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Abstract 
 

Title:  Design and Optimization of Force-Reduced 

High Field Magnets 

Author:  Szabolcs Rembeczki 

Advisor: László Baksay, Ph.D. 

Co-Advisor: Rainer B. Meinke, Ph.D. 

High field magnets have many important applications in different areas of 

research, in the power industry and also for military purposes. For example, high field 

magnets are particularly useful in: material sciences; high energy physics; plasma physics 

(as fusion magnets); high power applications (as energy storage devices); space 

applications (in propulsion systems). 

One of the main issues with high-field magnets is the presence of very large 

electromagnetic stresses that must be counteracted and therefore require heavy support 

structures. In superconducting magnets, the problems caused by Lorentz forces are further 

complicated by the fact that superconductors for high field applications are pressure 

sensitive. The current carrying capacity is greatly reduced under stress and strain 

(especially in the case of Nb3Sn and the new high temperature superconductors) so the 

reduction of the acting forces is of even greater importance. Different force-reduced 

magnet concepts have been studied in the past, both numerical and analytical methods have 

been used to solve this problem. The developed concepts are based on such complex 
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winding geometries that the realization and manufacturing of such coils is extremely 

difficult and these concepts are mainly of theoretical interest. 

In the presented research, a novel concept for force-reduced magnets has been 

developed and analyzed which is easy to realize and therefore is of practical interest.  The 

analysis has been performed with a new methodology, which does not require the time 

consuming finite element calculations. The developed computer models describe the 3-

dimensional winding configuration by sets of filaments (filamentary approximation). This 

approach is much faster than finite element analysis and therefore allows rapid 

optimization of concepts. The method has been extensively tested on geometries of force-

reduced solenoids where even analytical solutions exist. As a further cross check, the 

developed computer codes have been tested against qualified finite element codes and 

excellent agreement has been found.  

The developed concept of force-reduced coils is directly applicable to pulsed 

magnets and a conceptual design of a 25 Tesla magnet has been developed. Although no 

experimental proof was possible within the scope of this research, there is strong evidence 

to believe that the developed concept is also applicable to superconducting magnets 

operating in a constant current mode.  
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Chapter 1 

Introduction 
 

1.1 Overview of High Field Magnet Technology 
 

In this section, I provide a brief overview of the development of high magnetic field 

generation methods focusing on the main design issues that constrain their achievable 

magnetic fields. As a definition of high magnetic field, one can say that the field a magnet 

produces is “high”, if it tests the limits of the mechanical and/or electromagnetic properties 

of the materials of which the magnet is made (National Research Council 2005). 

Why high magnetic fields? In general, interactions between materials and magnetic 

field increase strongly with increasing field, and more detailed properties of materials are 

revealed by higher magnetic fields (Motokawa 2004). Fifteen Nobel prices have been 

awarded for discoveries that are directly due to applications of high magnetic fields.  

Magnetic fields can be generated by permanent magnets made from hard magnetic 

materials or by electromagnets. Permanent magnets offer a cost-effective way to achieve 

magnetic fields up to almost 2 T. Magnetic fields above 2 T can be generated by different 

types of electromagnets which fall into three broad classes (Friedlander 1991): 1. resistive 

magnets with ferromagnetic core, 2. resistive magnets with air core, 3. superconducting 

magnets (usually with air core). In addition to these electromagnet types, one can also 

distinguish hybrid magnets that are a combination of resistive and superconducting 

magnets. 
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In electromagnets the current carrying conductor generates a certain magnetic field 

topology depending on the arrangement of the conductors. For very high field generation 

solenoids represent the most efficient geometry (Schneider-Muntau 2004). In general, the 

field (B0) generated in the bore can be expressed as: 

 𝐵0 = µ0𝑗0𝑎10,  (1.1) 

Where µ0 is the permeability of vacuum, 𝑗0 is the maximum value of current density in the 

coil volume, 𝑎1 is a typical length like the radius of the bore, and  0 is a dimensionless 

factor depending on the geometry of the magnet and on the current distribution (Aubert 

1991). One can optimize these parameters in an electromagnet to reach higher fields in the 

bore. I will use equation 1.1 as a guide line to discuss the main design issues and 

limitations (if exist) of the basic types of high field electromagnets. 

 

Table 1.1 High magnetic field generation methods with their typical (upper) limits. 

Field Generation Method Field [T]* 

Permanent Magnets ~ 1-2 

Superconducting Magnets ~ 20 

Resistive Magnets (Steady State) ~ 30 – 35 

Hybrid Magnets ~ 40 – 45 

Pulsed Magnets ~ 50 – 80 

Flux Compression 
~ 10

3 

* Field values after Knoepfel (2000), Herlach and Miura (2003), 
Schneider-Muntau (2009) 
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1.1.1 Resistive Magnets 
 

One can change the permeability in equation 1.1 in order to reach higher fields by applying 

materials with high relative permeability (for example iron) in the magnet.  In iron cored 

electromagnets, the iron becomes saturated, limiting the maximum field to about 2 T. 

Higher fields can be achieved in massive, steady state, air-cored resistive magnets by 

supplying large currents and several megawatt of power. However, increasing the current 

density in equation 1.1 brings up two major design issues: the problem of Lorentz forces 

and Joule heating. On one hand, increased electromagnetic forces tend to destroy the 

magnet, on the other hand, the increased Joule heating can also damage the magnet 

materials. 

The Joule heating in steady state resistive magnets can be reduced using special 

current distributions with different types of cooling methods. Application of higher 

conductivity conductor materials can also reduce the Joule heating in resistive magnets, 

however, those materials (like high purity Cu or Al) are usually too soft to sustain the 

acting Lorentz forces, and hence massive reinforcement would be necessary. Addition of 

reinforcement materials, however, dilutes the overall current density, making the magnet 

larger, more expensive and less efficient. 

High field resistive magnets are usually built by using Bitter type magnets (Bitter 

1936) or polyhelix magnets (H. Schneider-Muntau 1974). Bitter type magnets are disc 

magnets: large number of copper discs piled up one on top of the other, interleaved with 

insulator foils. An improved version of these magnets is the Florida-Bitter magnet (Gao et 

al. 1996), designed at the National High Magnetic Field Laboratory, Florida. 
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In Bitter magnets, the current density has its highest value at the inner radii of the 

conductor discs. Thus, the maximum hoop stress occurs at the inner radius of the magnet. 

The hoop stress on the inside is further amplified by the accumulation of stress from the 

outer parts of the disks. 

In polyhelix magnets this latter problem is solved by splitting up the magnet into a 

set of mechanically isolated concentric monolayer subcoils of thin wall thickness. The 

subcoils are electrically insulated from each other and powered separately, so each subcoil 

is subject to the same hoop stress (constant-stress current density distribution). 

 

 

Figure 1.1 Polyhelix magnet. A: top cross; B: current connection of the helices; C: 

insulation layers; D: holding cylinder; E: winding; F: bottom cross (Schneider-Muntau 

1981). 



5 
 

1.1.2 Pulsed Magnets 
 

In (resistive) electromagnets, the problem of Joule heating can be also handled by 

operating the magnet in pulsed mode in order to reach higher fields. In pulsed mode, the 

magnet is pre-cooled (for example to liquid N2 temperature) and the electric pulse energy is 

absorbed by the enthalpy of the magnet. In “short-pulse” magnets, fields can be generated 

with 5 – 50 ms pulse duration, while in “mid-pulse” magnets the pulse duration can be 50 – 

100 ms. Small, pulsed magnets provide access to fields around 50 T for many applications 

worldwide. 

 The development of high field pulsed magnets encounters another obstacle: coil 

destruction by electromagnetic forces. In the ~10ms range pulse duration, the highest 

available pulsed field is around 80 T. Higher fields, for much shorter pulse duration (0.1 – 

10 μs) can be generated by destructive pulsed magnets, where the magnet winding 

explodes or implodes.  

There are two main types of destructive pulsed magnets. In the so called single turn 

systems, fields above 300T can be generated for microseconds. In these systems, the high 

field is created by passing a high current (several MA) through a small single turn coil by 

discharging a capacitor bank. Due to the large current density and resulting Lorentz forces 

the coil expands, melts, vaporizes and explodes. The current feed from the capacitor bank 

therefore must be faster than the thermal and mechanical inertia of the coil.  

Extremely high magnetic fields (in the order of thousand T) can be achieved by 

electromagnetic or explosive flux compression. In these systems a seed field is compressed 
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in microseconds by a collapsing liner. The world record of 2800T has been achieved in 

Sarov (Russia) via explosive flux compression. 

Although higher magnetic fields can be generated by pulsed magnets (compared to 

steady state magnets), they have a major drawback: pulsed fields are not applicable for all 

experiments.  

Another promising way towards cost effective generation of high fields was opened 

by the discovery of superconductivity (Kamerlingh Onnes 1911). However, it soon turned 

out that superconductivity in most materials ceases at even modest magnetic fields. So, 

before introducing superconducting magnets, it is worth to review the basic concepts of 

superconductivity that govern superconducting magnet design. 

 

1.1.3 Brief Introduction to Superconductivity 
 

In the design of superconducting magnets, the most important properties of the applied 

superconductor are its critical temperature (Tc), critical magnetic field (Bc), and its critical 

current density (Jc). These three parameters determine the so-called critical surface (see 

figure 1.2). Below this critical surface the material maintains its superconducting state. If 

anyone of these parameters exceeds its critical value superconductivity is lost and  the 

material returns to its normal, non-superconducting state, causing the magnet to quench.  

Since these quantities strongly determine the performance of the magnet, it is worth to 

review each of them briefly. 
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Figure 1.2 Critical surfaces of NbTi and BSCCO-2223 superconductors (Iwasa and 

Minervini 2003). 

 

Critical Temperature 

By decreasing the temperature of some metals close to absolute zero, the conductor 

electrons (fermions) form Cooper-pairs (bosons) and condensate into a state of lowest 

energy. This phase transition occurs when the temperature is below the material dependent 

critical temperature. Below the critical temperature the electric resistance drops to zero, 

and the material behaves as a perfect electrical conductor. Above the critical temperature 

the Cooper pairs break up, and the electrons behave as normal conductor electrons again. 

Based on the value of critical temperature, two types of superconductors can be 

distinguished. Low temperature superconductors (LTS) require to be operated at liquid 
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helium temperature. High temperature superconductors (HTS) exhibit superconductivity 

well above the boiling point of liquid nitrogen. 

 

Critical Magnetic Field 

Superconductors exhibit the so called Meissner effect (Meissner 1933), which is the total 

expulsion of magnetic flux from the superconducting specimen below a certain - material 

dependent - critical magnetic field Bc. Hence, this state of a material is also called the 

Meissner state.  

Above the critical magnetic field it is energetically favorable to adopt the normal 

conducting state by admitting the magnetic flux into the specimen. Two basic types of 

superconductors can be distinguished by their behavior in magnetic fields. 

Type I superconductors have rather low critical field values (~0.1 T), so they are 

not applicable to superconducting magnets. The first superconductors to be discovered 

were type I superconductors, i.e., metallic elements like mercury, tin and lead.  

Type II superconductors have two critical magnetic field limits: a lower critical 

field Bc1 and a higher critical field value Bc2. Up to Bc1 the type II superconductors exclude 

the magnetic field from the interior, just like the type I materials.  Above the lower critical 

field the magnetic field penetrates in form of discrete flux lines (fluxoids), however, while 

the bulk of the material still remains in the superconducting state. This is the so-called 

mixed state. The normal state core of each fluxoid is enclosed by a vortex of supercurrent 

that contains (shields) the magnetic flux and the field is zero everywhere in the 

surrounding superconductor. In homogeneous crystals these fluxoids form a flux line 

lattice, the lowest energy configuration of the flux lines. 
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With increased magnetic field applied to the superconductor, the flux lines move 

closer to each other in the lattice. Reaching the upper critical field Bc2, the normal 

conducting cores of the fluxoids overlap, causing a phase transition from superconducting 

state to normal conducting state (quench). 

The upper critical field Bc2 of the type II superconductors is much higher than the 

critical field of type I superconductors. For superconducting magnets, especially for high 

magnetic fields, only type II superconductors can be applied. The most frequently used 

practical type II superconductors are metallic alloys or intermetallic compounds, like NbTi, 

Nb3Sn (the only elemental type II superconducting materials are niobium, vanadium, 

technetium). 

 

Table 1.2 Critical temperatures and fields of principal technical superconductors (after 

Knoepfel 2000) 

 

NbTi Nb3Sn 

HTS 

materials 

Tc0 (K) 9.1 18.3 ~90 

Bc0(T) 14 24.5 >100 

 

Critical Current Density 

In type I superconductors, according to Silsbee‟s rule, the critical current is the current 

which gives rise to the critical magnetic field at the surface. In type II superconductors, the 

critical current corresponds to the point at which the fluxoid lattice starts to move, 



10 
 

producing a voltage drop across the superconductor and the specimen becomes resistive. 

Motion of the fluxoids is due to the Lorentz force.  

The critical current for a given type II superconductor is extremely sensitive to the 

crystalline structure. Any given alloy will show little change in critical temperature or 

upper critical field with changes in metallurgical treatment (cold work or annealing), but 

critical currents will show wide variations (Montgomery 1969). In the so called hard 

superconductors with crystal lattice imperfections (such as grain boundaries, dislocations 

or compositional variations), the flux lines can become pinned. The strength of the pinning 

is described by the pinning force, and the critical current of a type II superconductor is a 

function of its maximum pinning strength. 

 

1.1.4 Superconducting Magnets 
 

The design of superconducting magnets differs from that of resistive winding magnets in 

that one is no longer concerned with power dissipation as a parameter, but instead with the 

relationship between current density and the required amount of superconductor 

(Montgomery 1969). 

In superconducting magnets the conductor is kept in the superconducting state during 

normal operation.  The allowed current density decreases with increasing applied field seen 

by the conductor, and approaches zero at an upper critical field. Due to the existence of an 

upper critical field for superconductors, the achievable magnetic field is also limited in 

superconducting magnets, even if the geometry factor 0 in eq.1.1 (Aubert 1991) could be 

made infinite. 
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Present superconducting magnet technology is based on LTS limiting the fields to 

about 22T. Application of HTS at low temperatures increases their current carrying 

capabilities and due to their very large critical fields makes them promising candidates for 

high field generation (see figure 1.3). It is possible that superconducting magnets with field 

strength of 50T and beyond can be built in the future (Schneider-Muntau 2006) based on 

HTS conductors operating at liquid helium temperature. 

 

 

Figure 1.3 Critical current density vs. applied field for the typical superconductors (Lee 

2006). 
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1.1.5 Hybrid Magnets 
 

A resistive magnet can be surrounded with a superconducting magnet (Wood and 

Montgomery 1966) to further increase the field in the bore. In these hybrid magnets the 

outer, low field region of the resistive magnet is occupied by a large bore 

superconducting magnet, generating the booster field for the inner resistive magnet. 

The hybrid magnet technology provides the most economical way to 

achieve the highest steady state magnetic fields. Currently the highest continuous 

magnetic field (~ 45 T) is generated by a hybrid magnet at the National High Magnetic 

Field Laboratory. The resistive insert of the hybrid uses 30 MW of electrical power to 

produce 31 T on axis, the remaining 14 T being produced by the superconductor “outsert” 

(the surrounding magnet section). 

 

1.2 Importance of Force Reduction 
 

As outlined before, the two major design issues in high field magnet technology are heat 

dissipation in the conductors and mechanical stresses due to the electromagnetic forces. At 

low fields magnet design is mainly dominated by heat evacuation problems. But, the 

problem of heat load does not limit the achievable field in a magnet. Whatever the magnet 

design, it is possible to evacuate the heat from the magnet with an appropriate circulation 

of coolant in the magnet (Aubert 1991). 
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At high fields magnet design is dominated by stress considerations. In a uniform 

current distribution solenoid, the strength of available materials limits the maximum 

achievable field, even if the magnet has an infinite geometry (0 is infinite in eq.1.1).  

However, with appropriate current distribution the achievable field is not limited by 

stresses in resistive magnets (Aubert 1991). 

One can conclude that for resistive magnets with proper current distribution there is 

no principal limit to the generation of the highest continuous fields except for economics. 

Note, that every additional 5 T means doubling the power installation and the cooling 

infrastructure (Schneider-Muntau 1982). Also, the size of the magnet grows exponentially 

with the field level (Schneider-Muntau 2004), so everything must be done to reduce their 

size in precedence over minimizing their power consumption (Aubert 1991). 

In the case of superconducting magnets the reduction of the acting forces are of even 

greater significance. Mechanical stresses which build up as the field is increased in a 

magnet could induce a sudden motion of a loose turn in superconducting magnets 

(Berlincourt 1963). Even microscopic movements of the conductors under the effect of 

Lorentz forces can generate enough frictional heat to cause the magnet to quench. Any 

reversion from the superconducting to the normal conducting state of even a small length 

of the conductor (quench) creates ohmic heating and an expanding normal conducting zone 

is created.  The resulting temperature rise can exceed the melting point of the conductor 

and cause destruction of the magnet. Under smaller Lorentz forces, there is less chance of 

winding motion in force-reduced coils. In this way, the force-reduced superconducting coil 

is less capable to quench from local frictional heat generated by any wire motion. 
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The problems caused by large acting Lorentz forces are further complicated by the 

fact that superconductors for high field applications (mainly Nb3Sn) and the new high 

temperature superconductors (HTS) are pressure sensitive. Reduction of stress and strain is 

especially important for high temperature superconductors which are brittle ceramics. 

Their critical currents and therefore their current carrying capacity are reduced under strain 

and stress (see appendix on strain dependence of Nb3Sn critical parameters). The Lorentz 

forces acting in conventional coil configurations and the rather limited mechanical 

properties of the available conductors limit the feasibility of high field superconducting 

magnets (90% of the magnet volume is reinforcement with high strength steel). Because of 

size, cost would be prohibitive for standard applications (Schneider-Muntau 2006). 

The two parts of hybrid magnets, i.e., the normal conducting insert and the 

superconducting outsert, mutually affect each other. The outer field of the insert coil 

increases the local field seen by the superconductor in the outsert and further limits its 

performance. Vice versa, the inner field generated by the superconducting outsert puts 

additional stress on the insert windings (Schneider-Muntau 2006). High forces acting 

between the resistive insert and superconducting outsert also have to be considered in the 

cryostat design and the suspension of the superconducting coils (Schneider-Muntau 1982). 

In summary, the biggest problem of high field magnet design is the handling of the 

extreme forces in the magnet winding caused by the interaction of the high magnetic field 

and the current. 
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1.3 Scope 
 

In the next chapter, I will introduce the main concepts of force-free magnetic fields, since it 

provides the fundamentals of the method of force-reduction in electromagnets. After 

introducing force-free magnetic fields and its possible applications, I‟ll overview previous 

methods and concepts of force-reduced magnets to gain more information and to 

investigate the main design issues.  

In this work, I will focus on force-reduced solenoids (these solenoids are less 

studied in the literature) and higher fields can be generated by solenoids. In chapter 3, I 

will provide the details of my method of simulating force-reduced solenoids based on the 

concepts of force-free magnetic fields. This chapter will also provide the development of 

the model windings and their main features. I won’t consider effects of iron and 

magnetization (iron core magnets) and I won’t consider effects of eddy currents. The 

medium in the bore is assumed to be vacuum (or air). In chapter 4, I will apply and test the 

model in simpler monolayer coils, examine their properties and the origins of Lorentz 

forces. After examining the main properties of force-reduced monolayer solenoids, I will 

present the conceptual design of a 25-T force-reduced solenoid with novel winding scheme 

(chapter 5). The force-reduced winding scheme will be compared to conventional 

solenoids, and the results will be discussed. 
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Chapter 2 

Force-Free Magnetic Fields and Force-Reduced 

Magnets 
 

2.1 Force-Free Magnetic Fields 
 

2.1.1 The Force-Free Condition 
 

The magnetic field is said to be force-free in a region if the magnetic field is parallel to the 

direction of the current flow everywhere in that region. In other words, force-free magnetic 

fields exert no force on the conducting material (Zaghloul 1990).  

For force-free magnetic fields two conditions must hold: 

1. According to the definition of the force-free magnetic field, the Lorentz force must 

vanish, so for the magnetic force density: 

 𝐟 = 𝐣 × 𝐁 = 0 (2.1) 

2. The second condition arises from Maxwell‟s equations, that is, any magnetic field 

is source less (this is the condition for non-existence of magnetic monopoles or 

also called “solenoid condition”): 

 𝛁 ⋅ 𝐁 = 0 (2.2) 

The 𝐣 × 𝐁 = 0 condition is satisfied if: (a) 𝐣 = 0; (b) 𝐁 = 0; or (c) 𝐣 = α ⋅ 𝐁. The α 

scale function is called as force-free function or factor (Yangfang 1983). This α force-free 

function is a scalar function of space and/or time, or might be constant (Knoepfel 2000). 
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The (a) and (b) simple solutions are special cases of the third (c) solution when α = 0 (so j 

= 0) and α = ∞ (so B = 0), respectively. Inserting 𝐣 = α ⋅ 𝐁 into Ampere‟s law (see 

appendix eq. A.4) one obtains the force-free condition: 

 𝛁 × 𝐁 = μ ⋅ α ⋅ 𝐁 (2.3) 

As it can be seen, force-free fields do not automatically obey the superposition 

principle (G. E. Marsh 1996). Since 𝛁 ×  𝐁1 + 𝐁2 = μ1 ⋅ α1 ⋅ 𝐁1 + μ2 ⋅ α2 ⋅ 𝐁2, thus B1 

and B2 satisfy the force-free condition only if  μ1 ⋅ α1 = μ2 ⋅ α2.  

At first sight, the force-free condition is in contradiction with the Biot-Savart law, 

that is dB (at some field point) caused by a current element Idl (at some source point) is 

orthogonal to dl. However, from the Biot-Savart law,  it does not follow that the magnetic 

field B(r) caused by a current density j(r) is (locally) orthogonal to j(r). The reason for this 

is that orthogonality does not obey the superposition principle (Brownstein 1987) . Also, 

note that the following assumptions are involved in the definition of the force-free 

condition: 

 The displacement current term (in eq. A.4) was ignored in the derivation of the 

force-free condition. This case is termed as magnetohydrodynamic approximation. 

 The medium is isotropic and homogeneous, so material parameters (like 

conductivity, permeability and permittivity) are independent of space and time. 

Both conditions are of course fulfilled in most situations. 

Depending on the α parameter, force-free magnetic fields can be studied when α is 

a constant in space and time, or when α is a scalar function of space and time. According to 
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the value of the force-free parameter, the following three major types of force-free 

magnetic fields are distinguished in the literature: 

 Potential force-free magnetic fields (if α = 0, so j = 0). 

 Linear (or constant α) force-free magnetic fields (if α is constant, but nonzero). 

 Nonlinear (or non-constant α) force-free magnetic fields (if α is a scalar function of 

space and time). 

In the next sections, a brief overview of the two major types of force-free magnetic fields is 

presented to introduce their major properties. 

 

2.1.2 Linear Force-Free Magnetic Fields 
 

The force-free current density 𝐣 = α ⋅ 𝐁  together with Ohm‟s law (eq. A.5) results: 

 𝐄 =
α

ς
𝐁 (2.4) 

If α is constant, substitution of E into the dynamic Maxwell‟s equations (equations A.3 and 

A.4) gives: 

 
𝛁 × 𝐄 =

α

ς
𝛁 × 𝐁 = −

∂𝐁

∂t
 

(2.5) 

and 

 
𝛁 × 𝐁 = μ ⋅ 𝐣 + μ ⋅ ε

∂𝐄

∂t
= μ ⋅ α ⋅ 𝐁 +

μ ⋅ ε ⋅ α

ς
 
∂𝐁

∂t
 . 

(2.6) 

Substitution of eq. 2.5 into eq. 2.6 gives: 
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−
𝜍

α
 
𝜕𝐁

𝜕t
=  μ ⋅ α ⋅ 𝐁+

μ ⋅ ε ⋅ α

ς
 
∂𝐁

∂t
, 

 

 

−  
ς

α
+
μ ⋅ ε ⋅ α

ς
  
∂𝐁

∂t
= μ ⋅ α ⋅ 𝐁 ,

 

it results: 

 
𝐁 𝐫, t = 𝐁0(𝐫) ⋅ e

− 
ςμα2

ς2+μεα2 t
 

(2.7) 

 In magnetohydrodynamic approximation the force-free solution can be obtained 

similarly. In this case the displacement current term is ignored in the Ampere – Maxwell 

law, and the force-free condition (eq. 2.3) can be directly plugged in, so  

𝛁 × 𝐄 = 𝛁 ×  
α

ς
𝐁 =

α

ς
𝛁 × 𝐁 =

μα2

ς
⋅ 𝐁, 

             and with eq. A.3: 

𝛁× 𝐄 = −
∂𝐁

∂t
=
μα2

ς
⋅ 𝐁. 

It results: 

 
𝐁 𝐫, t = 𝐁0(𝐫) ⋅ e

− 
μα2

ς
 t

. 
(2.8) 

 The solutions (eq. 2.7 and 2.8) describe the time dependence of force-free 

magnetic fields. Properties of the solutions (both in magnetohydrodynamic approximation 

and in non-magnetohydrodynamic case):  
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 The vectors and their derivatives are parallel: 𝐁 ∥ 𝐣 ∥
∂𝐁

∂t
∥
∂𝐄

∂t
. 

 The force-free magnetic field is static, if α = 0 or σ = 0, otherwise decaying. 

 

2.1.3 Nonlinear Force-Free Magnetic Fields 
 

If α is a scalar function of space and time (α = α(r,t) and 𝐄 =
α(𝐫,t)

ς
⋅ 𝐁), then the curl 

equations of Maxwell equations have the forms of 

 
𝛁 × 𝐄 =

α

ς
𝛁 ×𝐁 +

1

ς
𝛁α × 𝐁 = −

∂𝐁

∂t
 

(2.9) 

and 

 
∇ × 𝐁 = μ ⋅ α ⋅ 𝐁 +

μ ⋅ ε ⋅ α

ς

∂𝐁

∂t
+
μ ⋅ ε

ς

∂α

∂t
𝐁 

(2.10) 

Substitution of 𝜕𝐁/𝜕t from eq. 2.9 into eq. 2.10 gives: 

𝛁 × 𝐁 =  μ ⋅ α +
μ⋅ε

ς

∂α

∂t
 𝐁 −

μ⋅ε⋅α

ς
 
α

ς
𝛁 × 𝐁 +

1

ς
∇α × 𝐁 , 

so 

𝛁 × 𝐁 =  
μ⋅ς2

ς2+μ⋅ε⋅α2
  α +

𝜀

𝜍

𝜕𝛼

𝜕𝑡
 𝐁 −  

μ⋅ε⋅α

ς2+μ⋅ε⋅α2
 𝛁α × 𝐁. 

It means if α is a scalar function of space and time, the force-free condition (eq. 2.3) is 

satisfied only, when 𝛁α ∥ 𝐁 or 𝛁α = 0. 
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2.1.4 General Force-Free Magnetic Field Solutions 
 

Force-free magnetic fields and their solutions in different coordinate systems (with some 

conditions) were studied by several authors, and the reader is referred to the literature on 

them. Here, only the general approaches are provided toward the force-free magnetic field 

solutions. Methods of obtaining solutions to the force-free field condition fall into two 

broad classes: those where α is a constant, and those where α is a function of space and 

time (G. E. Marsh 1996).  As it will be shown, when α is not constant, the problem results 

in a non-linear equation. 

 First, consider the case when α is constant in space and time. Taking the curl of 

the force-free condition (eq. 2.3) and applying the solenoid condition from the Maxwell‟s 

equations gives: 

𝛁 ×  𝛁 × 𝐁 = 𝛁 𝛁 ⋅ 𝐁 − 𝛁2B = −𝛁2𝐁, 

and 

𝛁 ×  𝛁 × 𝐁 = 𝛁 ×  μ ⋅ α ⋅ 𝐁 , so 

𝛁 ×  μ ⋅ α ⋅ 𝐁 = −𝛁2𝐁.
 

If α is constant, then: 

𝛁 ×  μ ⋅ α ⋅ 𝐁 = μ ⋅ α 𝛁 × 𝐁 = (μ ⋅ α)2𝐁 = −𝛁2𝐁, so 

 𝛁2𝐁 + (μ ⋅ α)2𝐁 = 0. (2.11) 
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The general form of solution to the vector wave equation 2.11 can be found in the 

following way (Zaghloul, Marsh). The scalar function Ψ satisfies the scalar Helmholtz 

equation: 

𝛁2Ψ + (μ ⋅ α)2Ψ = 0. 

Hansen showed, that three and only three vectors can be formed out of Ψ, such that they 

satisfy the original vector wave-equation (Hansen 1935) . The three vectors are: (i) 

𝐋 = 𝛁Ψ,  (ii) 𝐏 = 𝛁 × Ψ𝐫 (poloidal term), (iii) 𝐓 = 𝛁 × 𝛁 × Ψ𝐫 (toroidal term), where r is 

position vector.  

Then, the general solution of the original vector field equation 2.11 is: 

 𝐁 = a𝐋 + b𝐏 + c𝐓. (2.12) 

The constants a, b and c are chosen so the solution satisfies the solenoid condition and the 

force-free condition. The solenoid condition implies a = 0, and the force-free condition 

yields b = μαc. 

Now, consider the case when α is a function of space and time (α = α(r,t)). 

Applying the double curl operation of B together with the force-free condition gives: 

𝛁 ×  𝛁 × 𝐁 = 𝛁 ×  μ ⋅ α ⋅ 𝐁 = μ ⋅ α 𝛁 × 𝐁 + μ ⋅ 𝛁α × 𝐁. 

At the derivation of equation 2.11 it was shown before that 𝛁 ×  μ ⋅ α ⋅ 𝐁 = −𝛁2𝐁, so: 

−𝛁2𝐁 = (μ ⋅ α)𝟐𝐁 + μ ⋅ 𝛁α × 𝐁, 

μ ⋅ 𝛁α × 𝐁 = (μ ⋅ α)𝟐𝐁 + 𝛁2𝐁 .
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This equation does not possess a general solution, and usually must be solved numerically 

(Low 2001).  

 

2.1.5 Applications of the Force-Free Magnetic Field Concept 
 

The concepts and theory of force-free magnetic fields were first introduced in astrophysics 

to allow coexistence of large currents and large magnetic fields in stellar material (Lust & 

Schulte 1954).  In plasma physics, a simplified condition for pressure equilibrium is given 

by: 

1

𝜇
 𝛁 × 𝐁 × 𝐁 = 𝛁p, 

where p is the gas pressure. 

In many astrophysical applications the gas pressure p can be small enough. For 

example in the sun‟s chromosphere and in the corona the gas pressure is negligible, so the 

right hand side of the pressure equilibrium condition can be set equal to zero (G. E. Marsh 

1996). In these cases the magnetic field must be approximately force-free in the plasma 

(since the left hand side is the force density itself). 

The analog equation to the force-free magnetic field condition also appears in 

hydrodynamics: 

∇ × 𝐯 = Ω ⋅ 𝐯, 

where v is the fluid velocity, and Ω is constant or a function of position. Solutions where Ω 

is a function of space are known as Beltrami fields, while constant Ω solutions are termed 

Trkalian fields (MacLeod 1993). 
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 Application of the force-free magnetic field concepts also plays an important role 

in high-field magnet design. One of the main problems in high-field magnets is the 

presence of huge electromagnetic stresses that are due to the Lorentz force acting on the 

coil. By minimizing the angle between the current density vector and the field vector in the 

winding, one could approximate force-free coil configurations in order to reduce the 

stresses in the magnet.   

Force-free magnetic field principles can be applied not only for normal conducting 

magnets, but also for superconducting magnet design. It is even more important to reduce 

the forces in a superconducting winding, because most of the applied superconductors are 

brittle and strain sensitive, and any small displacement of the superconducting wires can 

cause a transition from superconducting to normal conducting state. Another advantage of 

near force-free magnetic configurations is the possibility to raise the current density limits 

of type II superconductors in superconducting magnets. These latter two applications will 

be discussed in more details in the followings. 

 

2.2 Force-Free Magnetic Fields and Superconductors 
 

Practically useful superconductors are type II superconductors. When an external magnetic 

field is applied, type II superconductors behave like type I materials up to the first critical 

field. After the first critical field, the field penetrates inside the superconductor and flux 

line lattice is formed, as it was described in the introduction. Depending on the external 

field orientation (relative to the current flow), the critical current density is different in the 

superconductor. 
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2.2.1 Transverse Applied Field in Type II Superconductors 
 

Assume that a current flows through a type II superconducting sample having transverse 

applied field. Due to the Lorentz force, the flux lines tend to move in the superconductor. 

The motion of flux lines should be prevented in order to keep the material in 

superconducting state (see introduction). To prevent motion of flux lines, pinning centers 

(impurities, vacancies, dislocations etc) are introduced into the superconducting material 

(by metallurgical processes) to pin the flux lines to them. In equilibrium, the fP pinning 

force density (exerted by the pinning centers on the flux lines) balances the Lorentz force 

density: 

 𝐣 × 𝐁+ 𝐟P = 0 (2.13) 

As the transport current increases, flux flow occurs when the Lorentz force on the 

flux line lattice exceeds the pinning force of the pinning centers. So there is a critical 

current beyond which a voltage is detected along the sample indicating the onset of flux 

flow (flux flow voltage), and the sample becomes resistive (flux flow resistance) 

(Anderson and Kim 1964). 

 

2.2.2 Longitudinal Applied Field and Force-Free Current Flow 
 

From the force-balance equation (eq. 2.13), Josephson suggested that with finite pinning 

force it is possible to increase the critical current in a superconductor by changing the angle 

between j and B (Josephson 1966).  The critical current is highest in longitudinal geometry 

when the current in the superconductor and the applied field are parallel. Enhanced critical 
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current in longitudinal geometry has been confirmed for several superconductors (see for 

example Cullen et al. 1963, Callaghan 1963, Boom et al. 1970, Timms et al. 1973 etc.). 

The higher critical current value in longitudinal case can be explained by force-

free current as follows. The field of the current and the applied field are perpendicular 

along the wire. The vortices aligning along these two perpendicular fields will tend to 

become entangled, and it leads to a force-free, helical flux line lattice (see Bergeron 1963, 

Walmsley 1972, and references therein).  

It can be assumed that the current flows along the vortices comprising the flux line 

lattice. The azimuthal component of the force-free current flow will generate an axial 

magnetic field such that there is an enhancement of the magnetic flux within the 

superconducting wire (Bergeron 1963). As the applied current increasing, there is a critical 

current density (jc∥) above which flux flow voltage is observed, and this jc∥ is greater than 

the transverse critical current density (jc⊥). The onset of flux flow resistance and voltage 

can be explained by measurements of the magnetization of the sample (see figure 2.1) and 

with the assumption of helical flux line lattice (Marsh 1994). 
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Figure 2.1 Magnetization and flux flow voltage as a function of current (G. E. Marsh 1994) 

 

Increasing the current in the sample, there is a non-linear increase of paramagnetic 

moment (region A on figure 2.1). This implies that the flux line lattice must alter its 

geometry as follows. The angle the helical flux line lattice makes with the symmetry axis 

must, on the average, be increasing as the current increase. In this way the lattice gives rise 

to a greater current-induced magnetization than would result from only an incremental 

increase in current. 
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Further increasing the current in the sample, flux flow voltage appears on the 

sample when j > 𝑗c∥. As the flux flow voltage appears, the paramagnetic moment increases 

linearly with the current (region B and C on figure 2.1). The linear increase in 

magnetization implies that the angle the helical flux line lattice makes with the symmetry 

axis must, on the average, be constant. So there is no net additional geometric contribution 

to the paramagnetic moment from the flux line lattice (see Marsh 1996 and references 

therein). Above the critical current, the flux line lattice deforms spontaneously and the flux 

line helices grow until they cut other flux lines or hit the surface of the specimen (Brandt 

1995). In these cases the initially force-free configuration develops an instability (called 

helical instability) and the  𝐁 ∥ 𝐣 condition is violated. The current configuration is no 

longer force-free and flux flow resistance appears.  

It should be noted that in force-free configuration, the current could be carried 

without pinning in the superconductor (according to eq. 2.13) however, the force-free 

current in the superconductor tends to be unstable unless pinning centers stabilize it 

(Matsushita 1981). Absolutely straight flux-lines (parallel both to the applied current and 

field) are also not stable (Clem 1977). Furthermore, force-free current flow was also 

observed in longitudinal arrangement when persistent currents were induced in type II 

superconductors (Timms and LeBlanc 1974). Magnetization measurements of the 

specimen also indicated a tilted pattern circulation of the induced current such that the 

current tend to flow parallel to the total magnetic induction. 

In summary, there is a possibility to increase the critical current density in 

superconducting magnets (Callaghan 1963) if the current in the superconductor is tend to 

be aligned with the field (in the winding). 
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2.3 Force-Reduced Magnets 
 

2.3.1 The Virial Theorem 
 

A practical magnet must have finite size. For finite size magnetic configurations, the virial 

theorem limits the volume that can be force-free. It means that stresses can be eliminated in 

a given region, but they cannot be cancelled everywhere (G. E. Marsh 1996).  

The virial theorem gives a relationship between the time averaged potential energy 

and the time averaged kinetic energy T of any closed system of mass points with position 

vectors ri subject to applied forces fi  (G. E. Marsh 1996): 

  𝐟 ⋅ 𝐫 𝑑𝑉 + 2 𝑇 = 0. 

The virial theorem, originally introduced in the kinetic theory of gases, was 

extended by Chandrasekhar and Fermi to include magnetic fields (Moon 1984).  This virial 

condition can be obtained from the field vectors (Chandrasekhar 1961) or from Maxwell‟s 

stress tensor (Parker 1958). Parker assumed the wires in a magnet to be perfectly 

conducting classical fluids. 

For equilibrium configurations the kinetic energy vanishes. Since the forces are 

then constant in time, the virial theorem gives: 

 𝐟 ⋅ 𝐫 𝑑𝑉 = 0. 

The applied force consists of volumetric forces due to the magnetic field and volumetric 

forces of constraint (fc). So the total volumetric force density exerted on the i wires is: 
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𝐟i = 𝐟ci +
𝜕𝑀ij

𝜕xj
, 

and the virial condition is: 

  fci ⋅ xi +
𝜕𝑀ij

𝜕xj
x𝑖 𝑑V = 0, 

where Mij is Maxwell‟s stress tensor: 

Mij =
BiBj

μ
+
δij

2μ
B2. 

The second term in the virial integral can be written as: 

 
𝜕𝑀ij

𝜕xj
x𝑖  𝑑V =   

∂

∂xj
 Mijxi − Mijδij 𝑑V. 

In this equation, the first term on the right hand side is a volume integral of a divergence 

and can be converted to a surface integral by Gauss‟s theorem. Doing this integral 

transformation on the first term and substituting the Maxwell‟s stress tensor into the second 

term yields: 

 1

2µ0
 B2𝑑V = − fci ⋅ xi 𝑑V − Mij xi𝑑S. 

(2.14) 

 The left hand side of this equation is the total energy of the magnetic field, and 

assumed not to be zero. The two terms on the right hand side of this equation show, that in 

a finite size magnetic configuration one must have either (Parker 1958): 

 inwardly directed internal forces of constraint fci (first term) or  

 inwardly directed external forces (second term) exerted by external currents. 
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Furthermore, since the field cannot vanish on the surface S, there must be external forces to 

support the outwardly directed magnetic pressure due to the nonzero magnetic energy in 

the magnet. Even if the field is force-free, so the internal force (fci) vanishes, the magnet 

must be supported by surface loads (G. E. Marsh 1996). 

 

2.3.2 Application of the Virial Theorem in Practice 
 

The virial theorem expressed in form of equation 2.14 is true for an ideal, closed magnetic 

system. In a real magnet the forces that counteract the magnetic pressure are typically 

bigger than the magnetic field energy of system under consideration: 

 1

2μ
 B2𝑑V ≤ − fci ⋅ xi 𝑑V− Mij xi𝑑S. 

(2.15) 

 This form of the virial theorem sets a lower limit on the mass of the support 

structure. The left hand side of eq. 2.15 is the stored E energy in the magnet, so it can be 

written as: 

 1

2μ
 B2𝑑V = E ≤ ςw V, 

(2.16) 

where the acting stress σw is assumed to be constant throughout the V volume of the 

support structure. If ρ and M are the density and mass of the structural material 

respectively, then equation 2.16 determines a lower limit on the mass of the structural 

material (G. E. Marsh 1996): 

M ≥
ρ ⋅ E

ςw
. 
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For a maximum allowed stress in the material the above equation determines the 

minimum possible mass, or in other words, if some of the structural material is not stressed 

to the maximum allowed level of σW, then the total mass of the structure must be increased 

in order to store a given magnetic energy. Applying the above equation to existing 

magnets, Moon found that existing MHD and thermonuclear fusion magnets are heavier by 

an order of magnitude than the limit imposed by the virial theorem (Moon 1982). This 

means, that structural mass reduction is possible. The structural mass of the magnet can be 

minimized, by reducing the internal Lorentz forces in the magnet and supporting the 

system externally at the surface (Hill, Amm & Schwartz 1994). 

 

2.3.3 Force-Reduced Magnet Studies 
 

The possibility of applying the force-free magnetic field principles to magnet design has 

already been recognized in the 1950s (Lust & Schlute 1954). Since then an increasing 

number of articles offered solutions to force-free magnetic fields for various geometries. 

But, for several reasons, the proposed solutions are more of academic interest and hardly 

applicable directly to magnet manufacturing (Bouillard 1992).  Here are some of the issues. 

Theoretical solutions often assume some perfect symmetry. In a practical magnet 

there are regions of magnetic field, where no conductors are present. Currents, for 

example, are not present in the bore of the magnet, and even the winding cross-section is 

not completely packed with conductors (this is described by the packing factor in magnet 

design). It means that solutions, where α is constant everywhere in the magnet, are not 

practical solutions (Furth, Levine & Waniek 1957). According to j = α B condition (see eq. 
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2.3), α must be zero at least in the bore of the magnet (where currents are not present), and 

non-zero in the winding section of the magnet.  

Also, a practical magnet must have a finite coil size, made out of conductors with 

given cross section. Force-free fields cannot be created in a real magnet because the 

winding has finite dimensions and its current distribution has discrete character (Shneerson 

et al. 1998). As it was also shown from the virial theorem, a finite size magnet cannot be 

completely force-free. Even if one assumes the opposite to be true, it is unnecessary to 

construct a fully force-free magnet, since the solid coil itself can withstand certain forces 

(Yangfang 1983).  However, approximately force-free regions in a coil are possible to 

achieve. In such cases Lorentz forces are eliminated in a given region (force-free region) of 

a magnet, but they are actually displaced to the periphery of the force-free region 

(Bouillard 1992). In this way forces can be redistributed to a region where they can be 

compensated by a support structure more conveniently. Since the Lorentz forces are not 

completely zero, but are significantly reduced, these magnets are usually called “force-

reduced”, “force-balanced” or “quasi-force-free” magnets in the literature. 

Different types of force-reduced magnet geometries were studied in the relevant 

literature. Most of these studied magnet configurations have cylindrical (solenoidal) or 

toroidal geometry as explained below. 

 

2.3.4 Solenoidal Magnets 
 

For cylindrically symmetric geometries Lundquist developed a force-free magnetic field 

solution with field having zero radial field component (Lundquist 1951) . Assuming an 
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infinitely long magnet where the remaining components have only radial dependence of 

the field, the field in cylindrical coordinates can be written as: 

𝐁 = 𝐁 𝐫 = Br r 𝐞r + Bφ r 𝐞φ + Bz r 𝐞z . 

If the radial field component Br is zero, then the force-free condition (eq. 2.3) becomes: 

∇ × 𝐁 = −
dBz(r)

dr
𝐞φ +

1

r

d[rBφ r ]

dr
𝐞z = μα r ∙ 𝐁 r . 

Or, for the components separately: 

1

r

d[r𝐁φ r ]

dr
= μ ⋅ α r ∙ Bz r ,  

−
dBz(r)

dr
=  μ ⋅ α r ∙ Bφ r . 

The Lundquist solution (figure 2.2) to this equation system is a constant α solution 

(α (r) = α0 = const.), and therefore is not applicable directly to magnet design. It does not 

provide a bore region, where currents are not present.  

A set of non-constant α solutions with cylindrical symmetry and also with 

vanishing radial field component were derived by Marsh (1996). However, either the 

solution from Marsh, or the solution from Lundquist, has infinite axial length, therefore 

they are of limited relevance for magnet design. 
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Figure 2.2 Field lines of the constant α Lundquist solution (Lundquist 1951). 

 

Considering the shape of the cross-section in cylindrical geometries, Van Bladel 

argued, that circular boundaries and fields with circular symmetry yield the only solution if 

one establish force-free current distributions in cylindrical volumes (Van Bladel 1961). 

Any excursion from the circular symmetry reduces the degree of force reduction.  

To derive finite structures from infinite cylinder solutions is a more difficult 

problem. A quasi-force free magnet concept was developed in St. Petersburg Technical 

University, Russia (Shneerson et. al 1998-2008) and its possible applications were studied 

by Schneider-Muntau at the National High Magnetic Field Laboratory, Florida. Their 

model solenoid consist windings with different current directions in multiple layers. The 

helical wires of the solenoid were bent back at the ends and then connected to collector 

ring to feed them. Their 3-layer model magnet had a very complex winding scheme (see 

figure 2.3). 
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Figure 2.3 Spatial arrangement of the wires in a quasi force-free winding (Shneerson et. al 

2005). 

 

2.3.5 Toroidal Magnets 
 

In toroidal coordinates, no exact analytical solution is known for non-constant α fields. In 

cylindrical coordinates and in toroidally curved cylindrical coordinates (R, υ, z) the 

Helmholtz equation is separable, but in toroidal coordinates it is non-separable (Buck 

1965). Even if α is constant, the force-free equation does not appear to be directly soluble 

(G. E. Marsh 1996). An approximate constant α solution in toroidal coordinates was 

proposed by Buck (figure 2.4), while a non-constant α solution was given for example by 

Yangfang and Luguang (1983). 
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Figure 2.4 Toroidal force-reduced winding scheme (Buck 1965). 

 

 Two major types of force-reduced toroidal magnet designs can be distinguished 

(Furth et al. 1988). The first type of force-reduced toroids generates primarily toroidal 

magnetic field inside the torus. In this type of toroidal magnets (figure 2.5 a.) the ratio of 

major to minor radius (R/a) is large. 

The second type of force-reduced toroids generates a poloidal field (outside, at the 

axis of the torus) and a toroidal field (inside the torus).  The exterior poloidal field (see 

figure 2.5 b.), generated along the toroid axis, is easily accessible for experiments. These 

proposed toroids have low R/a value to produce high magnetic field in a small 

experimental volume. 
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Figure 2.5 Force-reduced toroids with small and large aspect ratio.The experimental region 

is marked by A (Furth et al.1988). 

 

In the first case of toroids, the pressure acting on the winding is reduced like the 

square of the ratio of the minor to major diameters, so large aspect ratio is preferred. In the 

second type of toroids, where the aspect ratio is smaller, multiple layer (or multi-stage) coil 

structures are desired to reduce the pressure on the winding (Furth, Levine & Waniek 

1957). A simple layer force-reduced coil may be also used, but with a force-bearing shell 

outside. 

In conventional toroidal arrays, large, radially inward forces act on the inner legs 

of the toroid. These forces must be supported either by wedging or bucking, hence 

conventional toroids are inherently wasteful of structural material. An improved force-
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reduced toroid was designed and studied by Hill, Amm and Schwartz (1994) based on the 

force-free toroidal solution of Furth et al. (1957): 

𝑗𝑟 =  𝐴 𝑘 sin 𝑘𝑧  𝐽1  𝑟 𝛼
2 − 𝑘2  

𝑗𝜑 =  𝐴 𝛼 cos 𝑘𝑧  𝐽1  𝑟 𝛼2 − 𝑘2  

𝑗𝑧 =  𝐴  𝛼2 − 𝑘2 cos 𝑘𝑧  𝐽0 𝑟 𝛼
2 − 𝑘2 , 

 where the constants k and A describe the size of the toroid, and Jn is the Bessel function of 

the first kind of order n. 

 This solution represents a solid square toroid when 0 ≤ υ ≤ 2π. However, this 

solution is a constant α solution, so it is not practical for magnet design because of the lack 

of a working magnetic bore. In order to provide a hollow toroidal bore, this force-free 

solution was modified with a conventional dee-shaped toroid design (Hill et al. 1994). 

 

Figure 2.6 Modified squared toroid winding scheme (Amm 1996). 
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In the “modified square toroid” (MST), the force-free square toroid solution was applied to 

create the twisted current path of the inner legs, but conventional dee-shape design was 

applied for the outer legs (figure 2.6). The top of the MST magnet represents the boundary 

of the force-reduced system, so peak forces occur in this region of the MST. In the inner 

leg of the MST, the radial force is 2 to 3 times less than in conventional toroid winding 

(Hill, Amm and Schwartz 1994). 

One of the disadvantages of toroidal geometries is that for most experiments the 

toroidal field is not accessible conveniently. Toroidal coil configurations however, would 

be potentially useful for inductive energy storage systems (Luongo 1996), or in high 

energy particle accelerators to form part of the guide field.  Mawardi (1975) proposed a 

force compensated energy storage concept, where the poloidal and toroidal current 

components are decomposed to flow in separate layers (figure 2.7). In case of solenoids, 

this method of paired orthogonal current layers was also studied by Shneerson et al. 

 

Figure 2.7 Force-reduced toroidal coil concept (Mawardi 1975). 
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The expansive force of the inner poloidal current layer is supported by the compressive 

force of the outer toroidal current layer. For large-scale supercondcuting magnetic energy 

storage (SMES) systems Nomura et al. developed a toroidal model magnet with force-

balanced helical coil configuration (Nomura 1999). 

Another major application of force-reduced toroidal configurations is for plasma 

containment in fusion reactors (Miura et al. 1994). The thermonuclear yield at a given 

temperature is proportional the squared of the ion concentration and hence, it is increased 

with the fourth power of the magnetic field strength. Therefore, in an ideal thermonuclear 

generator the technical limit for reaction yield is imposed by the mechanical forces in the 

magnet system that maintains the high magnetic field (Georgievsky et al. 1974). 

In different fusion magnet designs (such as stellarators, heliotrons and torsatrons) 

loosely wound helical windings can generate the toroidal and poloidal magnetic fields 

(figure 2.8). Georgievsky et al. showed the advantages of the torsatron type geometry in 

applications of force-reduced toroidal systems for producing stellarator-type traps. 

 

 

Figure 2.8 Winding scheme of (a) stellarator, (b) heliotron, (c) torsatron (Thome 1982). 
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 Few experimental superconducting force-reduced toroid were also made and 

studied. Improved critical currents were confirmed. The critical currents of NbZr in the two 

NASA force-reduced toroids were 60 and 63 amperes compared with 17 to 20 amperes of 

conventional coils wound with the same material (Boom and Laurence 1970).  Different 

helically wound force-balanced model toroids were also made in Japan using HTS 

superconductors (Nomura et al. 2002) and NbTi (Nomura et al. 2004). 

The main advantage of toroids in the mentioned applications is the self-contained, 

closed field inside the torus. However, this toroidal field is hardly accessible for 

experimental purposes. On the other hand, the greater geometric complexity is another 

drawback of force-reduced toroids (Furth, Jardin, & Montgomery, 1988; Amm, 1996). The 

fabrication of the Japanese force-balanced superconducting coil, made by hand, took four 

month for three researchers (Nomura et al. 2007). It indicates that manufacturing of these 

coil configurations (especially in large-scale applications) involves many technical 

challenges. 

 

2.4 Variable Pitch Magnet Concept 
 

The basic equations that lead to the force-free condition reveal that a force-free magnetic 

field must possess vorticity and no divergence. So the force-free field is a rotational and 

solenoidal magnetic field. It results in a characteristic twisting of the field lines and hence 

the currents.  

The handedness of the rotation is determined by the sign of α, and the period by 

the absolute value of α (G. E. Marsh 1996). In this force-free field, the lines of force are 
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helices on coaxial cylinders with the pitch of Hz/Hυ varying along the radial direction r 

(Knoepfel 2000). 

The pitch angle of a solenoid winding can be defined as the ratio of the magnitudes 

of the axial current density vector and the azimuthal current density vector. One can build 

an approximately force-free coil by winding the conductor in multilayered helices with 

radially dependent pitch angle jz(r) / jυ(r). The pitch angle of the current density vector can 

be varied with the radius in a winding system of N layers. The solution of a winding 

system of N layers with different pitch angle was used in the Shneerson model magnet (see 

figure 2.3 neglecting the outer parts). This method of winding excludes a radial current 

density. The axial current gives rise to a tangential field component and the tangential 

current to an axial field component. In a short coil both current components give rise to a 

radial field component too (Zijlstra 1967). 
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Chapter 3 

Design Method and Optimization 
 

The goal is to design and study a force-reduced solenoid based on the concept of variable 

pitch magnets. In this chapter, I describe the method of conductor path simulation and the 

way how the force-reduced configuration can be found based on this method. The applied 

design method was not used before to simulate force reduced solenoids. Some general 

properties of monolayer and multilayer force-reduced solenoids will be also shown here. 

 

3.1 Filamentary Approximation 
 

The design and optimization of the force-reduced magnet are based on filamentary 

approximation. In filamentary approximation of conductors, the linear dimension of the 

conductor cross section is much smaller than all other dimensions (Knoepfel 2000). 

Approximation of the conductor by series of filamentary straight sections is 

particularly useful for numerical computations of magnetic fields and electromagnetic 

forces (Knoepfel 2000). Filamentary approximation can be often applied successfully also 

for conductors or coils of any shape, not necessarily circular and coaxial. 

 

3.1.1 Conductor Path Generation 
 

According to the variable pitch magnet concept, in an approximately force-free solenoidal 

magnet the conductor path follows helices on cylindrical cross-section. The programming 
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of the helical conductors with several variable parameters was performed in MATLAB 

(version 7.0.4). The main programs can be found in the appendix. 

The helical conductor path is generated by series of points connected to each other 

to form a filamentary wire of straight wire element sections. Direction can be assigned to 

the wire elements (according to the direction of the current flow), to form wire element 

vectors (dl). In this way the wire is approximated by a polygon of straight, infinitesimally 

thin wire element vectors (dl), that also represents the direction of the current flow in the 

wire (see figure 3.1). With a sufficiently large number of elements any winding 

configuration can be described with high precision. 

 

 

Figure 3.1 Sample of wire element vectors obtained by the simulation. 

-20
-10

0
10

20

-20

-10

0

10

20

-20

-10

0

10

20

X[mm]
Y[mm]

Z
[m

m
]



46 
 

For the filamentary wire elements: 

𝐣dV ≅ jsd𝐥 ≅ Id𝐥, 

where I = js is the total current flowing in the conductor of volume dV; s is the cross-

sectional area of the conductor; j is the current density vector;  Id𝐥 is the current element 

vector (distinguishing it from the wire element vector d𝐥). 

The Cartesian coordinates of the points describing the helical conductor paths can 

be given with the following parametric equations (see also figures 3.2 and 3.3): 

X =  φ ⋅ L  2πn − L 2  , 

Y = R cos   φ + m ⋅ ε , 

Z = R sin    φ + m ⋅ ε , 

where 𝑅 is the radius of the cylindrical layer; 𝜑 is the azimuthal angle that goes from 0 to 

2𝜋𝑛, with n number of turns in the helix. The length of the solenoid layer is L and the helix 

is centered around zero. The phase angle difference 𝜀 between the conductors along the 

circumference of the solenoid is set to 2𝜋/𝑤𝑙 , where 𝑤𝑙  is the total number of wires along 

the circumference of the solenoid layer l and 𝑚 goes from 1 to 𝑤𝑙 . 
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Figure 3.2 Helix geometry in MATLAB. L: total length of the solenoid; R: radius of the 

helices; 𝜀: is the phase shift between the helices. 

 

 
Figure 3.3 Unrolled view of a helix with 7 filamentary wires. Lp is the pitch length of the 

filaments; R is the radius of the helices; L is the length of the solenoid. 
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The pitch angle 𝛾 of the helices is measured from the cross-sectional plane (perpendicular 

to the solenoid axis), see figure 3.2. If 𝐿𝑝  is the pitch length of the helices, i.e., the advance 

in the axial coordinate x per azimuthal advance of 2π (see figure 3.3), then  

tan γ = Lp (2πR) = L (2πRn)  , so: X =  φ ⋅ R ⋅ tan γ − L/2. 

It follows from the definition of the pitch angle, that a conductor with 𝛾 = 0° corresponds 

to an ideal solenoid, while conductors with 𝛾 = 90° represent parallel straight wires along 

the circumference. 

 

3.1.2 Geometry Input Parameters and Code Description 
 

The main parameters of the magnet geometry design are summarized in table 3.1. These 

parameters are used as input parameters in the MATLAB code to generate and plot the 

filamentary helical conductor path in „3D‟. A sample input of the code and the calling 

routine of its main MATLAB functions are given in the appendix. 

 The code was written in a way that it is able to simulate multiple conductor layers. 

The number of possible layers is not limited and it is given by the user. In each conductor 

layer of the magnet, the input parameters can be varied separately and easily by the user. 

Additionally, one can also specify the cross-sectional parameters (width and thickness) of 

the conductors that form the helices. In this case the program automatically checks the 

input parameters to make sure that the conductors are not in contact and the magnet is 

feasible. 
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Table 3.1 Geometry Input Parameters of the Simulation 

Main Geometry Parameters 

Of the Simulation 

Total number of layers: N 

Number of wires in the layers: wl 

Radii of the layers: Rl (mm) 

Lengths of the layers: Ll (mm) 

Pitch angle of the wires in the layers: γl (degree) 

 

 

3.2 Magnetic Field Calculations 
 

The magnetic field contribution of each straight filamentary element can be given in a 

simple closed form based on Biot – Savart law.   

If dl is a filamentary wire element vector (pointing in the direction of current flow) 

that carries a current I and r is a vector from the wire element vector to a test point P, then 

the elemental magnetic induction vector dB at the test point P is given in magnitude and 

direction by: 

d𝐁 = k I
 d𝐥× 𝐫 

 𝐫 3
. 

This is the Biot and Savart law, where the constant k depends in magnitude and dimension 

on the system of units used. In SI units and for vacuum, k =
𝜇0

4𝜋
= 10−7𝑁 ⋅ 𝐴−2, or 
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k = 10−7 H/m (Jackson 1999). Here, 𝜇0 is the magnetic permeability of vacuum: 𝜇0 =

 4𝜋 ⋅ 10−7𝑁 ⋅ 𝐴−2. 

 Based on filamentary approximation, the calculation of the magnetic induction was 

programmed in MATLAB as follows. If the position of the test point P is given by the 

vector pt , and the position of the  i-th current element center is given by pci , then               

r = pt – pci . The position vectors of each neighboring points on the polygonal helix are pi 

and pi+1, so the i-th current element vector can be expressed as: d𝐥i = 𝐩i+1 − 𝐩i. The 

magnetic induction vector can be written in terms of these position vectors as:   

𝐁i 𝐩t = k I
 𝐩i+1 − 𝐩i ×  𝐩t − 𝐩ci  

 𝐩t − 𝐩ci  
3

, 

where 𝐁i 𝐩t  is the magnetic induction vector at a test point P due to wire element d𝐥i. 

The superposition principle holds for the magnetic fields because they are the 

solution to a set of linear differential equations, namely the Maxwell‟s equations, where the 

current is one of the "source terms". So the total magnetic induction vector B at point P can 

be obtained by the vector summation of all elemental magnetic induction vectors due to a 

polygon of filamentary wire elements (Knoepfel 2000): 

𝐁 𝐩t =  𝐁i(𝐩t)i . 

 The test point(s) can be chosen inside and outside the bore, and also on the wire 

element center(s) (excluding the “source” current element itself of course). The magnitude 

and the direction of the current in the conductor filaments of a layer can be different for 

each layer and they are specified by the user as input variables of the simulation. 
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Validation of the field calculations was performed independently on a 3-layer 

solenoid, and the obtained results are in good agreement (Goodzeit 2008). The details of 

the validation are given in the appendix. 

 

3.3 Force Calculations 
 

The magnetic Lorentz force acting on the wire can be calculated in filamentary 

approximation as follows. 

 Consider current I of q charges in a conducting wire with cross-sectional area ∆s 

and length ∆l. The wire is in a B magnetic field. In the wire, n number of charges per unit 

volume drift with velocity v parallel to the wire element vector dl. Hence the current in the 

wire is Id𝐥 ∆l = (q n ∆s) 𝐯. The magnetic Lorentz force dF acting on the electrons and 

transmitted onto the material per ∆l length of the wire is d𝐅 = qn∆s∆l(𝐯 × 𝐁). Thus the 

force expressed with the current I flowing in the conductor is: 

d𝐅B = I(d𝐥× 𝐁). 

This is the so called Biot-Savart force (Knoepfel 2000), and it gives the force 

acting on the Idl  current element vector in magnetic field B. The B magnetic induction 

vector at the dl wire element vector can be given by the Biot-Savart law as it was described 

before, so the Biot-Savart force on the wire elements can be simulated (see figure 3.4). 
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Figure 3.4 Presentation of Biot-Savart force vectors (red) and the field vectors (green) 

using filamentary approximation. The field and force vectors were calculated at the center 

of the wire element vectors (blue). 
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3.4 Optimization Using Force-Free Magnetic Field Theory 
 

One of the main reasons why filamentary approximation was used is because it allows fast 

optimization of the winding configuration. The goal of the magnet optimization is to find a 

force-reduced configuration for a given number of conductor layers. The method of the 

magnet optimization is based on the theory of force-free magnetic fields. 

 

3.4.1 Optimization Based on Force-Free Magnetic Field Theory 
 

An approximately force-free coil can be built by winding the conductor in helices with a 

radially dependent pitch angle. The goal is to determine the optimal value(s) of pitch 

angle(s) for a given set of layer(s).  

As it was discussed earlier, the magnetic field is force-free in a region if the 

magnetic field is parallel to the direction of the current flow in that region. It can be 

formulated by the Biot-Savart force in filamentary approximation as: 

d𝐅B =  I d𝐥 × 𝐁 = 0, if d𝐥 ⥣ 𝐁 or d𝐥 ⥮ 𝐁 

The B total vector at a dl wire element due to all other current elements in the 

magnet can be calculated by the Biot-Savart law. After calculating the B field vectors at 

each wire element in the magnet, the κ angle between each current element vector and the 

corresponding B vector can be determined (κ = ∡(d𝐥,𝐁)).  

According to the definition of the force-free magnetic fields, the Biot-Savart force 

acting on the winding can be reduced by minimizing the κ angle. The mathematical 
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formulation of the magnet optimization is to minimize the κ angle between the field vector 

and the wire element vector by varying the 𝛾 pitch angle(s) of the winding in each l layer: 

Minimize κ(γl), 0° < 𝛾l ≤ 90°,  l = 1… lt  , 

where lt is the total number of layers. So the objective function of the optimization is the 

angle between the field vector and the current element vector. As a note: the main reason 

why I chose the κ angle to be minimized and not directly the force, is because this angle is 

the “cause”: in order to reduce the force try to align the current element vectors and the 

field vectors. The other reason is practical: the calculation of the κ angles (scalars) requires 

less computational time than the calculation of forces (vectors), so the optimization code is 

faster in this way. 

 The optimization routine uses the commonly applied Nelder-Mead simplex method 

or amoeba method (Nelder and Mead 1965). The method finds the minimum of a scalar 

function of several variables (this is generally referred as multidimensional, nonlinear 

optimization). This simplex method is a direct search method (nonderivative optimization) 

that does not require any numerical or analytic gradients (Press, et al. 1988). 

 

3.4.2 Monolayer Solenoids 
 

Using the approach outlined above a pitch angle optimization has been performed for a 

single-layer solenoidal coil to determine the optimum pitch angle for different numbers of 

current carrying filaments. The optimization starts with specifying the basic geometry 

input parameters of the magnet layer. 
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 The optimized pitch angle dependence on the number of filamentary wires is 

shown in figure 3.5 for a set of different radii coils (the length of the coils was fixed to 400 

mm in the optimization). 

 

Figure 3.5 Optimized pitch angle as a function of number of wires (starting from 2) in 

monolayer solenoids for different radii from 15 mm to 25 mm. 

 

As it can be seen, the ideal pitch angle of these coils converges to 45 degrees as the 

number of filamentary wires increase. Large number of uniformly distributed current 

filaments (current sheet approximation) would result also the same pitch angle (Furth et al. 

1957). Helical windings with 45 degree pitch angle were also suggested by others to 

produce high magnetic fields (Hand and Levine 1962) and confirm the method being used 
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in my optimization. The derivation of the 45 degree theoretical pitch angle will be 

discussed in the next chapter together with more details on magnetic fields and forces. 

 

3.4.3 Multilayer Solenoids 
 

The goal of the optimization is to determine the optimal pitch angle in each layer of a 

solenoid with multiple layers. The pitch angle of each layer was varied while the other 

main geometry parameters (see table 3.1) were the same in the layers (except the radii). 

The current magnitudes in the layers were fixed to be the same. In each layer the currents 

were set to flow in the same direction along the axis (see figure 3.7). Depending on the 

desired magnet design one can change each of these parameters. 

 To see how the pitch angles vary layer by layer, optimization was performed for 

seven different magnets with increasing total number of layers. Starting from a monolayer 

coil, additional layers were added with equal radial spacing, so the total number of layers 

in the last magnet is seven. The number of wires in each layer was set to 40 (well within 

the flat section of the curves in figure 3.5), and the radii of the coils increase with 5 mm 

increments starting with inner layer radius of 20 mm. 

The results of the optimization runs are summarized in table 3.2 and figure 3.6. It 

shows the optimized pitch angles in each layer for the seven magnets with different total 

number of layers (N).  
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Table 3.2 Pitch angles of seven helical magnets with increasing total number of layers. 

Total 

Number of 

Layers (N) 

Pitch Angles (degree) 

1 45.39       

2 72.65 30.03      

3 77.45 56.15 23.94     

4 79.77 63.15 47.85 20.50    

5 81.16 67.02 55.21 42.60 18.13   

6 82.10 69.54 59.55 49.99 38.9 16.37  

7 82.79 71.31 62.48 54.47 46.18 36.1 14.99 

 

 

 

 
Figure 3.6  Pitch angle of the magnet layers as a function of total number of layers. The 

figure shows the values given in table 3.2. 
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From figure 3.6, the tendency of pitch angle variation can be seen readily. As the 

total number of layers increases in the magnet, the pitch angle of the inner layers converges 

to 90 degree (straight conductors parallel to the axis), while the pitch angles of the outer 

layers converges to 0 degree (ideal solenoid). The case of 4-layer magnet with the varying 

pitch angles is shown on figure 3.7 (for perspicuity only one wire filament is shown from 

each layer). 

 

 

Figure 3.7 Four layer variable pitch magnet. Only one filamentary wire is shown from each 

layer (the arrows show the current direction in the layers). 

 

 The optimization results in table 3.2 and in figure 3.6 confirm that addition of 

force-free fields usually does not results in a new force-free configuration (see force-free 

condition eq. 2.3 and below). It can be explained as follows. Let‟ assume two monolayer 

force-reduced solenoids are given with slightly different radii (R1 ≠ R2). The other 

geometry parameters and the currents of the force-reduced solenoids are the same (L1 = L2, 
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w1 = w2, γ1 = γ2 = 45
o
). If the two layers are nested together, the co-axial 2-layer solenoid 

won‟t be force-reduced. The pitch angle of the second layer must be different than 45
o
 in 

order to obtain a force-reduced configuration with 2 layers (see table 3.2). For the two 

force-reduced monolayer solenoids the superposition principle would hold only if their 

radii would be the same (R1 = R2). This is equivalent of doubling the wires (w = w1 + w2 = 

2w1) in a force-reduced monolayer solenoid with γ = 45
o
 (while maintaining equal spacing 

between the wires). It is also confirmed by figure 3.5: if high number of wires is doubled, 

the pitch angle remains 45
o
 for the force-reduced monolayer solenoid and the force-free 

field is maintained. The field and force of a monolayer force-reduced solenoid will be 

analyzed in the next chapter to gain more information. 
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Chapter 4 

Force-Reduced Monolayer Solenoid 
 

4.1 Pitch Angle of a Force-Reduced Monolayer Coil 
 

The ideal pitch angle of a one layer helical winding is derived here using Ampere‟s law 

and Maxwell‟s stress equation. Then, the result will be compared to the pitch angle 

obtained from the optimization. 

 The coil of length L is made of w number of helical wires with common radius of 

R, and each carrying a current I. The 𝛾 pitch angle of the helical wires is measured from 

the cross-sectional plane (perpendicular to the axis of the coil). The field inside and outside 

of the magnet can be obtained easily by Ampere‟s law. 

 

Field outside the magnet: 

In this case the Ampere loop (for the line integral) is a circle with radius r > R, centered on 

the axis of the magnet. Because of symmetry reasons, the radial and axial field components 

are zero outside, away from the magnet. So, applying Ampere‟s law for the azimuthal field 

(Baz): 

 𝐁az d𝐥 = µ0 ⋅ w ⋅ Iax , 

where Iax = I ⋅ sin γ is the current flowing in the axial direction.  
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Integration over the closed circular Ampere loop with radius r gives: 

 
Baz =

µ0 ⋅ w ⋅ I

2πr
sinγ 

(4.1) 

This is the magnitude of the azimuthal induction outside the magnet. 

 

 Field inside the magnet: 

If n is the number of turns of each helix, the Ampere loop contains n ⋅ w number of helical 

turns along the total Lt length of the magnet. Along the axis, the radial and azimuthal 

components of the magnetic induction vanish for symmetry reasons. 

 Applying Ampere‟s law for the axial induction (Bax): 

 𝐁ax d𝐥 = µ0 ⋅ n ⋅ w ⋅ Iφ . 

The azimuthal current that generates the axial field inside is: Iφ = I ⋅ cos γ, and the  n 

number of turns is n = L Lp  (Lp  is the pitch length of the helices). After integrating over 

the total length, the Ampere‟s law results the axial field magnitude along the axis: 

 
Bax =

µ0 ⋅ w ⋅ I

Lp
cos γ. (4.2) 

 If γ → 0°, then Lp → 0 (since Lp = 2πR ⋅ tan γ). This is the ideal solenoid case, 

where the field becomes completely axial (Baz = 0T), according to equations 4.1 and 4.2. 

In case of one helical wire (w = 1), equation 4.2 results the familiar induction formula: 

Bax =
µ0 ⋅n⋅I

L
 . If γ → 90°, then Lp → ∞ , so the magnet consist straight conductors arranged 

around the circumference. In this case, according to equation 4.1 and 4.2, the field becomes 

completely azimuthal outside and the field inside is zero (Bax = 0).  
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Pitch angle calculation for force-free case 

After the derivation of the field components, one can apply Maxwell‟s stress equation 

which gives the total magnetic force acting on a finite body with surface S (Jefimenko 

1989): 

𝐅 =  μ𝐇 𝐇 ⋅ d𝐬 −
1

2
 μH2d𝐬. 

The field on the winding is perpendicular to the ds surface element of winding, so 

the first term in Maxwell‟s stress equation is zero. So, assuming constant μ: 𝐅 =

−
1

2μ
 B2d𝐬. Furthermore, on an element of the winding (see figure 4.1), only the outer and 

inner ΔS surfaces contribute to the total ΔF force on the element. Thus, the ΔF force 

magnitude on ΔS due to the magnetic pressure of the two field components is: 

ΔF =
μ

2
 −  

w ⋅ I

2πR
sinγ 

2

+  
w ⋅ I

Lp
cos γ 

2

 ΔS. 

 

 

 

Figure 4.1 Schematic view of force-reduced monolayer winding obtained from the 

simulation. The pitch angle (γ) of the winding is 45 degree (see also figures 3.2 and 3.3). 
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In order to have a force-free coil, the magnetic pressure from outside must hold the 

magnetic pressure inside the magnet that tends to stretch the winding. So the equilibrium 

condition is: 

w ⋅ I

2πR
sin γ =

w ⋅ I

Lp
cos γ. 

Since Lp = 2πR ⋅ tan γ, it results: 

tan γ = cot γ. 

Thus, for the coil to be force-free, the ideal pitch angle of the helices must be 45 degrees. 

 An optimization was performed on a sample magnet minimizing the κ angle 

between the current element vector and the induction vector on the wire elements. The 

main magnet parameters are given in table 4.1. 

 

Table 4.1 Simulation parameters of the monolayer winding. 

Radius 25 mm 

Length 400 mm 

Number of conductors 35 

Current in each conductor 1000 A 

 

 

The optimal pitch angle was found to be 45.6 degrees for this magnet. The small 

deviation from the ideal 45 degree is due to the relatively small number of filamentary 

wires. The distribution of κ angles on one wire filament along the length of the coil is 

shown on figure 4.2. By symmetry, it is sufficient to pick only one wire for plotting. As a 

comparison, helices with pitch angle other than 45.6 degree also shown (the other magnet 

parameters were the same as in table 4.1). 
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Figure 4.2 The κ angle distribution along the length of the winding for different pitch angle 

solenoids. 

 

It is obvious, that at the ends of the ~45 degree pitch solenoid (and also for the 

others) the κ  angle increase. This is due to the finite length of the coil. It is the end-effect 

problem of solenoids: at the ends of the coil the forces increase due to the stray magnetic 

field. The characteristics of the field and force distribution will be discussed next. 
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4.2 Magnetic Field of the Winding 
 

4.2.1 Magnetic Field in the Bore 
 

A simulation of magnetic field was performed in MATLAB on the 45.6 degree pitch angle 

magnet (with parameters given in table 4.1). The magnetic field distribution inside and 

outside the bore is shown on figure 4.3. 

 

 

 

Figure 4.3 Magnetic field of a 45.6 degree pitch angle winding. An enlarged view of the 

field vectors in the cross-sectional midplane (at x = 0 mm) is also shown for clarity. The 

colorbar indicates the field magnitude. The parameters of the winding (green filaments) is 

given in Table 4.1. 
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Figure 4.3 clearly shows the main field components of a force-reduced monolayer 

solenoid: azimuthal field outside, and axial field inside the bore. 

The azimuthal and axial field magnitude in the cross sectional midplane of the 

magnet (x = 0 mm) are shown on figure 4.4. 

 

Figure 4.4 Axial and azimuthal field in the cross-sectional midplane (x = 0 mm and z = 0 

mm) along the indicated y-axis. The magenta line indicates the position of the winding. 

 

The winding is at R = 25 mm, marked by the magenta line. As it can be seen, at the 

vicinity of the winding the axial field magnitude (Bax) is approximately equals to the 

azimuthal field magnitude (Baz). Using more wires, it can be shown that they are cloesly 

equal. 
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The on-axis axial field profile is shown on figure 4.5. As a comparison, solenoids 

with pitch angle other than 45.6 degrees are also shown (the other parameters, given in 

table 4.1, are the same). The ends of the solenoids are indicated by the magenta lines. 

 

 
Figure 4.5 On-axis axial field profiles obtained from the simulation for different pitch 

angle solenoids. The magenta lines indicate the ends of the solenoid(s).  

 

As a comparison, the axial magnetic field in the center of this magnet was also 

calculated using Ampere‟s law (eqn. 4.2) and the analytical formula (Smythe 1968): 

 

Bax =
µ0

4π

wI

R
 

nπR tan γ + d

 R2 +  nπR tan γ + d 2 
1
2

+
nπR tan γ − d

 R2 +  nπR tan γ − d 2 
1
2

   (4.3) 
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where d is the distance from the magnet center. The original formula was modified by the 

introduction of w in order to consider the number of helical filaments.  

The calculated field values are shown in table 4.2 together with axial field value 

obtained from the simulation for the magnet center. It shows the good agreement of the 

fields obtained from the simulation and from the analytical form. The Ampere‟s law 

method provides only a rough estimation of the center field in the magnet. 

 

Table 4.2 Axial field value calculations in the magnet center. 

Calculation Method Axial Field (Gauss) 

B0,ax (from simulation) 2721.0 

B0,ax (from eqn.4.3) 2720.8 

B0,ax (from eqn.4.2) 1918.5 

 

 

The current utilization of a magnet can be described by its transfer function. The transfer 

function (B/I) gives the generated field in the center of the bore per current flowing in the 

magnet. The transfer function was calculated from equation 4.3. Figure 4.6 shows the 

transfer function as function of pitch angle for several one layer solenoids with different 

number of wires. 
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Figure 4.6 Transfer function as a function of pitch angle for five solenoids with different 

number of tilted wires. 

 

At higher pitch angles, the transfer function drops significantly since the azimuthal current 

component in the solenoid is smaller and smaller. Compared to regular solenoids, the 

current utilization of force-reduced coils is worse, so more current is needed to generate the 

same axial field in the bore. 

 

4.2.3 Magnetic Field at the Winding 
 

Figure 4.7 shows the radial field on the winding for solenoids with different pitch angles 

(γ). The axial and azimuthal field on the winding for the same solenoids is shown on figure 

4.8. 
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Figure 4.7 Radial field on the winding for five solenoids with different pitch angles. 

 
Figure 4.8 Axial field (black) and azimuthal field (blue) on the winding for solenoids with 

different pitch angles. The azimuthal field does not vary significantly with γ. 
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In agreement with the theory, the radial field increases at the ends (figure 4.7), due 

to the stray magnetic field. Solenoids with smaller azimuthal currents (higher pitch angles) 

have smaller radial fields at the ends of the magnet. 

 According to figure 4.8, the azimuthal field on the winding does not change 

significantly with the pitch angle of the wires in the coil. The azimuthal field on the 

winding is basically the same regardless of the pitch angle. This result (seemingly) is in 

contradiction with the result of the azimuthal field formula obtained from Ampere‟s law 

(eq. 4.1) that predicts γ dependence of Baz. The reason of this can be explained as follows. 

Regardless of the pitch angle, the same current was required to flow in the wires. 

As one decreases the pitch angle of the wires, the azimuthal current component increases 

and the axial current component decreases, so their sum is always the total current. 

However, the number of turns along the length of the coil also increases with the 

decreasing pitch angle. This compensates the reduction of the axial current component, so 

the total axial current won‟t change along the length of the coil. The net axial current per 

unit length of the magnet will be the same regardless of the pitch angle if the total current 

per wire and the number of wires is the same. Therefore, due to the same axial current in 

the winding, the azimuthal field will be also the same. 

As a summary of the field analysis, one can say that in the central zone of the 

winding Bax = Baz  only if 𝛾 = 45°. If 𝛾 < 45°, the axial field is greater than the azimuthal 

field at the coil, so the bigger magnetic pressure inside tends to stretch the winding 

outward. If 𝛾 > 45° , the azimuthal field at the winding is greater than the axial field and it 

tends to compress the winding (“pinch effect”). In section 4.3 I will discuss the forces 

acting on the monolayer winding, and show their pitch angle dependence. 
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4.3 Forces on the Winding 
 

4.3.1 Force Distribution on the Winding 
 

Figure 4.9 shows the components and the magnitude of the Lorentz force acting on the 

winding of a force-reduced solenoid with pitch angle of 45.6 degrees (its parameters are 

given in table 4.1). The „3D‟ view of the force distribution on the winding is shown on 

figure 4.11. For the sake of visibility the number of wire elements was reduced (the 

filamentary wires are also shown on the figure in green). 

For comparison, the same plots were generated for a solenoid that is able to 

produce approximately the same field in the center of the bore (figures 4.10 and 4.12). The 

number of turns of the solenoid was set so the length of the wire is equal to the total length 

of the wires in the force-reduced solenoid. The radius and the length of the solenoid were 

also set to the same as in the force-reduced case. The main parameters of the solenoid are 

summarized in table 4.3.  

 

Table 4.3 Main parameters of the solenoid for comparison with the force-reduced solenoid. 

Magnet Length (mm) 400 

Radius (mm) 25 

Number of Turns 85.8 

Pitch Angle (deg.) 1.7 

Current in the Wire (A) 1000 
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Figure 4.9 Lorentz force components acting on an individual conductor filament per unit 

length and its magnitude for the force-reduced solenoid. 

 

Figure 4.10 Lorentz force components acting on a conductor filament per unit length and 

its magnitude for the regular solenoid. 
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Figure 4.11 Distribution of force vectors (blue) on a force-reduced solenoid. The length of 

the vectors are proportional to the force per unit length acting at the position of the vector. 

For reasons of clarity an enlarged view of the coil end is also presented. 
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Figure 4.12 Distribution of force vectors (blue) on a regular solenoid. The length of the 

vectors are proportional to the force per unit length acting at the position of the vector. For 

reasons of clarity an enlarged view of the coil end is also presented.  
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4.3.2 Force Analysis 
 

The main results of the force simulations and additional parameters are summarized in 

table 4.4 (subscript „m‟ in the table indicates maximum value). 

Table 4.4 Comparison of forces and additional parameters of a regular and a force-reduced 

solenoid. Subscript „m‟ indicates maximum value. 

 Regular Solenoid Force-Reduced 
Solenoid 

Pitch Angle, γ (deg.) 1.7 45.6 

Current per Wire, I (A) 1000 1000 

Number of Wires, w 1 35 

Total Length of Wire (mm) 13483 19595 

Field in Center, B0 (Gauss) 2675 2721 

|F|m (N/mm) 1.349 ·10
-1

  1.271 ·10
-1 

Fax,m (N/mm) 1.006 ·10
-1

 8.890 ·10
-2
 

Fazi,m (N/mm) 3.000 ·10
-3

 9.080 ·10
-2
 

Frad,m (N/mm) 1.349 ·10
-1

 2.455 ·10
-4
 

 

In regular solenoid windings the main (highest) force components are the radial 

force and the axial force. The outward radial forces, dominating in the middle zone of the 

coil (see figure 4.10), stretch the winding outward. The axial forces with opposite direction 

at the ends (see figure 4.10) compress the winding toward the midplane (x = 0 mm) of the 

magnet. This characteristic distribution of forces in a regular solenoid results the so called 

barrel-shape force distribution (see figure 4.12). As a note, the small jiggling of the force 

values on figure 4.10 is due to the relatively small number of winding turns.   
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For the force-reduced solenoid, the simulation confirms that the force cannot be 

everywhere zero on a finite length coil (in agreement with the Virial theorem). While the 

middle winding zone experience the highest forces in a regular solenoid, in the force-

reduced case the high force region is shifted towards the ends of the coil. However, one 

must note that the higher forces act on a smaller range of the force-reduced coil compared 

to the regular solenoid. 

The highest force magnitude is at the center of the solenoid (x = 0 mm). In this 

example of a regular solenoid, the force magnitude reduces only by ~0.3 % on 50 mm 

range along the axis measured from the center (x = 0mm). At a distance of 150 mm away 

from the center, the force magnitude is still ~93% of the maximum force magnitude. On 

the other hand, at the ends of the force-reduced solenoid the force magnitude is reduced by 

~96 % on 50 mm range of the magnet length (measured from the end of the coil). This is a 

remarkable reduction of forces on a relatively short magnet (the aspect ratio was chosen so 

to reduce the end field effects).  

Compared to the regular solenoid, the smaller size of the high force region and the 

large force reduction in the force-reduced solenoid suggest that less support structure can 

hold the forces at the ends. The main force component is also different than in the case of a 

regular solenoid. Besides the compressing axial forces, opposing azimuthal forces tend to 

twist the magnet at the ends of the force-reduced coil (see figures 4.9 and 4.11). It means 

that in the case of a force-reduced solenoid, the support structure must counteract the 

azimuthal and axial forces at the ends of the coil. In case of a regular solenoid the support 

structure must hold mainly the radial forces along a significant length of the coil (and the 

axial forces in addition). 
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Obviously, the number of tilted wires around the circumference of a solenoid is 

limited due to finite wire diameter. The limited number of discrete wires can explain the 

small deviation of the optimized pitch angle from the ideal 45 degrees pitch angle. 

Furthermore, if one considers the finite cross section of the wires, Kuznetsov also showed 

that helical wires with pitch angle of 45 degree and infinite length cannot be completely 

force-free. However, even with finite wire dimensions, approximately 45 degree coils can 

achieve a marked reduction of forces compared to other windings (Kuznetsov 1961). This 

was also confirmed by the simulation. In the central zone of a 45 degree helical winding 

the magnetic field is approximately force-free, and the force-free configuration is 

terminated at a point where the magnetic pressure on the winding is within the strength 

limits of the materials used in the magnet (Hand et al. 1962). 

The current (hence the achievable field) in one layer windings is also limited by 

the heating of the coil due to the ohmic resistance of the conductor. Increasing the coil 

thickness is also not practical due to the accumulation of stresses. Therefore multilayer 

designs are better to reach higher magnetic fields (Montgomery 1969). This will be 

discussed in the next chapter.   
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Chapter 5 

Conceptual Design and Analysis of a 25-T  

Force-Reduced Solenoid  

The previous chapters showed the concept of force reduced solenoids. In this chapter the 

lessons learned will be applied to the design of a high field magnet. As a design goal a field 

strength of 25 T has been chosen. I will present the conceptual design of a multilayer 

pulsed magnet using a novel force-reduced solenoidal winding configuration. After 

introducing the features of the coil design, the main magnet parameters will be selected 

considering the field requirements and the maximum allowed current. In the next step, the 

magnetic field of the magnet will be analyzed inside and outside of the bore and also on the 

winding.  Following the magnetic field analysis, force and heat analysis of the magnet will 

be discussed with considerations on cooling and conductor materials. The force 

characteristics of the conceptual force-reduced magnet will be compared to a regular, 

multilayer solenoid winding that would generate the same peak field in the bore. 

 

5.1 Coil Design 
 

5.1.1 Direct Conductor Design 
 

The complex configuration of wires is a major drawback of force-reduced magnets 

considering other type of magnets. In force-reduced solenoids, many parallel wires with 

specified pitch angle must be wound and powered in more layers. Design and 
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manufacturing of force-reduced solenoids are more challenging and, compared to force-

reduced toroids, it is less discussed in the existing literature (see works of Shneerson et al.). 

I propose a novel method to facilitate the design and manufacturing of force-

reduced solenoids. In direct conductor design, the main current path is machined directly 

from the conductor material. Instead of using wires (placed on surfaces of supporting 

cylinders), the helical current paths of the force-reduced layers are milled in conductor 

tubes. Figure 5.1 shows the concept of a variable pitch direct conductor (VPDC) magnet. 

In each conductor layer the unmilled end-sections of the conductor tube connect together 

the helical conductor strips in parallel. 

There are several advantages of this design method. Direct conductor method was 

already successfully applied for other type of magnets (Meinke 2009). The method allows 

to reach high current densities in the conductor, which is important in case of force-

reduced solenoids. Besides the easier and more accurate manufacturing of the current 

paths, the method offers greater flexibility for setting the number of conductor strips in the 

layers. This method also allows easier application of more layers in order to reach higher 

fields. If necessary, the conductor strips can be further stabilized by filling the gaps with a 

strong, light-weight insulation material (like epoxy or G10). Without extra stabilizers 

between the conductor strips in a layer, the gaps can be used as additional cooling passages 

to increase cooling efficiency. 
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Figure 5.1 Concept of the variable pitch direct conductor (VPDC) magnet. The top figure 

shows individual layers with different pitch angles. The lower figure shows how such 

layers can be combined to form a force-reduced structure with increased field strength. 
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5.1.2 Return Current Zone and Solenoid End-Region 

 

To form a more compact solenoid, the currents can be returned at the end of the force-

reduced VPDC magnet. The return currents can be established by wires connected to the 

ends of the VPDC magnet layers. This combined magnet can be separated into three zones 

(Shneerson et al.): 1. the inner zone of nested, force-reduced layers; 2. the outer return 

current zone; 3. the solenoid end-region where the inner and outer current zones are 

connected. The scheme of the current zones is shown on figure 5.2. 

 

 
 

Figure 5.2 Schematic picture of the current zones of a system with high field force-reduced 

central part and a low field return section, where forces are easily supported (after 

Shneerson et al. 1998). The dashed line indicates the solenoid axis. 
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 In the solenoid end-region, curved wires can be used to connect the inner force-

reduced layers to the return current layers. The ideal (force-reduced) curvature of the wires 

can be determined and it was obtained by Shneerson et al. by degenerating the force-free 

layers into a curved surface (see figure 5.2). The return currents can flow in the axial 

direction (Shneerson et al.), so their field won‟t disturb the quasi-force-free field 

configuration of the inner force-reduced layers. However, since these axial backward 

currents are located in the azimuthal field region of the inner layers, the return current zone 

layers won‟t satisfy the force-free condition. Because the azimuthal induction of the force-

reduced inner layers decreases as 1/r or faster, the return currents won‟t experience high 

forces, and dielectric cylinders can hold the wires. Furthermore, the radii of these outer 

layers can be adjusted so they will be equally loaded (Shneerson et al. 1998).  

 

5.1.3 Magnet Parameters 
 

The parameters of the force-reduced solenoid are dictated by required maximum field in 

the bore and the maximum allowed current in the conductor strips. The bore diameter was 

set to be 50 mm. Copper was chosen as conductor material. Due to the low transfer 

function (and therefore the required high currents), the magnet should operate in pulsed 

mode. 

In force-reduced solenoids the maximum allowed current density is limited by 

heating of the conductors rather than stress in the magnet (Shneerson 2004). From the 

thermal conditions, the maximum allowed current density (or current) can be determined 

for a desired current pulse characteristic (see thermal analysis).  In view of the allowed 
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current density and the desired field, the required number of layers (N) and the number of 

conductor strips per layer (w) can be determined. The total number of layers was selected 

to be three.  

It was pointed out in section 3.4.2 (see also figure 3.5), that the number of 

conductor strips (w) should be selected as large as possible, to get a better force-free field 

distribution. The maximum number of conductor strips in a given layer is determined by 

the azimuthal width of the strips, the required spacing between the strips, the inner radius 

of the layer, and the pitch angle of the conductors. In addition to these geometrical 

constraints on the number of tilted conductors in a layer, one must also consider the 

maximum allowed current density in each wire. According to this, the number of conductor 

strips in each layer was determined. The spacing between the conductor strips in a layer is 

about 1 mm. 

The lengths of the layers are equal, and they were adjusted in order to get a good 

high field region around the center of the bore (reducing the disturbing end-effects). The 

wall thickness (th) of the conductor tubes were set to be equal (3 mm each). The spacing 

between the tubes was also set to be equal (1 mm). The parameters of each layer are 

summarized in table 5.1. The first layer (layer 1) is the innermost layer. 
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Table 5.1 Main parameters of a 25-T force-reduced VPDC magnet. 

Parameter (unit) Layer 1 Layer 2 Layer 3 

Center radius, Rc (mm) 26.5 30.5 34.5 

Length (mm) 600 600 600 

Pitch angle, γ (degrees) 75.47 47.99 17.66 

Number of conductor strips per 
layer, w 

49 44 21 

Current per conductor strip, I (A) 34100 34100 34100 

Conductor width, d (mm) 2.1 2.3 2.3 

Conductor thickness, th (mm) 3 3 3 

Current density per conductor 

strip (10
9
 A/m

2
) 

5.4 4.9 4.9 

 

The pitch angles of the layers were obtained by optimization, as it was described in chapter 

3. The distribution of the κ angles is shown on figure 5.3. It shows that the angle between 

the current element vectors and B is minimized for all layers in the central zone along the 

length. 

 
Figure 5.3 The κ angle distribution along the length of the 3-layer VPDC solenoid.  
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5.2 Magnetic Field Analysis 
 

5.2.1 Magnetic Field in the Bore 
 

The main field components are the axial field (dominating inside the bore) and the 

azimuthal field (dominating outside the bore). Figure 5.4 shows the variation of these 

components in the cross sectional midplane (at x = 0 mm) of the VPDC. 

 

Figure 5.4 Axial and azimuthal field in the cross-sectional midplane (at x = 0 mm and z = 0 

mm). The magenta lines (at Rc = 26.5, 30.5, 34.5 mm) mark the position of the layers.  

 

According to figure 5.4, the axial field (in average) decreases through the winding from its 

maximum value (inside) to zero (outside the magnet). The azimuthal field increases (in 
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average) with the radius until the outermost layer, then (outside) it starts to drop with 

increasing radial distance from the axis. 

Figure 5.5 shows the on-axis field profile of the axial field.  

 

 
 

Figure 5.5 On-axis axial field of the 3-layer VPDC magnet. The magenta lines mark the 

ends of the layers. 

 

From the simulation the maximum axial field generated in the center of the magnet is 

25.028 T. In comparison, the axial field in the center obtained from the analytical formula 

(eq. 4.3) is 25.027 T. The field values are in good agreement. 
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5.2.2 Magnetic Field at the Winding 
 

The radial, axial and azimuthal field components on the each layer are shown in figure 5.6, 

5.7 and 5.8, respectively. Only one filamentary wire was selected from each layer for 

plotting and x indicates the axial coordinates of the wire elements.  

 The radial field component (Brad) varies only at the ends of the layers, and its 

values are basically the same in the three layers (see figure 5.6). The axial field component 

(Bax) is different in the three layers, and the same is true for the azimuthal field (Baz). In 

accordance with figure 5.4, the axial field on the winding has its highest value in the 

innermost layer and the outer layers experience lower axial field. The opposite is true for 

the azimuthal field component: Baz has its highest value in the outermost layer and its 

lowest value in the innermost layer. 

 

Figure 5.6 Radial field versus axial position on the winding layers of the VPDC solenoid. 
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Figure 5.7 Axial field versus axial position on the three layers of the VPDC solenoid. 

 

 
Figure 5.8 Azimuthal field versus axial position on the three layers of the VPDC solenoid. 
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5.3 Mechanical Design 
 

5.3.1 Force Analysis 
 

The force magnitude along the length of each layer is shown on figure 5.9.  The force 

components in cylindrical coordinates are shown on figures 5.10 - 12. Force values are 

given as force per unit length of wire element.  

 

Figure 5.9 Force magnitude per unit length on each layer along the length of the VPDC 

solenoid. 

 

-300 -200 -100 0 100 200 300
0

50

100

150

200

250

300

350

X [mm]

|F
| 
[N

/m
m

]

Layer 1

Layer 2

Layer 3



91 
 

 

Figure 5.10 Radial force per unit length on each layer along the length of the VPDC 

solenoid. 

 

Figure 5.11 Axial force per unit length on each layer along the length of the VPDC 

solenoid. 
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Figure 5.12 Azimuthal force per unit length on each layer along the length of the VPDC 

solenoid. 
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same in the layers, while the azimuthal current component is higher in the outermost 

layer(s), thus the axial forces (in absolute value) are also higher in the outermost layer(s) 

(see figure 5.11). The azimuthal force at the ends acting on the axial current component is 

also due to the radial field. The axial current component is relatively smaller in the outer 

layer(s), hence the azimuthal force (in absolute value) is also smaller in the outer layers 

(see figure 5.12). 

The increased axial and azimuthal forces at the ends must be supported. The 

compressive axial forces can be supported for example by inserting massive rods outside, 

fixed between the end-tubes of the VPDC solenoid. These support rods can also provide 

some support against the torsion due to the azimuthal forces at the ends. If necessary, 

additional crossbars can be applied at the end-tubes to hold the torque. 

Force Balance 

It is possible to check the force balance in the middle zone of each layer. The force balance 

of the axial and azimuthal forces in the middle zone of the winding is trivial since the 

radial field in the middle zone of the layers is practically zero (see figures 5.6, 5.11 and 

5.12). 

 The balance of tensile and compressive radial forces can be expressed in a 

simplified way with their magnitude: 

Iaz ∙ Bax ∙ l = Iax ∙ Baz ∙ l, 

where l is the length of the wire element vector in the middle of the winding. The tensile 

radial force acting on the azimuthal current (Iaz) is due to the axial field (Bax), while the 

compressive radial force acting on the axial current (Iax) is due to the azimuthal field (Baz). 
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 The azimuthal and axial current in each layer can be expressed with the pitch angle 

of the layer as: Iaz = I ∙ cos γ and Iax = I ∙ sin γ. In the simulation, the I transport current in 

the wires were set to be equal, and the wire elements have also approximately the same l 

length, so the radial force balance equation reduces to: 

 Bax ∙ cos γ = Baz ∙ sin γ (5.1) 

Table 5.2 shows this calculation for the balance of radial force. The table also includes the 

maximum values of the azimuthal and axial field components in the middle zone of the 

layers (see also figures 5.7 and 5.8). 

 

Table 5.2 Axial and azimuthal fields showing the high degree of radial balance between the 

two when the pitch angles are considered. This balance is responsible for the achieved 

force compensation. 

Parameter (unit) Layer 1 Layer 2 Layer 3 

Bax,m (T) 23.37 17.30 6.39 

Baz,m (T) 6.06 15.63 20.26 

Pitch angle, γ (degrees) 75.47 47.99 17.66 

Bax·cos γ (T) 5.86 11.58 6.09 

Baz·sin γ (T) 5.87 11.61 6.15 

 

 

Equation 5.1 explains how the axial and azimuthal fields relate to each other in a 

given layer of a multilayer force-reduced solenoid. This is also in agreement with the one-

layer force-reduced solenoid, since in that case  sin γ = cos γ and Bax = Baz on the winding. 
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5.3.2 Stress Analysis 
 

A stress simulation was performed to approximate the stress due to the radial forces on the 

layers. The equivalent von Misses stress was simulated in SolidWorks, using the radial 

force components obtained from the MATLAB code. 

 For symmetry reasons, the half of the total length was simulated. Each conductor 

tube was subdivided along the length into a series of smaller length tubes. From the radial 

force values, average pressure values were calculated on each of the tube sections. The 

layers were separated with G10 in the simulation. The magnet was also overwrapped with 

a thin (1 mm thick) layer of G10 to apply boundary condition on that (it was assumed to be 

fixed in the simulation). The obtained equivalent von Misses stress distribution is shown 

on figure 5.13. 

 

Figure 5.13 Estimated stress distribution in a 25 T VPDC magnet. The stress value is color-

coded, with values indicated in the color bar. 
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 Note that in the simulation full (not grooved) tube sections were applied, so higher 

pressures can be expected, but the values give a rough estimation on pressure. 

 

5.3.2 Comparison of the Layers 
 

It is worthwhile to compare the layers in the case when each layer is energized 

independently, in absence of the other two layers. The input parameters of the layers were 

the same as in table 5.1.  The results for the generated field in the center (B0), the transfer 

function and the forces can be also compared to the force-reduced case, when all the three 

layers are nested. Table 5.3 contains a summary of the main results (index „m‟ indicates the 

maximum value). 

 

Table 5.3 Comparison of field, forces and transfer functions for individual and nested 

VPDC magnet layers. 

Parameter 
(Unit) 

Layer 1 Layer 2 Layer 3 Nested Layers 

B0 (T) 3.2554 8.8160 12.955 25.027 

B / I (10
-6

 T/A) 1.95 5.88 18.09 6.44 

|F|m (N/mm) 188.49 149.97 241.95 349.38 

|Frad| m (N/mm) 
188.49 

(compressive) 
20.82 

(compressive) 
188.85 

(tensile) 
64.42 

Fax, m (N/mm) 13.41 100.11 210.69 326.63 

Faz, m (N/mm) 51.76 111.15 67.07 267.55 

 

 As it can be seen, the transfer function of the third layer is the largest. This layer 

provides more than half of the total field in the center when the three layers are nested 
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together. The transfer functions of the inner two layers are smaller. Their main role is to 

generate azimuthal field in the outer sections for force reduction. 

 Layer 2 in itself is close to a force-reduced solenoid, since its pitch angle (~48 

degree) is close to 45
 
degree. This explains the relatively small compressive radial force 

compared to the other layers. When the three layers are nested together, the significant 

reduction of radial forces is obvious. Compared to the nested case, the tensile force in layer 

1 and 2 are much higher when they are energized alone, although their fields in the center 

are much lower than 25 T. 

 

5.3.3 Comparison with a Regular Solenoid 
 

A three-layer regular solenoid was also simulated to compare the forces on its layers with 

the forces on the three-layer force-reduced magnet. 

 This sample solenoid contains one wire in each layer, and in each wire the same 

current was used as in the force-reduced example. The lengths and radii of the layers are 

also the same as for the force-reduced magnet (see table 5.1). The pitch angles (or the 

number of turns) were adjusted in each layer, so the solenoid generates (intentionally) a 

little bit less than 25 T. The number of turns for layer 1, 2 and 3 are: 109, 112 and 122, 

respectively. For comparison, the results are summarized in table 5.4.  
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Table 5.4 Comparison of fields, forces and transfer functions of a regular solenoid with the 

force-reduced VPDC solenoid. 

Parameter 
(Unit) 

Regular 

Solenoid 

Force-Reduced 

Solenoid 

B0 (T) 24.346 25.027 

B / I (10
-6

 T/A) 237.99 6.44 

|F|m (N/mm) 703.27 349.38 

|Frad| m (N/mm) 703.27 64.42 

Fax, m (N/mm) 280.07 326.63 

Faz, m (N/mm) 9.06 267.55 

 

Figure 5.14 show the force magnitude and its components (per unit wire length). 

As a note, the small jiggling in the force values is due to the relatively small number of 

turns in the layers. 

In comparison, the significant reduction of radial forces in the force-reduced 

VPDC magnet is obvious. In the regular solenoid example, all the radial forces are tensile 

and that must be supported somehow. In the force-reduced case, the radial forces are 

smaller and compensate themselves between the layers. However, there is a significant 

difference in azimuthal forces. In the force-reduced configuration, the azimuthal forces rise 

to higher values compared to a regular solenoid.  
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Figure 5.14 Force magnitude and its components per unit wire length in a three-layer 

regular solenoid as a function of axial position. 
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5.4 End-Effects 
 

A possible way to reduce the force on the winding at the ends is to change the length of the 

layers relative to each other. Staggered layers are often applied in the design of nested 

solenoid magnets. 

For the three layer VPDC magnet, four basic cases can be distinguished (see figure 

5.15). In the first two cases (A and B), only the length of the middle layer is changed while 

the 1
st
 and 3

rd
 layer has the same length. In case C the length of the layers increase with the 

radius, while in case D the length of the layers decrease with radius. 

 

Figure 5.15 Possible cases of staggered layer VPDC solenoids with three layers. The 

dashed line is the solenoid axis. 

 

These four basic cases where simulated in MATLAB to check the force variation at the 

ends of the layers. The lengths and the pitch angles for the four cases are summarized in 

table 5.5. All the other main parameters were kept the same as in table 5.1. The slightly 

different pitch angles of the four cases were obtained by optimization. This ensures the 

force reduction in the middle zone of the layers. 
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Table 5.5 Variation of the layer lengths in a three layer VPDC magnet for the staggered 

cases shown in figure 5.15. The individually optimized pitch angles are indicated. 

Parameter (Unit) Case A Case B Case C Case D 

Length (mm) 

Layer 1 
Layer 2 

Layer 3 

 

500 
600 

500 

 

600 
500 

600 

 

400 
500 

600 

 

600 
500 

400 

Pitch angle, γ (degrees) 
Layer 1 

Layer 2 

Layer 3 

 
 75.52 

48.01 

17.64 

 
75.51 

48.03 

17.66 

 
75.61 

48.07 

17.67 

 
75.55 

48.07 

17.53 

 

5.4.1 Force Reduction in Staggered Layers 
 

The main results for the four cases are given in table 5.6. The subscript „m‟ in the table 

indicates the maximum value. For comparison, the original non-staggered case is also 

included in table 5.6. 

 

Table 5.6 Comparison of the fields and forces of the staggered and non-staggered VPDC 

magnets with different layer lengths. 

Parameter 

(Unit) 
Case A Case B Case C Case D 

Not 

Staggered 

B0 (T) 24.982 24.987 24.926 24.959 25.027 

|F|m (N/mm) 258.17 257.84 307.65 310.45 349.38 

|Frad|m (N/mm) 50.62 77.58 259.67 263.41 64.42 

Fax,m (N/mm) 240.79 240.31 219.18 221.67 326.63 

Faz,m (N/mm) 172.29 172.33 123.33 130.87 267.55 

 

Figures 5.16 - 20 show the forces of the four different cases for comparison. 



102 
 

Case A      Case B 

 

Case C      Case D 

 

 

Figure 5.16 Force magnitudes per unit wire length versus axial position of VPDC solenoids 

with different staggered layers. 
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Case A      Case B 

 

Case C  Case D 

 

 

Figure 5.17 Radial force components per unit wire length versus axial position of VPDC 

solenoids with different staggered layers. 
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Case A      Case B 

 

Case C      Case D 

 

 

Figure 5.18 Axial force components per unit wire length versus axial position of VPDC 

solenoids with different staggered layers. 
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Case A      Case B 

 

Case C      Case D 

 

 

Figure 5.19 Azimuthal force components per unit wire length versus axial position of 

VPDC solenoids with different staggered layers. 
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 For case A and B the maximum force magnitudes are markedly smaller than in the 

other cases (see the figures and the table for comparison). There is no significant difference 

between the peak axial forces for the four cases of the staggered solenoids. But, compared 

to the non-staggered case, the peak axial force values are much lower in these staggered 

magnets. The peak azimuthal forces are also smaller when the layers are staggered. 

However, there is a conspicuous difference in radial forces. 

Compensation of radial forces among the layers appears only in case A and B. In 

the other two cases, there is no radial force compensation (see figure 5.17). In case C, the 

radial forces are tensile in all layers, while in case D they are compressive. My opinion is 

that this behavior of radial forces is due to the symmetry of the layers. It can be explained 

as follows.  

In case C, the outermost layer is the longest one where the azimuthal current 

component dominates (this layer resembles to a regular solenoid). This changes the radial 

forces to be tensile in the whole magnet. In case D, the longest layer is the innermost layer, 

where the axial current component dominates. As it was shown in the previous chapter, if 

the axial current component dominates, the layer experience compressive radial forces. The 

stronger azimuthal field of the innermost layer changes the radial forces to be compressive 

in the whole magnet.  

On the other hand, in case A and B, only the length of the middle layer was 

changed. The pitch angle of the second layer is close to 45 degrees, so the magnitude of the 

axial field (inside) and the azimuthal field (outside) are approximately equal. Hence, 

modification of the length of the middle layer affects the innermost and the outermost 

layers approximately in the same way. In these cases (A and B) the field changes 
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approximately symmetrically, so the force-reduction is maintained. This is not true in case 

C and D, where either the axial field or the azimuthal field starts to dominate, respectively.  

This effect excludes case C and D. Since the peak radial force in case A is the 

smallest, case A would be the better method to reduce the forces not only at the ends but 

also in the middle zone of the magnet. In the last 50 mm sections at the ends of the middle 

layer, the radial force does not run up to high values (see figure 5.17: case A, green line), 

since the pitch angle of this layer is close to the ideal 45 degrees. Because the pitch angle 

of the second layer is slightly bigger than 45 degrees (48.01 degrees, see table 5.5), there 

are small, compressive radial forces at the ends of the second layer in case A. 

One must note that in these cases, I kept the current magnitude the same in the 

layers. If the currents are different in the layers, different behavior of the forces can be 

expected. 

 

5.4.2 The Magnetic Field of Staggered Layers 
 

One must note that, that the center field values are approximately the same (~25T) in all 

cases (see table 5.6). Furthermore, the on-axis field profiles are better in case A and B than 

in case C and D (see figure 5.20). It means that the force reduction in middle zone of case 

A is not due to a lower axial field value in the center, but it is due to the staggered layers 

and the optimized pitch angles.  
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Figure 5.20 On-axis field profile comparison of the different staggered VPDC solenoids. 

 

 Since case A seems to be the best choice among the studied staggered cases, in the 

following I will compare the field at the windings of case A and the non-staggered VPDC 

solenoid.  

The comparisons of the axial and azimuthal field values at the winding are shown 

on figure 5.21 and 5.22, respectively. These figures show that both the axial and the 

azimuthal field components are lower at the ends in the staggered VPDC (marked by the 

dashed lines). These lower field values explain why the peak radial force (per unit length) 
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Figure 5.21 Axial field versus axial position on the three layers for non-staggered VPDC 

(solid lines) and for the staggered VPDC (dashed lines). 

 

Figure 5.22 Azimuthal field versus axial position on the three layers for non-staggered 

VPDC (solid lines) and for the staggered VPDC (dashed lines). 
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The comparison of the radial field values at the winding is shown on figure 5.22. It 

shows the characteristic change of the radial field at the ends in the staggered case (see the 

numbered zones). 

 In zone 1, Brad increases in layer 1 and 2, and their radial fields also increase Brad in 

layer 2. Since layer 1 and 3 are shorter, their radial field contribution on layer 2 decreases 

with increasing axial distance (from their ends). As a result of this, the radial field on layer 

2 decreases in zone 2.   

 
Figure 5.23 Radial field versus axial position on the three layers for non-staggered VPDC 

(solid lines) and for the staggered VPDC (dashed lines). The numbers at the ends mark 

different field zones of the staggered solenoid: in zone (1) Brad increases; in zone (2) Brad 

decreases in the 2
nd

 layer; in zone (3) Brad increases again in the 2
nd

 layer. 
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The radial field contribution of the second layer to the total radial field at the end is still 

small in zone 2. However, closer to the end of the magnet, the radial field contribution of 

layer 2 starts to dominate in zone 3, so here the radial field in layer 2 increases again.  

Since layer 2 is the longest, layer 1 is in the longer axial field region of layer 2, so 

the peak radial field is reduced (in comparison to non-staggered case, see figure 5.23). 

Layer 3 is in the longer azimuthal field region of layer 2, so the peak radial field is also 

reduced in layer 3. Due to the lower peak radial field values at the ends, the axial and 

azimuthal forces are further reduced in case A. The characteristic fluctuation of the radial 

field at the ends also explains the similar behavior of the axial and azimuthal forces at the 

ends (see figures 5.18 and 5.19, respectively).  

 

5.5 Heat Analysis and Cooling Design 
 

5.5.1 Heat Analysis and Coil Cooling 
 

The current flowing through a resistive coil will generate ohmic heat due to the resistance 

of the conductor. In steady state magnets, this heat has to be removed by coolant in order to 

prevent melting of the conductor material or the insulation. Furthermore, the magnet 

should operate at temperatures as low as possible, since the mechanical strength of many 

materials increases with decreasing temperature. 

In pulsed magnets, the current is allowed to flow for a short time, and the heat 

capacity of the magnet is used as a reservoir. To avoid conductor melting, it is important to 

know the allowed current density during the excitation. The cool-down time of a compact 
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pulsed magnet is typically in the order of half an hour (Herlach and Miura 2003), so the 

coil heating during the short current pulse can be regarded as being adiabatic.  

The initial temperature, the allowed final temperature of the conductor, and the 

conductor material properties will determine the allowed current pulse characteristic (peak 

current, pulse width and shape).  

The ohmic heating produced during dt time interval causes a temperature rise of 

dT in the conductor, it can be calculated from the energy balance: 

ρ T j2 t dt = D c T dT. 

Here, ρ T  and c T  describes the temperature dependence of the conductor resistivity and 

specific heat (at constant pressure), respectively. The D density of the conductor material is 

assumed to be constant. 

 

5.5.2 Action Integral 
 

If the allowed final temperature (Tf) and the initial temperature (Ti) are known for a given 

conductor, the maximum allowed current density can be calculated by integration of the 

energy balance equation. For a current pulse lasting from ti to tf : 

 j2 t 𝑑𝑡

tf

𝑡𝑖

=  
D c(T)

ρ(T)

𝑇𝑓

𝑇𝑖

𝑑𝑇. 

The time integral of the current density is usually called the action integral (or 

current integral). The action integral is a unique function of the initial and final temperature 
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for each material, hence the right hand side can be also called as material integral (Kratz 

and Wyder 2002): 

𝐹𝑚𝑎𝑡  Ti , Tf =  
D c(T)

ρ(T)

𝑇𝑓

𝑇𝑖

𝑑𝑇. 

If ρ T  and c(T)  are known for the conductor material with density D then the 

material integral can be calculated. The temperature dependence of the resistivity for 

copper above 60K can be approximated by (Herlach and Miura 2003): 

𝜌0 T = −3.41 ∙  10−9 +  7.2 ∙ 10−11 T. 

The temperature dependence of the specific heat can be approximated by (Herlach and 

Miura 2003): 

c T = 834 − 4007 𝑙𝑜𝑔T + 4066(𝑙𝑜𝑔T)2 − 1463(𝑙𝑜𝑔T)3 + 179.7(𝑙𝑜𝑔T)4. 

Assuming constant density, the material integral can be calculated for different finite 

temperatures. Calculation of the material integral for copper was performed in MATLAB 

and it is shown on figure 5.21 for three different initial temperatures. 
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Figure 5.24 Material integral of copper as a function of final temperature for three different 

initial temperatures. 

 

 The action integral can be expressed with the maximum current density j0 and the τ 

length of the current pulse as: 

 j2 t 𝑑𝑡 =

tf

𝑡𝑖

j0
2 τ ξ , 

where the ξ parameter reflects the shape of the current pulse. For a rectangular current 

pulse ξ = 1, for a half period of sine wave pulse ξ = 1/2, and for a triangular pulse ξ = 1/3. 

Thus, the maximum current density in a conductor can be expressed as: 

𝑗0 =  
𝐹𝑚𝑎𝑡  Ti , Tf 

τ ξ 
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As it can be seen, j0 in a given conductor depends on the initial and final 

temperature of the conductor, and it depends also on the shape and length of the current 

pulse. The maximum current density as a function of finite temperature is shown on figure 

5.22 for three different pulse lengths of sine wave pulse. The initial temperature of the 

conductor was set to 77 K. Figure 5.23 shows the dependence of j0 on final temperature for 

three different initial temperatures of the same copper conductor with given pulse width of 

sine wave pulse. 

 The maximum allowed temperature of a magnet is determined by the thermal 

behavior of the insulating material and the annealing temperature of the conductor. For any 

given pulse shape, pulse width and initial conductor temperature the maximum allowed 

current density can be calculated. 

 

Figure 5.25 Maximum current density of copper as a function of final temperature for three 

different pulse lengths (sine pulse). The initial temperature is 77 K. 
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Figure 5.26 Maximum current density of copper as a function of final temperature for three 

different initial temperatures. The length of the sine pulse is 5 ms. 
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This approximate magnetoresistance function is based on experimental data, and was 

confirmed up into the megagauss range (Fowler, et al. 1994) . The resistivity of copper as a 

function of temperature for four different field values is shown on figure 5.24. The 

magnetoresistance increase strongly with magnetic field and its influence becomes 

important around 50T (Herlach and Miura 2003). Since the resistivity depends on the 

magnetic field, it modifies the material integral of the conductor, and hence the maximum 

allowable current density in the conductor. Figure 5.25 shows the maximum current 

density as a function of final temperature for three different field values. 

 
 

Figure 5.27 Resistivity of copper as a function of final temperature at four different field 

values. 

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-8

T
f
 [K]


 [


 m
]

0 T

25 T

50 T

100 T



118 
 

 

Figure 5.28 Maximum current density of copper as a function of final temperature at four 

different field values. The initial temperature is 77 K and length of the sine pulse is 5 ms. 
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final temperature is well below the melting point of copper (see appendix on conductor 

properties). 

 

5.5.4 Considerations on Conductor Materials and Cooling 
 

The material integral (hence the allowable current) of the conductor increases if the magnet 

is cooled down before the current pulse. To reach high fields with longer pulse durations 

one should choose a conductor with material integral as big as possible. Usually, copper or 

aluminum is selected as a conductor material for winding. Compared to aluminum, the 

material integral of copper is generally larger. If the initial temperature is 77 K (liquid 

nitrogen temperature) and the allowed final temperature is 400K, then the material integral 

for copper is approximately two times larger than for aluminum. 

 It was also shown that the material integral and the current density increase with 

lower initial temperature of the conductor. It is possible to pump on the nitrogen, to 

achieve 63 K (this method is applied in Toulouse). Another possibility is liquid neon 

(LNe), to reach 27 K. However, Ne is very expensive and pool boiling use of LNe is not 

economical, so application of a closed cycle system is better (this was used in Amsterdam). 

At liquid He temperatures (~ 4K), the specific heat capacities are so low that the 

consumption of He would be expensive. Designs are possible that use He more 

economically and reduction in temperature significantly below 77 K  would just about 

allow to reach even 100 T with existing materials (Jones, et al. 2004).  

 The material integral is also bigger for high purity conductors, due to their lower 

resistivity. According to Matthiessen‟s rule, the total resistivity of a solid conductor is the 
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sum of two resistivity components: a. the temperature dependent resistivity due to the 

thermal vibrations of the ions in the lattice (phonons), and b. the temperature independent 

resistivity due to the interactions of the conduction electrons with the irregularities of the 

lattice (impurities, defects, crystal boundaries). This latter resistivity part is called the 

residual resistivity (or intrinsic resistivity). Generally, compared to alloys, the total 

resistivity of higher purity conductors is smaller (due to the lower residual resistivity). The 

improved resistivity of high purity metals is more conspicuous at low temperatures (~ 4 K 

of liquid helium) where the contribution of the thermal lattice vibration to the total 

resistivity is smaller.  

At liquid helium temperatures, high purity aluminum has some advantages over 

copper. The residual resistance of aluminum is about the same as copper. The high field 

magnetoresistance is much lower than that of copper. Furthermore, aluminum is more 

readily obtained in high purity (99.999% pure) than copper. Since Al has lower density, the 

mass of the winding would be also lower compared to similar Cu windings. However, high 

purity aluminum is extremely soft material, and force reduction on the winding is 

important. 

As it was mentioned before, the other advantage of cooling is that the strength of 

most common materials increases with decreasing temperature. The yield strength of Al 

and Cu at different temperatures is given in the appendix. The increase in strength is a 

result of the reduced thermal excitations within the lattice, which inhibits the spread of 

dislocations (Van Sciver 1986). 

 As a summary, at liquid helium temperature one has to consider the application of 

high purity aluminum as a possible winding material. If the magnet is pre-cooled to liquid 
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nitrogen temperature where the effects of purity are smaller, copper seems to be the better 

choice for conductor material. A summary of relevant parameters of the conductors are 

also given in the appendix.  
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Chapter 6 

Discussion of the Results 
 

6.1 Force-Reduced Solenoid Coil 
 

In force-reduced solenoids, axial current component must be introduced evenly in 

a given layer. This makes these solenoids different from regular solenoids, where the 

current is mainly azimuthal. To introduce the axial currents evenly, tilted wires (with 

certain pitch angle) can be distributed along the surface of the solenoid. The pitch angle of 

the wires depends on the number of layers, on the geometry of the layers and on the current 

in the layers.  

The ideal pitch angle of the layer(s) can be determined, using filamentary 

approximation. Minimization of the angle between the current elements and the field 

vectors gives the optimal pitch angle of the wires in the layer(s). If there is only one layer, 

the ideal pitch angle of the wires is 45 degrees. The pitch angle obtained from the 

simulation is in good agreement with this result considering the discrete characteristics of 

the conductors. If the solenoid consists more layers, then the innermost layer has the 

highest pitch angle (axial current is higher) and the outer layers have smaller and smaller 

pitch angles (azimuthal current is higher). 

Since each layer contains many parallel wires, this results in a very complex 

winding configuration, which is a major drawback of the previous force-reduced solenoid 

concepts. A high field magnet would require even 10 - 20 layers or more, therefore 

manufacturing a high field force-reduced magnet would be tedious. This problem can be 
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eliminated with the VPDC solenoid, where the tilted current paths are machined directly in 

a conducting tube. With this method more conductor layers can be nested easily, and 

higher fields can be achieved with force-reduction in the magnet. The direct conductor 

method also allows easier staggering of the layers in order to further reduce the forces at 

the ends. 

 In force-reduced superconducting solenoids, one has to ensure equal current 

sharing between the parallel superconducting wires in a given layer. In parallel connection 

of superconductors (with zero resistance), there is the problem that the current in the 

superconductors is not equal. The currents will not necessarily be introduced uniformly 

into the helical conductor paths of a layer, since the distribution of the currents is 

influenced by the mutual inductance of each current path. If the inductances of the current 

paths (including the lead-in wires) are all identical, then it is possible to distribute the 

currents uniformly into the helical conductors (Sass and Stoll 1963).  

Since superconductors are capable to carry higher current densities, application of 

superconducting helices would also facilitate DC operation of force-reduced solenoids. 

This offers a possible promising application of force-reduced superconducting magnets. A 

superconducting magnetic energy storage system (SMES) stores energy in the magnetic 

field produced by a (persistent) direct current flowing in the superconducting coil. Force-

reduced superconducting magnets are capable to carry larger currents and to hold large 

energy content. The magnetic energy in the coil increases with the square of the current, so 

the advantage of light weight, force-reduced superconducting magnet as magnetic energy 

storage device is obvious. A low weight SMES system would be important not only for 

space and military applications, but also for power grid stabilization. 
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6.2 Force-Free Magnetic Field 
 

As it was shown in the introduction of the force-free fields, in cylindrical systems two 

main field components must exist: the axial field (also called as poloidal field) and the 

azimuthal field (also called as toroidal field). These field components can be generated 

with tilted wires of variable pitch angles. The axial field dominates inside the force-

reduced solenoid, while the azimuthal field dominates in the outer parts of the solenoid. 

 Since significant azimuthal field is also generated by the currents in a force-

reduced solenoid, the transfer function of these coils are lower than in a regular solenoids. 

Thus, to generate the desired axial field in the bore of a force-reduced coil, more currents 

are needed than in a regular solenoid.  

Besides the obtained field in the bore, the field in the winding structure is also 

important when the acting forces are considered. In case of a monolayer winding, the 

simulation showed that the azimuthal field (Baz) on the winding does not change 

significantly with the pitch angle. The azimuthal field remains basically the same on the 

winding. The formula obtained from Ampere‟s law could not predict this behavior of the 

azimuthal field (see eqn. 4.1). In the analysis of monolayer coils, I explained the reason of 

this contradiction. To reduce forces in monolayer coils, the simulation showed that the 

axial field and the azimuthal field must be equal on the winding. This result is also in good 

agreement with theory.  

In multilayer force-reduced solenoids, however, the axial and azimuthal fields are 

not equal on the layers in general. This behavior was also explained by considering the 

forces on the winding and the simulation results confirm the argument.   
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The magnetic field content of the coil region is higher in multilayer force-reduced 

magnets compared to conventional coils (Furth, Levine and Waniek 1957). This was also 

proven by the simulation (see figure 5.4). In conventional solenoid winding the magnetic 

field falls off relative to the peak field in the bore. It means that in a conventional solenoid 

the coil represents a region of low magnetic energy density compared to the bore region. It 

results a pressure gradient in the magnet that the coil and additional support structure must 

counteract. In a force-reduced solenoid coil, though the axial field also falls down, the 

azimuthal field increases in the coil with radius (figure 5.4). It puts additional magnetic 

energy into the coil region. This additional magnetic energy is used to hold the coil against 

stress (or, in other words, against the bore field pressure). This also explains the weaker 

efficiency of central field generation (i.e. the low transfer function) in force-reduced 

solenoids. It means that force-reduced solenoids are not really power efficient, and 

increased capacitor bank is expected. 

The results of the simulation on solenoid end-effects showed if the lengths of the 

layers are changed symmetrically, then the force-free character of the field is maintained in 

the magnet (assuming equal currents in the conductors). In addition to the symmetry 

studies on solenoid cross-section shape by Van Bladel, this end-effect study also confirms 

the importance of winding structure symmetry in force-reduced solenoids. The simulations 

also showed that proper staggering of the layers does not change significantly the on-axis 

field profile and the maximum field in the center. The peak field values at the ends can be 

further reduced with application of staggered layers (see figures 5.21-23). In case A, the 

peak radial fields at the ends were reduced by ~3T, ~5T, ~3T in layer 1, 2 and 3 

respectively (see figure 5.23). 
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If the return currents are also considered, further shaping of the field lines at the 

ends are possible by inserting diamagnetic walls near the ends of the solenoid (Shneerson 

et al. 2004). In this way, the force on the additional curved wires at the ends can be 

reduced. 

 

6.3 Force Reduction 
 

In accordance with the theory of force-free magnetic fields, reduction of forces was 

obtained by reducing the angle between the current element vectors and the field vectors 

on the wire element. 

 In the middle zone of the layer(s), the forces are reduced and balanced. In 

conventional solenoids the main issue is to support the increased radial forces in a long 

section of the magnet along its length. Either in monolayer or multilayer force-reduced 

solenoids, the radial forces are greatly reduced in a large portion of the magnet length.   

 According to the theory, a finite size winding configuration cannot be completely 

force-free. This was also confirmed by the simulations. Due to the finite length and the 

stray field, the forces rise up at the ends of a force-reduced solenoid.  

In comparison with the regular solenoid, the peak radial forces at the ends were 

still lower and compensated in the VPDC magnet. Note that the κ angles at the ends 

increase, so these lower radial force values at the ends are also due to the decreasing axial 

and azimuthal field values on the winding end-sections (it is clear that the force on a wire 

with fixed current can be also reduced by reducing the field on the wire).  
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The azimuthal forces increased more at the ends of a force-reduced solenoid due to 

the interaction of the radial field and the axial currents. However, both the azimuthal and 

the axial forces at the ends can be further reduced in the VPDC magnet by changing the 

length of the helices (with optimal pitch angle) relative to each other. Properly staggered 

layers can significantly lower the magnitude of all force components at the ends while the 

magnet maintains approximately the same field value in the center. The reduction of axial 

and azimuthal forces at the ends is mainly due to the reduced radial field component at the 

ends (see figure 5.23). The reduction of radial forces at the ends is mainly due to the 

reduced axial and azimuthal field components at the ends (see figures 5.21 and 5.22). 

Compared to the conventional solenoid example, in case A of the staggered VPDC magnet 

the peak radial force was reduced by approximately 92 % and the peak axial force was 

reduced by approximately 14 % (see tables 5.4 and 5.6). Compared to the non-staggered 

case, the peak azimuthal force was reduced by approximately 35% in case A. 

It must be pointed out, that the increased forces at the ends of the VPDC act on 

smaller range of the total length (approximately in the last 50 mm sections). It means that 

the forces need to be supported on a smaller range (compared to a regular solenoid). 

Consequently, the mass of the support structure would be smaller in a force-reduced 

solenoid than in a conventional solenoid, so the cost and the overall size of the magnet 

would be reduced. 
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Chapter 7 

Summary and Conclusions 
 

7.1 Conclusions 
 

The main obstacle of high magnetic field generation is the handling of the large Lorentz 

forces in the magnets. A possible way of force reduction in electromagnets is based on the 

theory of force-free magnetic fields. A detailed investigation of the relevant properties of 

force-free magnetic fields was presented.  Previous studies on force-reduced magnets were 

also summarized in order to identify the possible methods of force reduction and the major 

design issues. 

 Force-reduced solenoid winding configuration can be obtained by properly setting 

the pitch angle of the conductors. A new code was developed to find the optimal pitch 

angle in solenoids with different number of layers.  

The simulation of the winding structure was based on filamentary approximation. 

This approach differs from the commonly applied finite element methods. It allows faster 

computation of magnetic fields and Lorentz forces for more complex winding 

configurations. A novel approach was used to determine the optimal pitch angle of the 

filamentary wires on solenoids with different number of layers. Based on force-free 

condition, an optimization routine minimizes the angle between the wire element vector 

and the induction vector on the winding by varying the pitch angle of the conductors. 
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For monolayer solenoids, the simulation results showed the limited applicability of 

Ampere‟s law. The analysis of a monolayer force-reduced coil also revealed that the 

transfer function of force-reduced coils is smaller compared to regular solenoids. 

Consequently, multilayer force-reduced solenoids are necessary with high current densities 

to generate higher magnetic field fields. 

Due to the many parallel wires in more layers, a high field force-reduced magnet 

would have an extremely complex winding configuration. As a solution to this problem, a 

novel design method was proposed, the variable pitch direct conductor (VPDC) magnet. In 

direct conductor method, the winding pattern is machined directly from conducting 

cylinder(s).This method facilitates the application of more layers and it allows higher 

current densities in the conductor material. The method also allows wider choice of 

conductor parameters (for example to set the conductor cross-section area).  

Due to the required high current, pulsed operation of the magnet is preferred. A 

heat analysis was also performed to determine the maximum allowed current in the 

conductor during the pulse assuming pre-cooled winding. 

A conceptual design of a 25-T solenoid with three layers was provided.  The 

optimal pitch angles were determined. Detailed magnetic field and force analysis were 

performed on the force-reduced winding. The simulated magnetic field distribution of the 

force-reduced solenoid is in good agreement with the force-free magnetic field theory. In a 

force-reduced solenoid, the main field components are the axial field (dominating in the 

bore) and the azimuthal field (dominating at the outer layers). The magnetic field on the 

winding was also determined. It was shown, that the peak field values in the middle zone 

of the layers behave according to the force-free condition. 
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The simulation confirmed that the forces in a finite size coil configuration cannot 

be everywhere zero. It was shown, that significant force-reduction can be achieved in the 

middle zone of a VPDC magnet. Due to the stray magnetic field, the forces increase at the 

ends in force-reduced solenoids. It was shown, that the high force region at the ends is 

smaller compared to the extent of the high force region in a conventional solenoid. It was 

also shown, that the expected maximum radial forces at the ends of the VPDC are smaller 

in magnitude than the peak radial forces in a conventional solenoid. The azimuthal forces 

at the ends of a force-reduced solenoid were not studied before in the literature. It was 

pointed out that higher azimuthal forces are expected at the ends of force-reduced 

solenoids. 

The behavior of staggered layers in multilayer force-reduced solenoids was not 

investigated before. In this work, an end-effect study on forces was performed for three-

layer staggered configurations. This study showed that further, significant force reduction 

is possible at the ends with properly staggered layers while the on-axis field does not 

change significantly in the magnet. The end-force reduction is mainly due to the reduced 

field magnitude at the winding. The pitch angles of the staggered layers were also adjusted, 

so the force-reduction in the middle zone of the staggered layers was maintained. 

 

 

 

 



131 
 

7.2 Results and Contributions of This Work 
 

In this section, I provide a list of main results and new contributions of my work : 

 A novel magnet concept was developed, which for the first time enables realistic 

manufacturing of force reduced coils.  The coil windings are not made from 

conventional wire conductors, but the current carrying components are machined 

out of conductive cylinders. Manufacturing difficulties of existing designs are 

therefore completely eliminated. 

 The performed analysis was based on newly developed codes that were checked 

against analytical calculations of simple coil configurations. The numerical method 

is based on filamentary approximation of the conductor that allows fast 

calculations and enables complete optimization of 3D coil configurations. 

 The simulation confirmed predictions of the theory (for example: the main field 

components in cylindrical force-free systems are the axial and azimuthal fields; 

finite size coils cannot be completely force-free; the ideal pitch angle in monolayer 

force-reduced solenoid is 45 degree; force-free fields usually do not obey 

superposition principle). 

 The ideal pitch angle in force-reduced layer(s) was obtained by optimization that is 

based on the force-free field theory. 

 Force-reduction in the middle zone of the layer(s) was obtained by reducing the κ 

angle (the angle between the current element vector and its field vector). 

 The simulation showed a significant increase of azimuthal forces at the ends of the 

layer(s) in a force-reduced solenoid, when compared to regular solenoid, where 

azimuthal forces are extremely small. 
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 A significant force-reduction has been be obtained in the force-reduced windings 

at the ends of the layers by properly staggered layers of helical windings with 

variable pitch angles, thereby reducing the magnitude of the field at the winding. 

 

7.3 Future Work 
 

The simulation revealed not only the advantages but also the disadvantages of force-

reduced solenoids. Further improvements are possible. To increase somewhat the power 

efficiency, different currents can be applied in the layers. An optimal current distribution 

can be determined for example with a more sophisticated optimization routine. However 

one must keep in mind that energy is needed anyhow to maintain the force-reduction in the 

coil, so my opinion is that significant improvement in power consumption cannot be 

expected.  

For time reasons, toroids were not analysed in this work. However, the code is 

already able to simulate bent solenoids and toroids with different cross section shape using 

filamentary approximation. Figure 7.1 shows a sample of a bent 2-layer solenoid, where 

the cross-section of the second layer is an ellipse of 1.5 eccentricity. 
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Figure 7.1 Sample plot of a 2-layer bent solenoid. In this sample, the pitch angle of the 

wires is 70 degrees in the 1
st
 layer and 45 degrees in the 2

nd
 layer. The second layer has 

elliptical cross-section shape of 1.5 eccentricity. 

 

 

Effects of additional iron would be also worthwhile to study as a possible method 

for field shaping at the ends of the solenoid (this can be done by finite element analysis for 

example). Furthermore, a small scale VPDC magnet can be manufactured to gain more 

information on the operational behavior of force-reduced solenoids. A preliminary test plan 

is given in the appendix. On the long term, it would be advantageous to test also the 

application of superconductors in force-reduced solenoid winding schemes.  
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Appendix A 

Maxwell’s Equations 
 

The development of the force-free magnetic field equations is based on the Maxwell‟s 

equations (Knoepfel 2000, Jackson 1999). In differential form they are: 

 ∇ ⋅ 𝐄 =  
ρ

ε
 (A.1) 

 ∇ ⋅ 𝐁 =  0 (A.2) 

 
∇ × 𝐄 = −

𝜕𝐁

𝜕𝑡
 

(A.3) 

 
∇ × 𝐁 = µ ⋅ 𝐣 +  µ ⋅ 𝜀

𝜕𝐄

𝜕𝑡
 

(A.4) 

where E is the electric field strength [V/m]; B is the magnetic induction [T]; j is current 

density [A/m
2
]; ε and µ are the electric permittivity and the magnetic permeability, 

respectively. The electric permittivity and the magnetic permeability of the media can be 

expressed as ε = ε0 εr and µ = µ0 µr  (respectively), where ε0 and µ0 are the permittivity and 

permeability of vacuum while εr and µr are the relative permittivity and relative 

permeability of the material, respectively. 

To obtain a general solution, three more equations are required, that is, Ohm‟s law 

and the constitutive equations: 

 𝐣 =  σ 𝐄, (A.5) 
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 𝐁 =  µ 𝐇, (A.6) 

 𝐃 = ε 𝐄, (A.7) 

Where D is the electric induction (or –displacement, also called displacement current) 

[C/m
2
]; H is the magnetic field strength [A/m]; σ is the electric conductivity [1/(Ωm)]. 

The electric and magnetic fields E and B in the Maxwell‟s equations were 

originally introduced by means of the force equation: 

 𝐅 = 𝑞(𝐄 + 𝐯 × 𝐁) (A.8) 

This force is the Lorentz force, the force acting on a particle with an electric charge q 

moving with velocity v in an electric field E and in a magnetic field (described by its 

magnetic induction vector B). This expression of the Lorentz force is also valid for time-

dependent quantities and for any velocity (Knoepfel 2000). 
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Appendix B 

Comparison of Conductor Material Properties 
 

Some relevant parameters of aluminum and copper are summarized here. 

 

Table B.1 Selected parameters of aluminum and copper. 

Parameters Dimension Aluminum
 

Copper 

Density
a
 (at 25 

o
C) g/cm

3 
2.7 8.96 

Resistivity
a
    at 300 K 10

-8
 Ωm 2.733 1.725 

 80 K  0.245 0.215 

1 K  0.0001 0.002 

Melting Point
a o

C 660.32 1084.62 

Specific Heat
b
, cp  at 300 K 

77 K 

4 K 

J/(g K) 0.902 

0.336 

0.00026 

0.386 

0.192 

0.00009 

Yield Strength
c
, σy at 300 K 

80 K 

0 K 

MPa 282 

332 

345 

552 

690 

752 

Material Integral
d
  

(Ti = 77K, Tf = 400 K) 

10
16

 
A

2
s/m

4 
4.58 9.42 

a 
Data is given for pure metals (Lide 1994). 

b 
Ekin (2006). 

c
 Data is given for Al 6061 and Cu+2Be, respectively (Van Sciver 1986) . 

d 
Kratz et al. (2002). 
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Appendix C 

Validation of Field Calculations 
 

The method of finding force-reduced configurations is based on the field calculations. To 

check and confirm the field calculations, a simulation was performed independently using 

the commercially available AMPERES software for a 3-layer force-reduced configuration 

(Goodzeit 2008) .The parameters of the 3-layer test solenoid is given in table C.1below: 

Table C.1 Parameters of a 3-layer force-reduced solenoid for validation of field 

calculations. 

Parameter (unit) Layer 1 Layer 2 Layer 3 

Center radius, Rc (mm) 23.81 30.16 36.51 

Length (mm) 400 400 400 

Pitch angle, γ (degrees) 77.47 56.23 23.58 

Number of conductor strips per 

layer, w 
24 24 24 

Current per conductor strip, I (A) 1000 1000 1000 

 

The simulated wire filaments obtained from AMPERES is shown on figure C.1:  

 

Figure C.1 Simulated conductor filaments obtained from AMPERES for field calculations 

(Goodzeit 2008). 
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The values of the field components (Bx, By, Bz) obtained from AMPERES for the midplane 

of this test solenoid is shown in figure C.2. The field values from AMPERES are marked 

with „+‟ signs. The solid lines show the field values obtained from the MATLAB 

simulation. As it can be seen, the field values obtained from the simulations are in good 

agreement. This also validates the field calculations. 

 

Figure C.2 Comparison of the field component values obtained from AMPERES and from 

the MATLAB simulation for the midplane of the test solenoid. The field values from 

AMPERES are marked with „+‟ signs, the solid lines represent the field values obtained 

from MATLAB. The field values of the simulations are in good agreement. The radii of the 

layers are marked with the magenta lines. 
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The on-axis axial field profile for this magnet was also calculated using the 

analytical formula of eq.4.3. The theoretical axial field values along the axis (obtained 

from eq.4.3) were compared to the simulation values obtained from the MATLAB code. 

The percent difference between the theoretical values and the simulation values was also 

calculated at each position along the axis. Figure C.3 shows the axial field values together 

with the calculated percent difference values along the axis. As it can be seen, the values 

obtained from the two methods are in good agreement, the percent difference values are 

really low (especially towards the center). 

 
Figure C.3Comparison of the axial field values (along the solenoid axis) obtained from the 

analytical calculations (red „x‟) and from the MATLAB simulation (blue „+‟). The percent 

difference vales (black „+‟) are also shown at each position. The low percent difference 

values indicate that the values obtained from the simulation are in good agreement with the 

theory.  
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Appendix D 

Preliminary Test Plan 
 

In this section, I provide a brief plan to test the properties of a small scale 3-layer VPDC 

force-reduced model solenoid. If required (depending on the parameters of the future test 

magnet and the maximum currents in the magnet) proper cooling must be used. Here, I 

assume distilled water flow cooling. To reduce cost and facilitate the measurements, it is 

further assumed that the measurements are performed at low DC currents of about 100 A. 

Precise results taken at low currents can be extrapolated to estimate the magnet 

performance at high currents in pulsed mode. 

Planned Measurements:  

 Field measurements (to test field distribution of the magnet); 

 Strain measurements (to check force reduction);  

 Resistance and temperature measurements (to test heating of the magnet). 

Required Equipment:  

 Assembled 3-layer VPDC magnet;  

 DC power supplies for the 3 layers;  

 Water chiller for distilled water and flow meter;  

 Ampere- and voltmeters;  

 Thermocouples (for temperature measurements);  

 Hall-probe (for field measurements);  
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 Strain gauges and readout device for strain measurements (at least 3 

gauges per layer: 2 at the ends and 1 at the middle of the layers). 

Measurements: 

Field measurements: 

 Measure on-axis field profile and peak field in the bore: use Hall-probe to measure 

field values at different positions along the axis at a given current when only the 

inner layer is powered. Repeat measurements with different current values. 

 Repeat measurements for the other two layers, and calculate the transfer function 

of each layer. 

 Measure on-axis field profile and peak field in the bore: use Hall-probe to measure 

field values at different positions along the axis when all layers are powered 

together. Repeat the measurements when the three layers are powered with 

different current. Verify also the field direction in the bore using Hall-probe.  

 Measure field outside the magnet at different positions increasing the distance 

from the magnet (along the radial direction). Test also field direction with Hall-

probe. 

Strain measurements: 

These strain measurements should be repeated for strains due to hoop stress, axial stress 

and azimuthal stress (torsion). 
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 Measure strain values at the ends and in the middle of the innermost layer when 

only that layer is powered. Repeat the measurement also for the other two layers 

separately. 

 Measure strain values when all layers are powered together and test force-

reduction (the strain from hoop stress should be significantly smaller in the middle 

zone of each layer when compared to the previous case). Compare results of the 

corresponding layer to the previous case, when only one layer was powered. 

 Repeat the previous measurement at different set of currents. 

 Test how the degree of force-reduction changes when the current in one layer is 

changed to a different value (while maintaining the currents in the other two 

layers). In absolute value higher strain values are expected in this latter case. 

 If possible repeat these measurements with staggered layer configuration. 

Resistance and temperature measurements: 

 Monitor temperature values at different positions on each layer to test heating of 

the layers. Repeat these measurements when different current is applied. 

 Measure the resistance of the conductor layers to test the temperature dependence 

of the resistance in each layer. 

The proposed tests would give a good understanding of the magnet performance and allow 

verifying my performed simulations.  The obtained results would help to optimize the 

design of a larger, full size magnet. 
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Appendix E 

Stress and Strain in Nb3Sn Superconductor 
 

Stress and strain can degrade the superconductive properties and the mechanical strength 

of the composite wire in a superconducting magnet. Consequently, it is important to know 

in magnet design how the critical current density of superconductor depends on the values 

of magnetic field, temperature and strain (jc (B, T, ε) ). 

A superconductor wire is usually subject to three different kinds of stress in a 

magnet: 

Fabrication stress: 

During magnet construction, the superconducting wire is subjected both to bending 

stress as it is wound into the magnet coil and to uniaxial stress from the pretension of the 

wire during the winding procedure. 

Thermal-contraction stress:  

Superconducting wires are usually composite wires: they consist of twisted 

multifilamentary superconductors embedded in a matrix of normal conducting material 

(usually copper). As the wire is cooled down to cryogenic temperature, the different 

materials within the composite wire contract at different rates. Because of the mismatch of 

the thermal contraction rates, significant stress on the superconducting material can be 

generated during cooldown. 
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Magnetic stress: 

In high field superconducting magnets the Lorentz forces put the conductor under 

considerable stress. As the magnet is energized, the stress due to the Lorentz-force can 

approach the ultimate strength of conventional multifilamentary superconductors, 1GPa or 

more. 

Effects of Strain on Critical Parameters 

 

 As it was mentioned before, in the wire the superconductor is embedded by 

reaction in a matrix material (normal conducting material). As the wire is cooled down 

below 20 K, the larger thermal contraction of the matrix material (compared to the thermal 

contraction of the Nb3Sn) results in an axial pre-compression of superconductor. This pre-

compression is characterized by the axial pre-strain (εi < 0). The combined strain from the 

other sources of winding stress (fabrication stress, magnetic stress) is the applied strain 

(εa). In the total strain (ε0) the axial pre-strain is added to the applied strain: 

𝜀0 = 𝜀𝑖 + 𝜀𝑎 . 

Present high field superconducting magnet designs favor the use of Nb3Sn as 

winding material. It can be assumed that the main effect of strain is the modification of the 

electron-phonon interaction in the Nb3Sn crystal lattice (Oh and Kim 2006 and Markiewicz 

2004). The dependence of the critical current density is determined by the de-pinning of 

the flux-line lattice in the superconductor. The bulk pinning force depends on the applied 

field, temperature and strain on the superconductor, since these parameters can change the 

electron-phonon interaction in the lattice. 
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 Most models for strain dependence are defined through the strain dependence of 

the upper critical field or the critical temperature. The first model, proposed by Ekin, was a 

completely empirical model. It is the so-called power law model (Ekin 1980). This model 

is only valid over a limited strain regime and does not account for the three-dimensional 

nature of the strain in the wire (Godeke, et al. 2006). Different types of other models were 

proposed to better describe the strain behavior of Nb3Sn. One of these models is a modified 

version of the so-called deviatoric strain model (Godeke, et al. 2006). This model is in 

good agreement with the observed strain behavior of Nb3Sn, it accounts for the three-

dimensionality and it can be also applied at larger strain values where the strain 

dependence is approximately linear. 

A MATLAB code was written based on these model calculations of Godeke et al. 

(Godeke 2005, see also Lee 2006) to simulate the strain dependence of the critical 

parameters of Nb3Sn superconductor. The code and the input parameters of the simulation 

can be found in appendix F. The critical current density as a function of temperature and 

field at different strain values is shown in figures E.1 and E.2, respectively. Figure E.3 

shows the critical current density as a function of strain at a given field (10 T) and 

temperature (4.2 K). One can also define the normalized critical current density jc / jcm, 

where jcm is the maximum critical current density at zero strain. The normalized critical 

current density as a function of strain at different field values is shown in figure E.4.  
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Figure E.1 Critical current density of Nb3Sn as a function of magnetic field at 4.2 K for 

different strain values. 

 

Figure E.2 Critical current density of Nb3Sn as a function of temperature at 10 T for 

different strain values. 
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Figure E.3 Critical current density of Nb3Sn as a function of strain at 4.2 K and 10 T. 

 

Figure E.4 The normalized critical current density of Nb3Sn as a function of strain at 

different field values and at 4.2 K. 
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When the Nb3Sn composite wire is subjected to compressive strain (εa, ε0 < 0), the 

critical parameters (Jc, Bc2, Tc) reduce approximately linearly with strain. When the wire is 

subject to tension (εa > 0), the tensile strain counteracts the initial compressive strain, and 

the total strain (ε0) becomes less negative. Thus, Jc increases approximately proportionally 

with strain until a parabolic-like peak is reached (see figure E.3). The maximum appears 

where the strain on the wire is minimal. After the maximum, the critical properties reduce 

approximately linearly again with increasing tensile strain on the wire (Godeke, et al. 

2006).  

A strain design criterion can be employed to utilize the strain dependence of 

critical current density in magnet design. The strain design criterion states that the 

combined strain from all sources of wire stress in the superconducting winding should be 

approximately equal and opposite to the initial compressive prestrain of the wire, so the 

total strain is approximately zero: 𝜀0 = 𝜀𝑖 + 𝜀𝑎  ≈ 0.  

This strain balance need only be obtained in the critical parts of a magnet, where 

the field is highest in the winding (Ekin, Superconductors 1983). For strains below 

approximately half percent, the critical current density changes quite reversibly, i.e. after 

removal of the stress the original Jc is recovered. At higher strains however, the 

superconducting filaments suffer permanent damage by microcracking. As it is shown on 

figure E.4, at 16 T the maximum critical current density reduces by about 30% at 0.4% 

strain. At higher fields the maximum current density reduces more. Therefore, it is 

desirable to design magnets so the strains are kept below about 0.3 percent (Wilson 1983).  
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 As a result of the strain the critical surface of the Nb3Sn superconductor shrinks, so 

it narrows the operational range of the superconducting magnet. Figure E.5 shows how the 

critical surface is modified when strain is applied on the conductor. 

 

 

Figure E.5 Simulated critical surface of Nb3Sn superconductor at 0 % strain (outer, 

transparent surface) and at 0.8 % strain (inner surface). 
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Appendix F 

Computer Programs 
 

In this section the main calculation routines and their input/output parameters are 

presented. Programming of the simulation was performed in MATLAB (version 7.0.4 with 

service pack 2). 

Codes of VPDC magnet calculations: 

clc; clear; disp('Wait!') 
 
% Give input parameters of the VPDC: 
VPD.SolNum  = 3; %number of layers in the magnet 
VPD.Rmag    = [26.5,30.5,34.5]; %magnet layer center radius [mm] 
VPD.Lmag    = [600,600,600]; % layer length in mm (positive) 
VPD.Wirenum = [49,44,21]; %number of wires/layer 
VPD.Pitchang = [75.4713,47.9914,17.6581]; %pitch angle is measured from the 
vertical 
VPD.Thet    = [0,0,0];%initial phase angle [deg] of the 1st wire on the layer 
VPD.Rot     = [0,0,0];%rotates the solenoid layer [deg] 
VPD.Coeff   = [-0.5,-0.5,-0.5]; % set -0.5 to center magnet to 0 on X axis 
VPD.XShift  = [0,0,0]; %shift layer along the X axis [mm] 
VPD.YShift  = [0,0,0]; %shift layer along the Y axis [mm] 
VPD.ZShift  = [0,0,0]; %shift layer along the Z axis [mm] 
VPD.Exc     = [1,1,1]; %cross section eccentricity 
VPD.NPoints = [100,100,100]; %number of wire elements on the twisted filament 
VPD.ITrans  = [34100,34100,34100]; %transport current in one wire (positive, [A]) 
VPD.IDir    = [1,1,1]; % current direction (+/- 1, same sign=same direction) 
VPD.WireDiameter=[2.1,2.3,2.3]; %wire diameter [mm] 
VPD.TH      = [3,3,3]; % layer thickness [mm], for circular set it equal to wire 
diameter 
%% Set WL wire element length if number of points (VPD.NPoints) 
%% has to be adjusted automatically (else set it 0): 
VPD.WL = 1; % wire element length [mm] 
  
%%=========================================================== 
% Feasibility calculations: 
FEAS = GenerateFeasibilityPar(VPD); % returns a structure of feasibility par. 
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VPD = GenerateInputCheck(VPD,FEAS); % check input and returns warnings if 
exist 
%%=========================================================== 
% Generate helical points coordinates X,Y,Z [mm]: 
[X,Y,Z,NTot] = GenerateVPDCEllipse(VPD); %NTot is the total number of points 
%%=========================================================== 
%Generate wire element vectors: 
[PT2,PT1,LVEC,SC,RSC,PhiSC,ArcSC,starting,ending,stp,etp,TNwe,Mwelength,N
WE]... 
    = GenerateVPDCEllipsewireel(VPD,X,Y,Z); 
%%=========================================================== 
% Heat analysis calculations 
% Input parameters for temperature and field dependence: 
CDens =8960; %conductor mass density in kg/m^3 
PulseWidth=5 *1e-3; % pulse length [s] 
Xi=1/2; %pulse shape factor; xi=1 for rectangular; 1/2 for sine; 1/3 for triang. 
Tempini=77; %initital temperature [K] 
Tempfin=650; %final temperature [K] 
delTemp=0.5; %temperature increments [K] 
Fielddep=1; %field dependence 1-yes,0-no (w/o magnetoresistance) 
Bini=25; %field value [T] 
TempRange=Tempini:delTemp:Tempfin; %temperature range [K] 
  
% Calculate resistivity, specific heat, material integral: 
[rhonull,rho,spech,FMatint]=GenMaterialIntegral(Tempini,Tempfin,delTemp,Bini,C
Dens,Fielddep); 
% Calculate current density limits: 
jlim=GenCurrDensLimit(FMatint,PulseWidth,Xi); % [A/m^2] 
Jlimmax=max(jlim); % maximum current density [A/m^2] 
TempRange=Tempini:delTemp:Tempfin; % Assign temperature values for plots 
%%=========================================================== 
%Analytical field calculations 
%Field calculation from Ampere's law [Gauss]: 
[AmpereBin,AmpereBout]=GenAmpereFieldCalc(VPD,VPD.Rmag(1)/1000); 
%Field calculation from Biot-Savart law [Gauss]: 
[BiotCalcBax,BiotCalcBaxL]=GenBiotAxFieldCalc(VPD,FEAS); 
% Transfer function calculation (T/A): 
[TrFunction,TrFunctionTot]=GenerateTransFunc(BiotCalcBaxL,VPD); 
% Center field pressure [Pa]: 
PrBzero=GenerateBcentPress(BiotCalcBax);  
%%=========================================================== 
% Field calculation from the filaments 
% Set calculation range: 
xax = 1; % along x axis only 
yax = 0; % along y axis only 
zax = 0; % along z axis only 
% set extension range for plotting (multiplier of the magnet size): 
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exten = [1.5,1.5,1.5];  
% Set number of testpoints: 
txmax = 100; %number of testpoints along x axis  
tymax =17; %number of testpoints along y axis  
tzmax = 17; %number of testpoints along z axis 
 
% Calculate field from the filaments [Gauss] 
% BFbore contains: Bx,By,Bz,Brad,Baz components and the field magnitude: 
[BFbore,BFMagbore,BinCenter,BinCenterMagni,PT]=... 
 
GenerateBinBore(VPD,X,Y,Z,starting,ending,Mwelength,exten,txmax,tymax,tzmax
,xax,yax,zax); 
%%=========================================================== 
% Magnetic field calculations on winding 
% BFwinding gives Bx,By,Bz,Brad,Baz field components [Gauss] 
% CurrBangle is the angle between wire element vector and the field vector [deg]: 
[BFwinding,BFMagwind,CurrBangle] = 
GenerateBonWinding(TNwe,SC,LVEC,Mwelength,starting,ending,X,Y,Z,VPD); 
% Find peak field values and their position on each layer: 
PB = PeakField(BFwinding,BFMagwind,VPD,NWE); 
% Check radial force balance: 
[BazSinPitchang,BaxCosPitchang] = CalcRadForceBalance(VPD,PB); 
%%=========================================================== 
% Lorentz force calculations 
% Calculate Fx,Fy,Fz,Frad,Faz,F magnitude [N/mm] 
[FL,FLRad,FLAz,FLMag,FLRadyproj,FLRadzproj,mFLRad,mFLAz,mFLAx,mFLMa
g]=... 
GenerateForce(VPD,PT1,PT2,X,Y,Z,PhiSC,TNwe,stp,etp,Mwelength,starting,endi
ng); 
% Find peak force values [N/mm] and their position on each layer: 
PF = PeakForce(FL,FLRad,FLAz,FLMag,VPD,NWE); 
%%=========================================================== 
% Generate plots: 
IFig = 1; % start to assign figure numbers 
IFig = GeneratePlots_Winding(VPD,X,Y,Z,SC,PT1,PT2,LVEC,IFig); 
IFig = GeneratePlots_FieldInBore(PT,BFbore,BFMagbore,IFig); 
IFig = 
GeneratePlots_FieldOnWinding(VPD,NWE,SC,ArcSC,BFwinding,CurrBangle,IFig)
; 
IFig = GeneratePlots_Heat(TempRange,rho,rhonull,spech,jlim,FMatint,IFig); 
IFig = 
GeneratePlots_Force(VPD,NWE,SC,ArcSC,FL,FLRad,FLAz,FLMag,FLRadyproj,F
LRadzproj,IFig); 
%%=========================================================== 
% Optimization 
% Set parameters to optimize: 
Par =VPD.Pitchang(1:VPD.SolNum); 
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% Set optimization parameters: 
options = optimset('Diagnostics','on','Display','iter','TolFun',1e-
6,'MaxIter',1000000,'MaxFunEvals',1000000,'TolX',1e-6); 
  
% Find optimal parameters and the minimum value: 
[OptPara,Minfval] = fminsearch(@(Par) OptVPDCEllipseM(Par,VPD),Par,options) 
  
disp 'Done!';beep 
 
 
 
 
Codes of Nb3Sn critical parameters generation and strain dependence 

(see also Godeke 2006 and Lee 2006) 

% Calculations and plots for Nb3Sn critical surface and the strain  
% dependence of its critical parameters.  
% Calculations are based on work of Arno Godeke (2006), see reference.   
  
clc;clear;disp('Wait!'); 
  
% Give properties: 
% Note: All strains are divided by 100 (percent values)!!! 
MP.Ca1   = 43;  % deviatoric 2nd strain invariant 
MP.Ca2   = 4.3; % deviatoric 3rd strain invariant 
MP.eRem  = 0.247/100; %hydrostratic strain, 1st strain invarinant 
MP.eMax  =-0.054/100; %thermal axial pre-strain 
MP.Bc2m0 = 30; % maximum upper critical field in T (at 0K and at min.strain) 
MP.Tcm0  = 18; % critical temperature in K (at minimum strain and 0 T) 
MP.C     = 150000; % constant for Jc calc. [AT/mm^2]  
MP.n = 1;   % from Ekin formula (power values) 
MP.p = 0.5; % constant for pinning force dependence on field 
MP.q = 2;   % constant for pinning force dependence on field 
MP.v = 2;   % const. for pinning force dependence on Bc2 [T] 
MP.g = 1;   % const. for pinning force dependence on kappa [T] 
MP.w = 3;   % const. for field dependence on temp.  
MP.u = 2;   % const. for field dependence 
IFig = 1; % start to number figures 
  
% Sample calc. of crit parameters: 
Bapplied = 10; % field value [T] 
Tapplied = 4.2; % temperature [K] 
e_applied = 0; % strain [%] 
[CritB,CritJ,CritT] = BcJcTcCalculator(Bapplied,Tapplied,e_applied,MP); 
%%=========================================================== 
 



154 
 

% Generate temperature dependence plots: 
Tlim=20; % upper limit of temperature [K] 
ic=0; %start index counting 
for Temp=0:0.1:Tlim % temperature range [K] 
    ic=ic+1; %increase index 
    Temper(1,ic)=Temp; % temperature values 
    [Bc2,Bc20,Tc0,S] = calc_Bc2(Temp,e_applied,MP); % Calculate 2nd crit.field 
    BcTemp(1,ic)=Bc2;   % Bc2 vs. temperature 
    TcvsB(1,ic)=Tc(Bc2,e_applied,MP); % critical temp. vs. crit. field  
    JcTemp(1,ic)=Jc(Bapplied,Temp,e_applied,MP);   % Jc vs. temperature 
end 
IFig=PlotBcVsTemper(Temper,BcTemp,IFig); % plot Bc vs. temperature 
IFig=PlotJcVsTemper(Temper,JcTemp,Bapplied,IFig); % plot Jc vs. temperature 
%%=========================================================== 
%Generate the field dependence plot of Jc: 
fc=0; 
Blim=20; % upper limit of field [T] 
for fie=0:0.1:Blim % values for field and temperature 
    fc=fc+1; 
    Bfieldv(1,fc)=fie; % field values 
    JcField(1,fc)=Jc(fie,Tapplied, e_applied, MP);% Jc vs. field 
end 
IFig=PlotJcVsField(Bfieldv,JcField,Tapplied,IFig); % plot 
%%=========================================================== 
%Generate strain dependence plots: 
LowerStrain= -0.8/100; % lower strain limit [%] 
UpperStrain= 0.8/100 - MP.eMax; % upper strain limit [%] 
eapp=linspace(LowerStrain,UpperStrain,37); % applied strains 
etot=eapp + MP.eMax; %total strain (all terms are divided by 100) 
is=0; % start counting for strain values 
for strain=1:length(etot) % strain testpoints 
    is=is+1; 
    JcStrain(1,is)= Jc(Bapplied,Tapplied,etot(is), MP); % Jc vs. strain 
    TcStrain(1,is)=Tc(Bapplied,etot(is), MP); %Tc vs.strain 
    BcStrain(1,is)=Bc(Tapplied,etot(is), MP);  %Bc2 vs. strain 
end 
StrainValues=etot*100; %place strain values in a vector,for plots 
IFig=PlotJcVsStrain(StrainValues,JcStrain,IFig); % generate plots 
IFig=PlotBcVsStrain(StrainValues,BcStrain,IFig); 
IFig=PlotTcVsStrain(StrainValues,TcStrain,IFig); 
%%=========================================================== 
% Generate critical surface: 
e_applied=[0.8/100,0]; 
for eee=1:2 
    IFig=GenerateCritSurf(30,18,IFig,MP,e_applied(eee)); % plot critical surface 
end 
disp('Done!');beep  
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