fgets(numEvents, 100, fps[FP_IN])==NULL)) return emptyError(INPUT_FILE); 

   (*params[PARAM_LINE])++; 

 

   if (numEvents[0]!=EVENTS_START) return formatError(INPUT_FILE, numEvents, 

(*params[PARAM_LINE])++); 

   if ((fgets(numEvents, 100, fps[FP_IN])==NULL)) return emptyError(INPUT_FILE); 

 

   if ((*params[PARAM_EVENTS] = atof(strtok(numEvents, DELIMS))) == 0) return 

formatError(INPUT_FILE, numEvents, (*params[PARAM_LINE])++); 

 

   *params[PARAM_X_LENGTH] = atof(strtok(NULL, DELIMS)); 

   if (*params[PARAM_X_LENGTH]==0) return formatError(INPUT_FILE, numEvents, 

(*params[PARAM_LINE])++); 

 

   *params[PARAM_Y_LENGTH] = atof(strtok(NULL, DELIMS)); 

   if (*params[PARAM_Y_LENGTH]==0) return formatError(INPUT_FILE, numEvents, 

(*params[PARAM_LINE])++); 

 

   *params[PARAM_Z_LENGTH] = atof(strtok(NULL, DELIMS)); 
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   if (*params[PARAM_Z_LENGTH]==0) return formatError(INPUT_FILE, numEvents, 

(*params[PARAM_LINE])++); 

 

   *params[PARAM_X_MAX] = *params[PARAM_X_LENGTH]/2; 

   *params[PARAM_Y_MAX] = *params[PARAM_Y_LENGTH]/2; 

   *params[PARAM_Z_MAX] = *params[PARAM_Z_LENGTH]/2; 

 

   *params[PARAM_X_MIN] = *params[PARAM_X_LENGTH]/2 * -1; 

   *params[PARAM_Y_MIN] = *params[PARAM_Y_LENGTH]/2 * -1; 

   *params[PARAM_Z_MIN] = *params[PARAM_Z_LENGTH]/2 * -1; 

 

   *params[PARAM_X_VOXEL_TOTAL] = *params[PARAM_X_LENGTH] / 

*params[PARAM_X_VOXEL_SIZE]; 

   *params[PARAM_Y_VOXEL_TOTAL] = *params[PARAM_Y_LENGTH] / 

*params[PARAM_Y_VOXEL_SIZE]; 

   *params[PARAM_Z_VOXEL_TOTAL] = *params[PARAM_Z_LENGTH] / 

*params[PARAM_Z_VOXEL_SIZE]; 

 

   *params[PARAM_ALL_VOXELS] = *params[PARAM_X_VOXEL_TOTAL] * 

*params[PARAM_Y_VOXEL_TOTAL] * *params[PARAM_Z_VOXEL_TOTAL]; 

 

   return CONTINUE; 

} 

 

// pocaLtoL(): 

//    Input:  two lines L1 and L2: 

//    Return: the shortest distance between L1 and L2 

double pocaLtoL(struct Line *L1, struct Line *L2, struct Point* scatPt, double** params) { 

 

   double a, b, c, d, e, D, sc, tc, doca; 

 

   struct Point *u, *v, *w, *dPVector, *scXu, *tcXv, *scXuMtcXv, *cp1, *cp2; 

   if ((u         = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((v         = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 
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   if ((w         = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((dPVector  = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((scXu      = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((tcXv      = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((scXuMtcXv = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((cp1       = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((cp2       = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

 

   vec_sub((*L1).P2, (*L1).P1, u); 

   vec_sub((*L2).P2, (*L2).P1, v); 

   vec_sub((*L1).P1, (*L2).P1, w); 

 

   a = vec_dot(u, u); 

   b = vec_dot(u, v); 

   c = vec_dot(v, v); 

   d = vec_dot(u, w); 

   e = vec_dot(v, w); 

 

   D = (a)*(c) - (b)*(b); 

 

   // compute the line parameters of the two closest points 

   if (D < SMALL_NUM) {         // the lines are almost parallel 

 

       (*params[PARAM_PARALLEL])++; 

 

       (*scatPt).x = (*((*L1).P2)).x; 

       (*scatPt).y = (*((*L1).P2)).y; 

       (*scatPt).z = (*((*L1).P2)).z; 

 

       return PARALLEL; 

   } else { 

        

       sc = ((b)*(e) - (c)*(d)) / D; 

       tc = ((a)*(e) - (b)*(d)) / D; 
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   } 

 

   vec_mult(sc, u, scXu); 

   vec_mult(tc, v, tcXv); 

 

   //next three lines are for distance of closest approach 

   vec_sub(scXu, tcXv, scXuMtcXv); 

   vec_add(w, scXuMtcXv, dPVector); 

   doca = vec_norm(dPVector); 

 

   //next three lines are for point of closest approach 

   vec_add((*L1).P1, scXu, cp1); 

   vec_add((*L2).P1, tcXv, cp2); 

   vec_mid(cp1, cp2, scatPt); 

 

   free(cp2); 

   free(cp1); 

   free(scXuMtcXv); 

   free(scXu); 

   free(tcXv); 

   free(dPVector); 

   free(w); 

   free(v); 

   free(u); 

 

   return doca; 

} 

 

 

double in_volume(struct Point* p, double** params) { 

 

   if (((*p).x > *params[PARAM_X_MAX]) || ((*p).x < *params[PARAM_X_MIN])) return 0; 

   if (((*p).y > *params[PARAM_Y_MAX]) || ((*p).y < *params[PARAM_Y_MIN])) return 0; 
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   if (((*p).z > *params[PARAM_Z_MAX]) || ((*p).z < *params[PARAM_Z_MIN])) return 0; 

 

   return 1; 

} 

 

 

int em_data(struct Line* muonIn, struct Line* muonOut, struct muon* mu, double** params, 

FILE** fps) { 

 

   int i, j; 

   double thetaX, thetaX0, thetaX1, thetaY, thetaY0, thetaY1, difX, difY, deltaX, deltaY, pr2, Lxy; 

 

   struct Line *vertIn, *vertOut; 

   struct Point *dvIn, *p1, *distance; 

 

   if ((vertIn = (struct Line*) malloc(sizeof(struct Line)))==NULL) return memError(); 

   if (((*vertIn).P1 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if (((*vertIn).P2 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((vertOut = (struct Line*) malloc(sizeof(struct Line)))==NULL) return memError(); 

   if (((*vertOut).P1 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if (((*vertOut).P2 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

 

   if ((dvIn = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((p1 = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

 

   //dvIn is the position vector of the incoming muon track 

   vec_sub((*muonIn).P2, (*muonIn).P1, dvIn); 

 

   //setting up vertical vectors for the top and bottom outgoing tracks 

   vec_copy(muonIn, vertIn); 

   (*(*vertIn).P1).x = (*(*muonIn).P2).x; 

   (*(*vertIn).P1).y = (*(*muonIn).P2).y; 

 

   vec_copy(muonOut, vertOut); 
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   (*(*vertOut).P2).x = (*(*muonOut).P1).x; 

   (*(*vertOut).P2).y = (*(*muonOut).P1).y; 

 

   thetaX0 = vec_angle(muonIn, vertIn, X_COMPONENT); 

   thetaX1 = vec_angle(muonOut, vertOut, X_COMPONENT); 

   if (*params[PARAM_EM_3D]) thetaX = *params[PARAM_SCAT_ANG]; 

   else                      thetaX  = thetaX1 - thetaX0; 

 

   thetaY0 = vec_angle(muonIn, vertIn, Y_COMPONENT); 

   thetaY1 = vec_angle(muonOut, vertOut, Y_COMPONENT); 

   if (*params[PARAM_EM_3D]) thetaY = 0; 

   else                      thetaY  = thetaY1 - thetaY0; 

 

   Lxy = sqrt(1 + pow(tan(thetaX0), 2) + pow(tan(thetaY0), 2)); 

   *params[PARAM_L] = (*params[PARAM_X_VOXEL_SIZE] * Lxy) / 10; 

 

   (*p1).x = (*(*muonIn).P2).x; 

   (*p1).y = (*(*muonIn).P2).y; 

   (*p1).z = (*(*muonIn).P2).z; 

   travel(p1, dvIn, Z_COMPONENT, (*(*muonOut).P1).z); 

 

   difX = ((*(*muonOut).P1).x - (*p1).x); 

   difY = ((*(*muonOut).P1).y - (*p1).y); 

   deltaX = difX * cos(thetaX0) * Lxy * (cos(thetaX + thetaX0) / cos(thetaX)); 

   deltaY = difY * cos(thetaY0) * Lxy * (cos(thetaY + thetaY0) / cos(thetaY)); 

 

 

   (*mu).event = (int) *params[PARAM_CUR_EVENT]; 

   if (*params[PARAM_DOCA]==PARALLEL || isnan(thetaX) || isnan(thetaY)) { 

      (*mu).dtX   = 0; 

      (*mu).dtY   = 0; 

      (*mu).dX    = 0; 

      (*mu).dY    = 0; 

   } else { 
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      (*mu).dtX   = fabs(thetaX * *params[PARAM_MILLIRADIANS]); 

      (*mu).dtY   = fabs(thetaY * *params[PARAM_MILLIRADIANS]); 

      (*mu).dX    = fabs(deltaX / *params[PARAM_UNITS_LENGTH]); 

      (*mu).dY    = fabs(deltaY / *params[PARAM_UNITS_LENGTH]); 

   } 

   (*mu).pr2   = pow(*params[PARAM_NOM_MOMENTUM] / 

*params[PARAM_MOMENTUM], 2); 

 

   *params[PARAM_DTX] = (*mu).dtX; 

   *params[PARAM_DTY] = (*mu).dtY; 

   *params[PARAM_DX]  = (*mu).dX; 

   *params[PARAM_DY]  = (*mu).dY; 

 

   (*mu).a   = 0; 

   (*mu).b   = -1; 

 

   free(p1); 

   free(dvIn); 

   free((*vertIn).P1); 

   free((*vertIn).P2); 

   free((*vertOut).P1); 

   free((*vertOut).P2); 

   free(vertIn); 

   free(vertOut); 

 

   return CONTINUE; 

} 

 

//travel moves a point a long a vector 

// p is the Point to move 

// V is the position vector 

// xyz is what component is being solved for 

// end is the value of that component 

void travel(struct Point* p, struct Point* v, int xyz, double end_point) { 
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   double t=0, initial_point=0, direction_vec=0; 

 

   if (xyz == X_COMPONENT) { 

      initial_point = (*p).x; 

      direction_vec = (*v).x; 

   } else if (xyz == Y_COMPONENT) { 

      initial_point = (*p).y; 

      direction_vec = (*v).y; 

   } else if (xyz == Z_COMPONENT) { 

      initial_point = (*p).z; 

      direction_vec = (*v).z; 

   } 

 

   //the t parameter will give the units needed to move along the vector until the desired end_point is 

reached 

   t =  (end_point - initial_point) / direction_vec; 

 

   (*p).x = (*p).x + (*v).x * t; 

   (*p).y = (*p).y + (*v).y * t; 

   (*p).z = (*p).z + (*v).z * t; 

 

   return; 

} 

 

struct voxel* track(struct Point* start, struct Point* end, struct Point* volume_end, struct muon* 

mu, struct voxel* path, double* M,  double** params, FILE** fps) { 

 

   int xVox, yVox, zVox, curVoxel; 

   double vx, vy, vz; 

   double tNew, tOld=0, tLast, L, T; 

   double xOut = (*start).x, yOut = (*start).y, zOut = (*start).z, depth = 0; 

 

   struct Point *new, *old, *v; 
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   struct voxel *track; 

   track = path; 

 

   if ((new = (struct Point*) malloc(sizeof(struct Point)))==NULL) return NULL; 

   if ((old = (struct Point*) malloc(sizeof(struct Point)))==NULL) return NULL; 

   if ((v   = (struct Point*) malloc(sizeof(struct Point)))==NULL) return NULL; 

 

   vec_copy_point(start, new); 

 

   vx = (*end).x - (*start).x; 

   vy = (*end).y - (*start).y; 

   vz = (*end).z - (*start).z; 

 

   while (zOut > (*end).z) { 

 

      xVox = (int) floor(((xOut - *params[PARAM_X_MIN]) / 

*params[PARAM_X_VOXEL_SIZE])); 

      yVox = (int) floor(((yOut - *params[PARAM_Y_MIN]) / 

*params[PARAM_Y_VOXEL_SIZE])); 

      zVox = (int) floor(((zOut - *params[PARAM_Z_MIN]) / 

*params[PARAM_Z_VOXEL_SIZE])); 

   

      //voxel number determined in z direction first, then y, then x 

      curVoxel = xVox * ((int) *params[PARAM_Y_VOXEL_TOTAL]) * ((int) 

*params[PARAM_Z_VOXEL_TOTAL]) + yVox * ((int) *params[PARAM_Z_VOXEL_TOTAL]) 

+ zVox; 

 

      tLast = tOld; 

      tOld = 100; 

 

      //calculations for minimum border of voxel in X direction 

      xOut = *params[PARAM_X_MIN] + xVox * *params[PARAM_X_VOXEL_SIZE]; 

      tNew = (xOut-(*start).x)/vx; 
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      if ((tNew < tOld) && (tNew > tLast) && (xOut >= *params[PARAM_X_MIN])) tOld=tNew; 

 

      //calculations for maximum border of voxel in X direction 

      xOut = *params[PARAM_X_MIN] + (xVox+1) * *params[PARAM_X_VOXEL_SIZE]; 

      tNew = (xOut-(*start).x)/vx; 

      if ((tNew < tOld) && (tNew > tLast) && (xOut <= *params[PARAM_X_MAX])) tOld=tNew; 

 

      //calculations for minimum border of voxel in Y direction 

      yOut = *params[PARAM_Y_MIN] + yVox * *params[PARAM_Y_VOXEL_SIZE]; 

      tNew = (yOut-(*start).y)/vy; 

      if ((tNew < tOld) && (tNew > tLast) && (yOut >= *params[PARAM_Y_MIN])) tOld=tNew; 

 

      //calculations for maximum border of voxel in Y direction 

      yOut = *params[PARAM_Y_MIN] + (yVox+1)**params[PARAM_Y_VOXEL_SIZE]; 

      tNew = (yOut-(*start).y)/vy; 

      if ((tNew < tOld) && (tNew > tLast) && (yOut <= *params[PARAM_Y_MAX])) tOld=tNew; 

 

      //calculations for minimum border of voxel in Z direction 

      zOut = *params[PARAM_Z_MIN] + zVox**params[PARAM_Z_VOXEL_SIZE]; 

      tNew = (zOut-(*start).z)/vz; 

      if ((tNew <tOld) && (tNew > tLast) && (zOut <= *params[PARAM_Z_MAX])) tOld=tNew; 

       

      tNew = tOld + TRACK_PUSH; 

 

      if (*params[PARAM_PRECISE_L] || *params[PARAM_PRECISE_T]) { 

         vec_copy_point(new, old); 

         (*new).x = (*start).x + vx*tOld; 

         (*new).y = (*start).y + vy*tOld; 

         (*new).z = (*start).z + vz*tOld; 

      } 

 

      if ((zVox < *params[PARAM_Z_VOXEL_TOTAL]) && (zOut < (*start).z) && (zVox >= 0) 

&& (curVoxel!= *params[PARAM_PREV_VOXEL])) { 
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         track=(*track).nextVoxel; 

         (*track).ID = curVoxel; 

  

         if (volume_end!=NULL) (*mu).b = (*mu).b + 1; 

         else                  (*mu).a = (*mu).a + 1; 

 

         //L calculation 

         if (*params[PARAM_PRECISE_L]) { 

            vec_sub(new, old, v); 

            L = vec_norm(v); 

         } else L = *params[PARAM_L]; 

 

         //T calculation 

         if (*params[PARAM_PRECISE_T]) { 

            if (volume_end==NULL) { 

               vec_sub(end, new, v); 

               T = vec_norm(v); 

            } else { 

               vec_sub(end, new, v); 

               T = vec_norm(v); 

               vec_sub(volume_end, new, v); 

               T = T + vec_norm(v); 

            } 

         } else T = *params[PARAM_L] * zVox; 

 

         L = L / *params[PARAM_UNITS_LENGTH]; 

         T = T / *params[PARAM_UNITS_LENGTH]; 

 

         (*track).wt  = L; 

         (*track).wtX = (pow(L, 2)/2) + L*T; 

         (*track).wX  = (pow(L, 3)/3) + (pow(L, 2)*T) + (L*pow(T, 2)); 

 

         if (((*track).nextVoxel = (struct voxel*) malloc(sizeof(struct voxel)))==NULL) return NULL; 
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      } 

 

      xOut = (*start).x + vx*tNew; 

      yOut = (*start).y + vy*tNew; 

      zOut = (*start).z + vz*tNew; 

 

      *params[PARAM_PREV_VOXEL] = curVoxel; 

 

   } 

 

   free((*track).nextVoxel); 

   (*track).nextVoxel= NULL; 

 

   free(v); 

   free(old); 

   free(new); 

 

   return track; 

} 
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//mtsio.h 

 

//define constants for markers in poca input file 

#define TOP_START    'a' 

#define TOP_END      'b' 

#define BOTTOM_START 'c' 

#define BOTTOM_END   'd' 

#define EVENTS_START 'e' 

 

int get_geant_input(struct Point**, struct Point**, double**, FILE**); 

void write_lambda(double*, double*, struct muon*, double**, FILE*); 

void write_optional(struct Point*, struct Point*, struct Point*, double**, FILE**); 
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//mtsio.c 

#include "mts.h" 

#include "mtsio.h" 

#include "mtserr.h" 

#include "vecfunc.h" 

 

//takes input from a file and parses it into the incoming/outgoing points 

//and the scattering angle 

int get_geant_input(struct Point** incPoints, struct Point** outPoints, double** params, FILE** 

fps) { 

 

   //coordinates from file 

   char *token, input[MAX_LINE]; 

   int i = 0; 

   struct Point* dummy; 

 

   while (1) { 

 

      //get next params[PARAM_LINE] from file 

      if ((fgets(input, MAX_LINE, fps[FP_IN])==NULL)) return END; 

      (*params[PARAM_LINE])++; 

 

      //if the next points aren't from top detector disregard this event 

 

      if (input[0]!=TOP_START) { 

         if (input[0]==EVENTS_START) { 

            if ((fgets(input, MAX_LINE, fps[FP_IN])==NULL)) return END; 

         } 

         continue; 

      } 

 

      //take care of momentum 

      if ((fgets(input, MAX_LINE, fps[FP_IN])==NULL)) return END; 

      (*params[PARAM_LINE])++; 
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      if (!isdigit(input[0]) && input[0]!='-') break; 

      *params[PARAM_MOMENTUM] = atof(strtok(input, DELIMS)); 

 

      i = 0; 

      //read in incoming muon tracks 

      while (input[0]!=TOP_END) { 

 

          if ((fgets(input, MAX_LINE, fps[FP_IN])==NULL)) return END; 

          (*params[PARAM_LINE])++; 

 

          if (!isdigit(input[0]) && input[0]!='-') break; 

 

          dummy = incPoints[i]; 

 

          if ((token=strtok( input, DELIMS ))!=NULL) (*dummy).x = atof(token); 

          else return formatError("inputFile", input, *params[PARAM_LINE]); 

          if ((token=strtok( NULL, DELIMS ))!=NULL) (*dummy).y = atof(token); 

          else return formatError("inputFile", input, *params[PARAM_LINE]); 

          if ((token=strtok( NULL, DELIMS ))!=NULL) (*dummy).z = atof(token); 

          else return formatError("inputFile", input, *params[PARAM_LINE]); 

 

          i++; 

 

      } 

      *params[PARAM_INC_DECT] = i; 

 

      //if less than 2 detectors were hit disregard this event 

      if (i<2) continue; 

      if (input[0]!=TOP_END) return formatError("inputFile", input, *params[PARAM_LINE]); 

 

      if ((fgets(input, MAX_LINE, fps[FP_IN])==NULL)) return END; 

      (*params[PARAM_LINE])++; 
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      //if the next points aren't from bottom detector disregard this event 

      if (input[0]!=BOTTOM_START) continue; 

 

      i=0; 

 

      //read in outgoing muon tracks 

      while (input[0]!=BOTTOM_END) { 

 

          if ((fgets(input, MAX_LINE, fps[FP_IN])==NULL)) return END; 

          (*params[PARAM_LINE])++; 

 

          if (!isdigit(input[0]) && input[0]!='-') break; 

 

          dummy = outPoints[i]; 

 

          if ((token=strtok( input, DELIMS ))!=NULL) (*dummy).x = atof(token); 

          else return formatError("inputFile", input, *params[PARAM_LINE]); 

          if ((token=strtok( NULL, DELIMS ))!=NULL)  (*dummy).y = atof(token); 

          else return formatError("inputFile", input, *params[PARAM_LINE]); 

          if ((token=strtok( NULL, DELIMS ))!=NULL)  (*dummy).z = atof(token); 

          else return formatError("inputFile", input, *params[PARAM_LINE]); 

 

          i++; 

 

      } 

      *params[PARAM_OUT_DECT] = i; 

 

      //if less than 2 detectors were hit disregard this event 

      if (i<2) continue; 

      if (input[0]!=BOTTOM_END) return formatError("inputFile", input, *params[PARAM_LINE]); 

      break; 

 

 

   }    
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   return CONTINUE; 

} 

 

 

void write_lambda(double* lambda, double* M, struct muon* mu, double** params, FILE* out) { 

 

   int i, x, y, z, startVoxel=0; 

 

   struct voxel* tempVoxel; 

 

   for (i=0; i < *params[PARAM_ALL_VOXELS]; i++) { 

 

      if (M[i]==0) lambda[i]=0; 

      if (*params[PARAM_MILLIRADIANS]==1) lambda[i] = lambda[i]*1000000; 

      if (*params[PARAM_UNITS_LENGTH]!=10) lambda[i] = lambda[i] * (10 / 

*params[PARAM_UNITS_LENGTH]); 

 

      x = (int) floor(i/(*params[PARAM_Y_VOXEL_TOTAL] * 

*params[PARAM_Z_VOXEL_TOTAL])); 

      y = (int) floor((i - (x * *params[PARAM_Y_VOXEL_TOTAL] * 

*params[PARAM_Z_VOXEL_TOTAL]))/ *params[PARAM_Z_VOXEL_TOTAL]); 

      z = (int) floor(i - (x * *params[PARAM_Y_VOXEL_TOTAL] * 

*params[PARAM_Z_VOXEL_TOTAL]) - (y * *params[PARAM_Z_VOXEL_TOTAL])); 

 

      x = x * *params[PARAM_X_VOXEL_SIZE] + *params[PARAM_X_MIN] + 

(*params[PARAM_X_VOXEL_SIZE]/2); 

      y = y * *params[PARAM_Y_VOXEL_SIZE] + *params[PARAM_Y_MIN] + 

(*params[PARAM_Y_VOXEL_SIZE]/2); 

      z = z * *params[PARAM_Z_VOXEL_SIZE] + *params[PARAM_Z_MIN] + 

(*params[PARAM_Z_VOXEL_SIZE]/2); 

 

      fprintf(out, "%d %d %d %f %d %f\n", x, y, z, lambda[i], i, M[i]); 
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   } 

 

   return; 

} 

 

void write_optional(struct Point* in, struct Point* scat, struct Point* out, double** params, FILE** 

fps) { 

 

   if (*params[PARAM_OP_OUT]) { 

 

      fprintf(fps[FP_OP_OUT], "Event: %f\n", *params[PARAM_CUR_EVENT]); 

      fprintf(fps[FP_OP_OUT], "IN: %f %f %f\n", (*in).x, (*in).y, (*in).z); 

      fprintf(fps[FP_OP_OUT], "POCA & DOCA: %f %f %f %f\n", (*scat).x, (*scat).y, (*scat).z, 

*params[PARAM_DOCA]); 

      fprintf(fps[FP_OP_OUT], "OUT: %f %f %f\n", (*out).x, (*out).y, (*out).z); 

      fprintf(fps[FP_OP_OUT], "ANGLE(radians/degrees): %f / %f\n", 

*params[PARAM_SCAT_ANG], vec_rad_to_deg(*params[PARAM_SCAT_ANG])); 

      fprintf(fps[FP_OP_OUT], "EM (dtX, dtY, dX, dY, mom, L): %f %f %f %f %f %f\n\n", 

*params[PARAM_DTX], *params[PARAM_DTY], *params[PARAM_DX], 

*params[PARAM_DY], *params[PARAM_MOMENTUM], *params[PARAM_L]); 

 

   } 

 

   if (*params[PARAM_POCA])  

      fprintf(fps[FP_POCA_OUT], "%f %f %f %f\n", (*scat).x, (*scat).y, (*scat).z, 

vec_rad_to_deg(*params[PARAM_SCAT_ANG])); 

 

   if (*params[PARAM_DIST] && (*params[PARAM_DOCA]!=PARALLEL)) { 

      fprintf(fps[FP_DIST_OUT], "%f %f", *params[PARAM_SCAT_ANG], 

vec_rad_to_deg(*params[PARAM_SCAT_ANG])); 

      fprintf(fps[FP_DIST_OUT], " %f %f %f %f\n", *params[PARAM_DTX], 

vec_rad_to_deg(*params[PARAM_DTX]), *params[PARAM_DTY], 

vec_rad_to_deg(*params[PARAM_DTY])); 

   } 
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   return; 

} 
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//vecfunc.h 

//define constants for xyz componets 

#define ALL_COMPONENTS -1 

#define X_COMPONENT     0 

#define Y_COMPONENT     1 

#define Z_COMPONENT     2 

 

//define constants for fit function 

#define FIT_X     1 

#define FIT_Y     0 

#define FIT_NONE -1 

 

#define RAD 180/(4.0*atan(1.0)) 

 

#define MAX_DETECTORS 5 

#define MAX_DIMENSION 2 

 

double vec_dot (struct Point*, struct Point*); 

double vec_norm (struct Point*); 

void vec_mid (struct Point*, struct Point*, struct Point*); 

void vec_sub (struct Point*, struct Point*, struct Point*); 

void vec_add (struct Point*, struct Point*, struct Point*); 

void vec_mult (double, struct Point*, struct Point*); 

void vec_div (double, struct Point*, struct Point*); 

void vec_fit (struct Point**, struct Line*, int, int); 

double vec_rad_to_deg (double); 

double vec_angle (struct Line*, struct Line*, int); 

void vec_copy(struct Line*, struct Line*); 
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//vecfunc.c 

#include "mts.h" 

#include "vecfunc.h" 

 

double vec_dot (struct Point *P1, struct Point *P2) { return (((*P1).x * (*P2).x) +  ((*P1).y * 

(*P2).y) + ((*P1).z * (*P2).z)); } 

 

double vec_norm (struct Point *v) { return (sqrt(vec_dot(v, v))); } 

 

void vec_mid (struct Point *P1, struct Point *P2, struct Point *scatPt) { 

  

   (*scatPt).x = ((*P1).x+(*P2).x)/2; 

   (*scatPt).y = ((*P1).y+(*P2).y)/2, 

   (*scatPt).z = ((*P1).z+(*P2).z)/2; 

 

   return; 

} 

 

void vec_sub (struct Point *P1, struct Point *P2, struct Point *vec) { 

 

   (*vec).x = ( (*P1).x - (*P2).x ); 

   (*vec).y = ( (*P1).y - (*P2).y ); 

   (*vec).z = ( (*P1).z - (*P2).z ); 

 

   return; 

} 

 

void vec_add (struct Point *P1, struct Point *P2, struct Point *vec) { 

 

   (*vec).x = ( (*P1).x + (*P2).x ); 

   (*vec).y = ( (*P1).y + (*P2).y ); 

   (*vec).z = ( (*P1).z + (*P2).z ); 

 

   return; 
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} 

 

void vec_mult (double sc, struct Point *P1, struct Point *vec) { 

 

   (*vec).x = sc * (*P1).x; 

   (*vec).y = sc * (*P1).y; 

   (*vec).z = sc * (*P1).z; 

 

   return; 

} 

 

void vec_div (double sc, struct Point *P1, struct Point *vec) { 

 

   (*vec).x = (*P1).x / sc; 

   (*vec).y = (*P1).y / sc; 

   (*vec).z = (*P1).z / sc; 

 

   return; 

} 

 

void vec_fit (struct Point** points, struct Line* muonTrack, int detectors, int fitX) { 

 

   double vecXY[MAX_DIMENSION][MAX_DETECTORS]; 

   double vecZ[MAX_DETECTORS]; 

   double normal[MAX_DETECTORS][MAX_DIMENSION]; 

   double lhs[MAX_DIMENSION][MAX_DIMENSION]; 

   double rhs[MAX_DIMENSION]; 

   double augmented[MAX_DIMENSION+1][MAX_DIMENSION]; 

   double lSum,rSum,newXY1,newZ1,newXY2,newZ2,factor,c0,c1; 

 

   int i,j,k; 

    

   struct Point* dummy; 
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   if (fitX==FIT_NONE) { 

        

      dummy = (*muonTrack).P1; 

 

      (*dummy).x = (*points[0]).x; 

      (*dummy).y = (*points[0]).y; 

      (*dummy).z = (*points[0]).z; 

 

      dummy = (*muonTrack).P2; 

 

      (*dummy).x = (*points[detectors-1]).x; 

      (*dummy).y = (*points[detectors-1]).y; 

      (*dummy).z = (*points[detectors-1]).z; 

 

   } else { 

       

      if ((fitX == FIT_X) && ((*points[0]).x == (*points[detectors-1]).x)) { 

         dummy = (*muonTrack).P1; 

         (*dummy).x = (*points[0]).x; 

         dummy = (*muonTrack).P2; 

         (*dummy).x = (*points[detectors-1]).x; 

         return; 

      } 

      else if ((fitX ==FIT_Y) && ((*points[0]).y == (*points[detectors-1]).y)) { 

         dummy = (*muonTrack).P1; 

         (*dummy).y = (*points[0]).y; 

         dummy = (*muonTrack).P2; 

         (*dummy).y = (*points[detectors-1]).y; 

         return; 

      } 

 

      for (i = 0; i<detectors; i++) { 

         vecXY[0][i] = 1; 

         if (fitX == FIT_X) vecXY[MAX_DIMENSION-1][i] = (*points[i]).x; 
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         else      vecXY[MAX_DIMENSION-1][i] = (*points[i]).y; 

         vecZ[i] = (*points[i]).z; 

      } 

  

      for (i = 0; i < MAX_DIMENSION; i++) { 

         for (j = 0; j < detectors; j++) { 

            normal[j][i] = vecXY[i][j]; 

         } 

      } 

 

      for (i = 0; i < MAX_DIMENSION; i++) { 

         for (j = 0; j < MAX_DIMENSION; j++) { 

            lSum = 0; 

            rSum = 0; 

            for (k = 0; k <detectors; k++) { 

               lSum += normal[k][i] * vecXY[j][k]; 

               rSum += normal[k][i] * vecZ[k]; 

            } 

            lhs[i][j] = lSum; 

            rhs[i] = rSum; 

         } 

      } 

 

      //create augmented matrix to solve 2x2 system 

      for (i = 0; i < MAX_DIMENSION; i++) { 

         for (j = 0; j < MAX_DIMENSION; j++) { 

            augmented[i][j] = lhs[i][j]; 

         } 

         augmented[j][i] = rhs[i]; 

      } 

 

      //create augmented matrix to solve 2x2 system 

      augmented[0][0] = lhs[0][0]; 

      augmented[0][1] = lhs[0][1]; 



clxix 

      augmented[1][0] = lhs[1][0]; 

      augmented[1][1] = lhs[1][1]; 

      augmented[2][0] = rhs[0]; 

      augmented[2][1] = rhs[1]; 

 

      factor = augmented[0][1]/augmented[0][0]; 

      for (i = 0; i < 3; i++) { 

        augmented[i][1] = augmented[i][1] - (factor*augmented[i][0]); 

      } 

 

      c1 = augmented[2][1] / augmented[1][1]; 

      c0 = (augmented[2][0] - augmented[1][0]*c1) / augmented[0][0]; 

 

      newZ1 = vecZ[0]; 

      newXY1 = (newZ1-c0)/c1; 

 

      newZ2 = vecZ[detectors-1]; 

      newXY2 = (newZ2-c0)/c1; 

 

      dummy = (*muonTrack).P1; 

 

      if (fitX==FIT_X) (*dummy).x = newXY1; 

      else      (*dummy).y = newXY1; 

      (*dummy).z = newZ1; 

 

      dummy = (*muonTrack).P2; 

 

      if (fitX==FIT_X) (*dummy).x = newXY2; 

      else      (*dummy).y = newXY2; 

      (*dummy).z = newZ2; 

   } 

 

   return; 

} 
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double vec_rad_to_deg (double angle) { return (RAD * angle); } 

 

//vec_angle uses a.b=|a||b|acos(theta) to compute the angle between two vectors 

double vec_angle (struct Line* L1, struct Line* L2, int component) {  

 

   double scatAng, distance, dotUV, normU, normV; 

  

   struct Point *u,*v; 

 

   if ((u = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

   if ((v = (struct Point*) malloc(sizeof(struct Point)))==NULL) return memError(); 

 

   vec_sub((*L1).P2, (*L1).P1, u); 

   vec_sub((*L2).P2, (*L2).P1, v); 

 

   if (component!=ALL_COMPONENTS) { 

      if (component==X_COMPONENT) (*u).x = (*v).x = 0; 

      if (component==Y_COMPONENT) (*u).y = (*v).y = 0; 

   } 

 

   normU = vec_norm(u); 

   normV = vec_norm(v); 

 

   dotUV = vec_dot(u, v); 

 

   if (((dotUV) / ((normU) * (normV))) >= 1) scatAng = 0; 

   else scatAng = acos(dotUV / (normU * normV)); 

 

   if (dotUV<0) { 

      if (scatAng > 0) scatAng+=M_PI; 

      else             scatAng-=M_PI; 

   } 
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   free(v); 

   free(u); 

 

   return scatAng; 

} 

 

//vecCopy copies the contents of L1 to L2 

void vec_copy(struct Line* L1, struct Line* L2) { 

 

   struct Point *P1, *P2; 

 

   P1 = (*L1).P1; 

   P2 = (*L2).P1; 

 

   (*P2).x = (*P1).x; 

   (*P2).y = (*P1).y; 

   (*P2).z = (*P1).z; 

 

   P1 = (*L1).P2; 

   P2 = (*L2).P2; 

 

   (*P2).x = (*P1).x; 

   (*P2).y = (*P1).y; 

   (*P2).z = (*P1).z; 

 

   return; 

 

} 

 

void vec_copy_point(struct Point* P1, struct Point* P2) { 

 

   (*P2).x = (*P1).x; 

   (*P2).y = (*P1).y; 

   (*P2).z = (*P1).z; 
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   return; 

} 
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//mtserr.h 

 

//define constants for error return values 

#define ERR_CODE_COMMAND_LINE       1 

#define ERR_CODE_EMPTY_FILE         2 

#define ERR_CODE_INVALID_COMMAND    3 

#define ERR_CODE_INVALID_FILE       4 

#define ERR_CODE_INVALID_INPUT      5 

#define ERR_CODE_MEM                6 

#define ERR_CODE_NO_FILE            7 

#define ERR_CODE_OPTIONAL_REQUIRED  8 

#define ERR_CODE_UNIX               9 

#define ERR_CODE_UNUSED_FILE       10 

 

char commandError(char, char); 

int emptyError(char*); 

int fileError(char*); 

int formatError(char*, char*, int); 

int memError(); 

int optionalError(char*, char); 

int unixError(char*); 

int unusedError(char*); 
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//mtserr.c 

#include "mts.h" 

#include "mtsio.h" 

 

//constants defining the error messages to display for the command line 

#define ERR_MSG_TITLE    "Muon Tomography Suite Command Line Options" 

#define ERR_MSG_OPTION   "Illegal Command Line Option" 

#define ERR_MSG_COMBO    "The following commands may not be selected together" 

 

#define ERR_MSG_COVERAGE1 "run coverage analysis after reconstruction" 

#define ERR_MSG_COVERAGE2 "(input file must be provided unless poca/em is being run or 

stdin option is chosen)" 

#define ERR_MSG_DETAILS1  "provides detailed information on inner processes" 

#define ERR_MSG_DETAILS2  0 

#define ERR_MSG_EM1       "run maximum likelihood algorithm" 

#define ERR_MSG_EM2       "(input file must be provided unless stdin option is selected)" 

#define ERR_MSG_HELP1     "list command line options" 

#define ERR_MSG_HELP2     0 

#define ERR_MSG_NO_FIT1   "run reconstrunction without line fitting the data" 

#define ERR_MSG_NO_FIT2   0 

#define ERR_MSG_NORM1     "run reconstrunction with normalized vectors" 

#define ERR_MSG_NORM2     0 

#define ERR_MSG_POCA1     "run poca algorithm" 

#define ERR_MSG_POCA2     "(input file must be provided unless stdin option is selected)" 

#define ERR_MSG_ROOT1     "run root analysis after reconstruction (cannot be selected with 

stdout option)" 

#define ERR_MSG_ROOT2     0 

#define ERR_MSG_STDIN1    "accept input from stdin instead of file" 

#define ERR_MSG_STDIN2    "(all input must come from stdin; provided input files are ignored)" 

#define ERR_MSG_STDOUT1   "print output to stdout instead of file" 

#define ERR_MSG_STDOUT2   0 

#define ERR_MSG_VALIDATE1 "run validation analysis after reconstruction" 

#define ERR_MSG_VALIDATE2 "(input file must be provided unless poca/em is being run or stdin 

option is chosen)" 
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#define ERR_MSG_X1        "extended details, prints algorithmic computations step by step" 

#define ERR_MSG_X2        0 

 

//constants defining the error messages for internal MTS runtime errors 

#define ERR_MSG_EMPTY    "is empty!" 

#define ERR_MSG_FILE     "is not a valid file!" 

#define ERR_MSG_FORMAT1  "is incorrectly formatted!" 

#define ERR_MSG_FORMAT2  "Invalid Line" 

#define ERR_MSG_MEM      "insufficient memory available" 

#define ERR_MSG_OPTIONAL "An input file must be provided for the following options" 

#define ERR_MSG_UNIX     "unix system command failed:" 

#define ERR_MSG_UNUSED   "unused: Input from stdin" 

 

char commandError(char option, char option2) { 

 

   if (option!=option2) printf("\n%s: -%c and -%c\n", ERR_MSG_COMBO, option, option2); 

   else if (option!=SHORT_HELP) printf("\n%s: |%c|\n", ERR_MSG_OPTION, option);    

  

   printf("\n%s:\n\n", ERR_MSG_TITLE); 

   printf("\t-%c or --%s: \n\n\t\t%s \n\n",          SHORT_DETAILS,  LONG_DETAILS,  

ERR_MSG_DETAILS1,  ERR_MSG_DETAILS2); 

   printf("\t-%c or --%s: \n\n\t\t%s \n\t\t%s \n\n", SHORT_EM,       LONG_EM,       

ERR_MSG_EM1,       ERR_MSG_EM2); 

   printf("\t-%c or --%s: \n\n\t\t%s \n\n",          SHORT_HELP,     LONG_HELP,     

ERR_MSG_HELP1,     ERR_MSG_HELP2); 

 

   return option; 

} 

 

int emptyError(char* file) { 

   fprintf(ERR_OUT, "\n\n\t%s %s\n\n", file, ERR_MSG_EMPTY); 

   return ERR_CODE_EMPTY_FILE; 

} 

 



clxxvi 

int fileError(char* file) { 

   fprintf(ERR_OUT, "\n\n\t%s %s!\n\n", file, ERR_MSG_FILE); 

   return ERR_CODE_INVALID_FILE; 

} 

 

int formatError(char* file, char* input, int line) { 

   fprintf(ERR_OUT, "\n\n\t%s %s\n\t\t%s %d: %s\n\n", file, ERR_MSG_FORMAT1, 

ERR_MSG_FORMAT2, line, input); 

   return ERR_CODE_INVALID_INPUT; 

} 

 

int memError() { 

   fprintf(ERR_OUT, "\n\n\t%s\n\n", ERR_MSG_MEM); 

   return ERR_CODE_MEM; 

} 

 

int optionalError(char* longOp, char shortOp) { 

   fprintf(ERR_OUT, "\n\n\t%s: -%c and --%s\n\n", ERR_MSG_OPTIONAL, shortOp, longOp); 

   return ERR_CODE_OPTIONAL_REQUIRED; 

} 

 

int unixError(char* command) { 

   fprintf(ERR_OUT, "\n\n\t%s %s\n\n", ERR_MSG_UNIX, command); 

   return ERR_CODE_UNIX; 

} 

 

int unusedError(char* file) { 

   fprintf(ERR_OUT, "\n\t%s %s\n\n", file, ERR_MSG_UNUSED); 

   return ERR_CODE_UNUSED_FILE; 

} 
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//em.h 

//define standard extensions 

#define EXT_EM         "em" 

#define EXT_LT         "lt" 

#define EXT_OUT        "out" 

#define EXT_MED        "med" 

#define EXT_AVG        "avg" 

#define EXT_MUON_DATA  "mu" 

#define EXT_VOXEL_DATA "vox" 

#define EXT_V          "vvals" 

#define EXT_C          "cvals" 

#define EXT_CONVERGE   "conv" 

#define EXT_LAMBDAS    "lam" 

#define EXT_SAMP_VOX   "smp" 

 

//define standard constants 

#define MAX_ITER      2 //for debugging purposes, not computational 

 

#define RAD_CONVERT   1000  //standard (=1) is radians 

#define LENGTH_CONVERT 10 //standard (=1) is millimeters 

 

#define X 0 

#define Y 1 

#define Z 2 

 

//#define PRINT_ITERATION i>0 

//#define PRINT_ITERATION ((i+1)%5)==0 

#define PRINT_ITERATION ((i+1)%10)==0 

 

int em(double*, double*, struct muon*, double**, FILE**); 

void compute_c(struct muon*, double*, double*, int, double**, double**, double**); 

void compute_v(struct muon*, double*, double*, double*, int, double**); 

double calc_voxel_weight(struct muon*, unsigned int, double, double**); 
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//em.c 

#include "mts.h" 

#include "em.h" 

 

 

int em (double* lambdaMed, double* lambda, struct muon* head, double** params, FILE** fps) { 

 

   fprintf(stderr, "\n\n%s EM %s\n\n", BANNER, BANNER); 

 

   int i, j, k, bin, allVoxels, iterations, done=0; 

   double lambdaTemp, *M, *C, **Cbin, **Cn, bCount; 

   time_t startLocal, endLocal; 

   struct muon *tempMuon; 

 

   allVoxels = *params[PARAM_ALL_VOXELS]; 

 

   if ((M=(double*) malloc(allVoxels*sizeof(double)))==NULL) return memError(); 

  

   if (*params[PARAM_EM_AVERAGE]) { 

      if (!*params[PARAM_EM_ONLINE] || ((*params[PARAM_CUR_EVENT] / 

*params[PARAM_EM_ONLINE])==1)) { 

         if ((lambda=(double*) malloc(allVoxels*sizeof(double)))==NULL) return memError(); 

      } 

      if ((C=(double*) malloc(allVoxels*sizeof(double)))==NULL) return memError(); 

   } 

 

   if (*params[PARAM_EM_MEDIAN]) { 

 

      if (!*params[PARAM_EM_ONLINE] || ((*params[PARAM_CUR_EVENT] / 

*params[PARAM_EM_ONLINE])==1)) { 

         if ((lambdaMed=(double*) malloc(allVoxels*sizeof(double)))==NULL) return memError(); 

      } 

      if ((Cbin=(double**) malloc(allVoxels*sizeof(double)))==NULL) return memError(); 

      if ((Cn=(double**) malloc(allVoxels*sizeof(double)))==NULL) return memError(); 
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      for (i=0; i<*params[PARAM_ALL_VOXELS]; i++) { 

         if ((Cbin[i]=(double*) malloc(*params[PARAM_EM_BINS]*sizeof(double)))==NULL) 

return memError(); 

         if ((Cn[i]=(double*) malloc(*params[PARAM_EM_BINS]*sizeof(double)))==NULL) return 

memError(); 

      } 

   } 

 

   for (i=0;i<*params[PARAM_ALL_VOXELS];i++) { 

      M[i]=0; 

      if (!*params[PARAM_EM_ONLINE] || ((*params[PARAM_CUR_EVENT] / 

*params[PARAM_EM_ONLINE])==1)) { 

         if (*params[PARAM_EM_AVERAGE]) lambda[i]=*params[PARAM_INIT_LAMBDA]; 

      } 

      if (*params[PARAM_EM_MEDIAN]) { 

         if (!*params[PARAM_EM_ONLINE] || ((*params[PARAM_CUR_EVENT] / 

*params[PARAM_EM_ONLINE])==1)) { 

            lambdaMed[i]=*params[PARAM_INIT_LAMBDA]; 

         } 

         for (j=0; j<*params[PARAM_EM_BINS]; j++) { 

            Cbin[i][j]=0; 

            Cn[i][j]=0; 

         } 

      } 

   } 

 

   char fnVoxel[100]; 

 

   fprintf(stderr, "\nEntering EM Main Loop...\n"); 

 

   time(&startLocal); 

   iterations = *params[PARAM_ITERATIONS]; 

   for (i=0; i<iterations; i++) { 
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      fprintf(stderr, "\n\tIteration %d of %d ", (i+1), iterations); 

 

 

      if (*params[PARAM_EM_AVERAGE]) memset(C, '\0', sizeof(double) * 

*params[PARAM_ALL_VOXELS]); 

 

      tempMuon = head; 

      while ((tempMuon=(*tempMuon).nextMuon)!=NULL) { 

 

         compute_v(tempMuon, M, lambda, lambdaMed, i, params); 

         compute_c(tempMuon, C, lambdaMed, i, Cbin, Cn, params); 

      } 

 

      for (j=0; j<allVoxels; j++) { 

 

         if (M[j]!=0) { 

       

            if (*params[PARAM_EM_AVERAGE]) { 

               lambdaTemp = lambda[j]; 

               lambda[j] = lambda[j] + pow(lambda[j], 2) * (1/M[j]) * C[j]; 

               if (lambda[j]<=0) lambda[j]=*params[PARAM_INIT_LAMBDA]; 

            } 

 

            if (*params[PARAM_EM_MEDIAN]) { 

              

               bin = 0; 

               for (k=0, bCount=0; k<*params[PARAM_EM_BINS]; k++) { 

                  bCount = bCount + Cn[j][k]; 

                  if (bCount > (M[j]/2)) { 

                     bin = k; 

                     break; 

                  } 

               } 
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               lambdaMed[j] = 0.5 * (Cbin[j][bin]/Cn[j][bin]); 

               if (lambdaMed[j]<=0) lambdaMed[j]=*params[PARAM_INIT_LAMBDA]; 

 

               for (k=0; k<*params[PARAM_EM_BINS]; k++) { 

                  Cbin[j][k]=0; 

                  Cn[j][k]=0; 

               } 

            } 

         } 

      } 

 

   } 

 

   time(&endLocal); 

   fprintf(stderr, "\n\nEM Program ran for %f seconds\n\n", difftime(endLocal, startLocal)); 

 

   if (!*params[PARAM_EM_ONLINE] || (fmod(*params[PARAM_CUR_EVENT], 

*params[PARAM_EM_ONLINE])!=0)) { 

      if (*params[PARAM_EM_AVERAGE]) write_lambda(lambda, M, NULL, params, 

fps[FP_OUT_AVG]); 

      if (*params[PARAM_EM_MEDIAN]) write_lambda(lambdaMed, M, NULL, params, 

fps[FP_OUT_MED]); 

   } 

 

   free(M); 

   if (*params[PARAM_EM_AVERAGE]) free(C); 

   if (!*params[PARAM_EM_ONLINE] || (fmod(*params[PARAM_CUR_EVENT], 

*params[PARAM_EM_ONLINE])!=0)) { 

      if (*params[PARAM_EM_AVERAGE]) free(lambda); 

      if (*params[PARAM_EM_MEDIAN]) free(lambdaMed); 

   } 

 

   if (*params[PARAM_EM_MEDIAN]) { 
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      for (i=0;i<*params[PARAM_ALL_VOXELS];i++) { 

         free(Cbin[i]); 

         free(Cn[i]); 

      } 

   } 

   free(Cbin); 

   free(Cn); 

 

   return; 

} 

 

void compute_v (struct muon* mu, double* M, double* lambda, double* lambdaMed, int iteration, 

double** params) { 

 

   double det, sigma0, sigma1, sigma2, I[4], c=0, weight=1, noInv=0, ID0, ID1, ID2, ID3; 

   struct voxel *track; 

 

   if (*params[PARAM_EM_AVERAGE]) { 

      (*mu).sigma[0]=0; 

      (*mu).sigma[1]=0; 

      (*mu).sigma[2]=0; 

   } 

 

   if (*params[PARAM_EM_MEDIAN]) { 

      (*mu).sigmaMed[0]=0; 

      (*mu).sigmaMed[1]=0; 

      (*mu).sigmaMed[2]=0; 

   } 

 

   track = (*mu).muonTrack; 

   do { 

 

      c = c + 1; 

      if (*params[PARAM_EM_WEIGHTED]) weight = calc_voxel_weight(mu, (*track).ID, c,  
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params); 

 

      if (iteration==0) M[(*track).ID] = M[(*track).ID] + 1;    

      if (*params[PARAM_EM_AVERAGE]) { 

         (*mu).sigma[0] = (*mu).sigma[0] + weight * (*track).wt  * lambda[(*track).ID]; 

         (*mu).sigma[1] = (*mu).sigma[1] + weight * (*track).wtX * lambda[(*track).ID]; 

         (*mu).sigma[2] = (*mu).sigma[2] + weight * (*track).wX  * lambda[(*track).ID]; 

      } 

 

      if (*params[PARAM_EM_MEDIAN]) { 

         (*mu).sigmaMed[0] = (*mu).sigmaMed[0] + weight * (*track).wt  * lambdaMed[(*track).ID]; 

         (*mu).sigmaMed[1] = (*mu).sigmaMed[1] + weight * (*track).wtX * 

lambdaMed[(*track).ID]; 

         (*mu).sigmaMed[2] = (*mu).sigmaMed[2] + weight * (*track).wX  * 

lambdaMed[(*track).ID]; 

      } 

 

   } while ((track=(*track).nextVoxel)!=NULL); 

 

 

   if (*params[PARAM_EM_AVERAGE]) { 

      (*mu).sigma[0] = (*mu).sigma[0] * (*mu).pr2; 

      (*mu).sigma[1] = (*mu).sigma[1] * (*mu).pr2; 

      (*mu).sigma[2] = (*mu).sigma[2] * (*mu).pr2; 

 

 

      if ((det = ((*mu).sigma[0] * (*mu).sigma[2]) - ((*mu).sigma[1] * (*mu).sigma[1]))==0) { 

         fprintf(stderr, "\nError Singular Matrix: Event %d\n\n", (*mu).event); 

         det = 0; 

      } 

 

      sigma0 = (*mu).sigma[0];  

      sigma1 = (*mu).sigma[1]; 

      sigma2 = (*mu).sigma[2]; 
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      (*mu).sigma[0] = (1/det) *  sigma2; 

      (*mu).sigma[1] = (1/det) *  sigma1 * -1; 

      (*mu).sigma[2] = (1/det) *  sigma0; 

       

   } 

 

   if (*params[PARAM_EM_MEDIAN]) { 

 

      (*mu).sigmaMed[0] = (*mu).sigmaMed[0] * (*mu).pr2; 

      (*mu).sigmaMed[1] = (*mu).sigmaMed[1] * (*mu).pr2; 

      (*mu).sigmaMed[2] = (*mu).sigmaMed[2] * (*mu).pr2; 

 

      if ((det = ((*mu).sigmaMed[0] * (*mu).sigmaMed[2]) - ((*mu).sigmaMed[1] * 

(*mu).sigmaMed[1]))==0) { 

         fprintf(stderr, "\nError Singular Matrix: Event %d\n\n", (*mu).event); 

         det = 0; 

      } 

 

      sigma0 = (*mu).sigmaMed[0];  

      sigma1 = (*mu).sigmaMed[1]; 

      sigma2 = (*mu).sigmaMed[2]; 

 

      (*mu).sigmaMed[0] = (1/det) *  sigma2; 

      (*mu).sigmaMed[1] = (1/det) *  sigma1 * -1; 

      (*mu).sigmaMed[2] = (1/det) *  sigma0; 

   } 

 

   return; 

} 

 

double calc_voxel_weight(struct muon* mu, unsigned int ID, double c, double** params) { 

 

   double a, b, d; 
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   if ((*mu).b==0) return 1; 

 

   a = (double) (*mu).a; //voxels after scatter voxel 

   b = (double) (*mu).b; //voxels before scatter voxel 

   d = b + 1;            //voxel of scattering 

 

   if (*params[PARAM_EM_WEIGHTED]==1) { 

      if (c!=d) return 0; 

      else      return 1; 

   } 

 

   if (*params[PARAM_EM_WEIGHTED]==2) { 

 

      if (a==0 || b==0) return 1; 

      if (c<d)       return ((b - (d - c)) / b); 

      else if (c==d) return 1; 

      else           return ((a - (c - d)) / a); 

 

   } 

 

   return 1; 

} 

 

void compute_c (struct muon* mu, double* C, double* lambdaMed, int iteration, double** Cbin, 

double** Cn, double** params) { 

 

   int ID, ibin, i; 

   double dtX, dtY, dX, dY, pr2, fbin, bin_size = 0, neg_bin_size = 2, big_bin_size = 10000; 

   double wt, wtX, wX, v11, v12, v22, v11m, v12m, v22m, a, b, c, ax, bx, cx, ay, by, cy, oldC, newC; 

   struct voxel *track, *trackTemp, *trackMed; 

 

   dtX = (*mu).dtX; 

   dtY = (*mu).dtY; 
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   dX  = (*mu).dX; 

   dY  = (*mu).dY; 

   pr2 = (*mu).pr2; 

 

   v11 = (*mu).sigma[0]; 

   v12 = (*mu).sigma[1]; 

   v22 = (*mu).sigma[2]; 

 

   v11m = (*mu).sigmaMed[0]; 

   v12m = (*mu).sigmaMed[1]; 

   v22m = (*mu).sigmaMed[2]; 

 

   track = (*mu).muonTrack; 

   do { 

 

      ID = (*track).ID; 

 

      wt  = (*track).wt; 

      wtX = (*track).wtX; 

      wX  = (*track).wX; 

 

      if (*params[PARAM_EM_AVERAGE]) { 

 

         ax = dtX * v11 + dX * v12; 

         bx = dtX * v12 + dX * v22; 

         cx = ax * bx; 

      

         ay = dtY * v11 + dY * v12; 

         by = dtY * v12 + dY * v22; 

         cy = ay * by; 

 

         a = (pow(ax, 2) + pow(ay, 2)) / *params[PARAM_EM]; 

         b = (pow(bx, 2) + pow(by, 2)) / *params[PARAM_EM]; 

         c = (cx + cy) / *params[PARAM_EM]; 
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         oldC = C[ID]; 

         newC = ((pr2 * (a - v11) * wt) + (pr2 * 2 * (c - v12) * wtX) + (pr2 * (b - v22) * wX)); 

         C[ID] = C[ID] +  newC; 

        

      } 

 

      if (*params[PARAM_EM_MEDIAN]) { 

 

         ax = dtX * v11m + dX * v12m; 

         bx = dtX * v12m + dX * v22m; 

         cx = ax * bx; 

      

         ay = dtY * v11m + dY * v12m; 

         by = dtY * v12m + dY * v22m; 

         cy = ay * by; 

 

         a = (pow(ax, 2) + pow(ay, 2)) / *params[PARAM_EM]; 

         b = (pow(bx, 2) + pow(by, 2)) / *params[PARAM_EM]; 

         c = (cx + cy) / *params[PARAM_EM]; 

 

         newC = ((pr2 * (a - v11m) * wt) + (pr2 * 2 * (c - v12m) * wtX) + (pr2 * (b - v22m) * wX)); 

 

         bin_size = *params[PARAM_EM_BIN_SIZE]; 

         fbin = (newC / bin_size) + (*params[PARAM_EM_BINS]/2) + 1; 

 

         if (fbin < 0) fbin = 0; 

         else if (fbin >= *params[PARAM_EM_BINS]) fbin = *params[PARAM_EM_BINS] - 1; 

 

         ibin = ((int) floor(fbin)); 

 

         Cbin[ID][ibin] = Cbin[ID][ibin] + (2*lambdaMed[ID] +  pow(lambdaMed[ID], 2) * newC); 

         Cn[ID][ibin]   = Cn[ID][ibin] + 1; 
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      } 

 

   } while ((track=(*track).nextVoxel)!=NULL); 

 

   return; 

} 

 

 
 


