

Alignment of a Muon Tomography Station with GEM Detectors

Afrouz Ataei

Advisor: Prof. Marcus Hohlmann

Master's Thesis Defense July 8,2016

Committee Members : Dr. Francisco Yumiceva Prof. Debasis Mitra

- What is Muon tomography?
- The Gas Electron Multiplier
- Scalable Readout System(SRS)
- Alignment of GEM Detectors Using Tracks
- Conclusion
- Future Work

Muon Tomography Concept

Incoming muons (from natural cosmic rays)

Multiple Coulomb scattering to 1st order produces Gaussian distribution of scattering angles θ with width $\sigma = \Theta_0$:

$$\Theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \sqrt{\frac{x}{X_0}} [1 + 0.038 \ln(x/X_0)]$$

 $Z \rightarrow \text{Charge Number}$ $\beta c \rightarrow \text{Velocity}$ $p \rightarrow \text{Momentum}$ $X_0 \rightarrow \text{Radiation Length}$ $x \rightarrow \text{Width of Medium}$ Where X_0 may be approximated by

$$X_0 = \frac{716.4g_{CM}^{-2}.A}{Z(Z+1)\ln(287/\sqrt{Z})}$$

Source; M.Staib, defense presentation

Muon Tomography

- Over 120 million vehicles enter the United States each year and they can transport hidden nuclear weapons or nuclear material.
- Muon Tomography can be used to detect shielded materials.

The Gas Electron Multiplier

- Using an electric field to accelerate electrons to produce ionization
- 30 cm < 30 cm GEM foils with 12 parallel sectors
- Mixture of Ar and CO₂ with the ratio 70/30

The Gas Electron Multiplier

- Two-dimensional readout
- 3 mm drift gap between GEM layers

Data Acquisition

- **Detector** Data is sent to DAQ for event by event.
- DATE(Data Acquisition and Test Environment) is used for collecting raw data from all FECs.
- AMORE(Automatic MOnitoRing Environment) is used for offline and online analysis.
- Common and publisher folders are created for AMORE version using for MTS .

Data AcQuisition-Electronics

APV25 -128 readout channels -Each channel consists of Pipeline with 192 memory elements

ADC -Digitalizing the data That APV sends out

FEC -I/O for trigger and clocks

Scalable Readout System (Data Collection)

Data Collection

Pedestal

- The baseline values of channels have to be subtracted from the APV output
- Pedestal run type should be selected
- The bias voltage is set to 2000 V
- There is no gas gain in the detector

Online Monitoring Plots

11

GEM1X Cluster Multiplicity Distribution with 89064 Good Events

GEM1YClusterSize1D 20000 g Entries 109233 6.105 Mean 2.705 ਦੂ 18000 RMS 16000 14000 12000 10000 8000 6000 4000 2000 2 4 6 8 10 12 14 Number of Strips in Cluster

GEM1Y Cluster Size Distribution with 88631 Good Events

GEM1X Absolute Strip Occupancy with 89731 Good Events

Hit Map

- 2D Hit map shows the hits in x strip vs y strip
- There is no track selection

X Position [mm]

X Position [mm]

What are the Alignment Steps for Top and Bottom Detectors?

- 1- Defining GEM 1 as a reference.
- 2- Finding the initial shift parameters by calculating the Chi Square of fitted tracks.
- 3- Shifting each detector iteratively in X-Y plane.
- 4- fitting straight lines to the hits in X and Y in each iteration.
- 5- Taking 20% of the residual mean value as the shift parameter in the next iteration.
- 6- Rotating detectors in X-Y plane with respect to GEM 1.
- 7- Optimizing the rotation angles

Shifting and Rotating

Finding the residual distance between the hit positions and the points of fitted track
Minimizing the residual distance Re

Residual Distance

$$Dx = x' - x''$$

$$x = az + b$$

 Q_{avg}

Track Selection

Chi Square For X and Y for GEM 1

For finding the initial values of GEM1X and GEM1Y,X and Y are changed in a specific range with a 0.2 mm step. The same calculation is done for other GEMs.

Residual Distributions for GEM1 before and after iterative alignment

Residual Distributions for GEM2 before and after iterative alignment

Residual Distributions for GEM3 before and after iterative alignment

Residual Distributions for GEM4 before and after iterative alignment

Residual Mean for every detector versus iteration number(TB)

Chi Square For Øx (top) and Øy (bottom) GEM2

For optimizing rotation angle the shift parameters and GEM 3 & GEM 4 rotation angles are kept fixed and GEM 2 rotation angle is changed in a small range with 1 mrad step.

Chi Square For Øx (top) and Øy (bottom) GEM3

GEM 2 & GEM 4 rotation angles are fixed. GEM 3 rotation angle is changing in a small range with 1 mrad step.

Chi Square For Øx (top) and Øy (bottom) GEM4

GEM 2 & GEM 3 rotation angles are fixed. GEM 4 rotation angle is changing in a small range with 1 mrad step.

GEM4

Track Angles Between GEMs Before and After Alignment(TB)

Final Shift parameters[mm] and Rotation Angles[rad] for Top and Bottom GEMs

GEM1X	GEM1Y	GEM2X	GEM2Y	GEM3X	GEM3Y	GEM4X	GEM4Y
-0.3355	-45.296	0.5460	-45.392	0.3383	45.3045	-0.5632	45.4053

9	GEM2	GEM3	GEM4
Q_X	0.00256	0.0031	0.001089
Q_{Y}	0.00172	0.00322	0.000562
Q_{avg}	0.00214	0.00316	0.0008255

g and residual mean before and after alignment

	σ (before)	σ (after)	Mean (before)	Mean (after)
GEM1X	0.06023	0.06175	0.5506	0.001301
GEM1Y	0.07238	0.07306	-0.09286	0.007464
GEM2X	0.09244	0.09253	-0.6091	-0.0002348
GEM2Y	0.1011	0.1012	0.1219	-0.002994
GEM3X	0.171	0.1616	-0.2645	-0.009825
GEM3Y	0.2087	0.210	-0.0308	0.0001117
GEM4X	0.1289	0.1280	0.3269	0.006343
GEM4Y	0.1672	0.1675	0.004106	0.00543

What are the Alignment Steps for Left and Right Detectors?

- 1- Defining GEM 5 as a reference.
- 2- Finding the initial shift parameters by calculating the chi square of fitted tracks.
- 3- Shifting each detector iteratively in X-Z plane.
- 4- fitting straight lines to the hits in X and Z in each iteration.
- 5- Taking 20% of the residual mean value as the shift parameter in the next iteration.
- 6- Rotating detectors in X-Z plane with respect to GEM 5.
- 7- Optimizing the rotation angles

Chi Square For X and Z for GEM5

For finding the initial values of GEM5X and GEM5Z,X and Z are changed in a specific range with a 0.2 mm step. The same calculation is done for other GEMs.

Residual Distributions for GEM5 before and after iterative alignment

Residual Distributions for GEM6 before and after iterative alignment

residual distributions for GEM7 before and after iterative alignment

residual distributions for GEM8 before and after iterative alignment

Residual Mean for every detector versus iteration number(LR)

Chi Square For Øx and Øz GEM6

For optimizing rotation angle the shift parameters and GEM 7 & GEM 8 rotation angles are kept fixed and GEM 6 rotation angle is changed in a small range with 1 mrad step.

Chi Square For Øx (top) and Øz (bottom) GEM7

GEM 6 & GEM 8 rotation angles are fixed. GEM 7 rotation angle is changing in a small range with 1 mrad step.

Chi Square For Øx (top) and Øz (bottom) GEM8

GEM 6 & GEM 7 rotation angles are fixed. GEM 8 rotation angle is changing in a small range with 1 mrad step.

Track Angles Between GEMs Before and After Alignment(Left and Right Detectors)

Final Shift parameters[mm] and Rotation Angles[rad] for Left and Right GEMs

GEM5X	GEM5Y	GEM6X	GEM6Y	GEM7X	GEM7Y	GEM8X	GEM8Y
-1.6851	-45.4046	-1.7710	-45.1968	1.4670	45.5243	1.5378	45.5904

q	GEM6	GEM7	GEM8
Q_X	0.005167	0.0388	0.0434
\mathcal{Q}_{Y}	0.0109	0.0354	0.04939
Q_{avg}	0.00803	0.0371	0.04639

g and residual mean before and after alignment

	σ (before)	σ (after)	Mean (before)	Mean (after)
GEM5X	0.3697	0.3723	-0.03564	0.01402
GEM5Y	0.639	0.65	0.02807	-0.05068
GEM6X	0.4395	0.430	0.09033	0.007361
GEM6Y	0.7626	0.758	-0.04879	0.04471
GEM7X	0.2122	0.2085	-0.01907	-0.01571
GEM7Y	0.2763	0.2778	0.1107	0.05012
GEM8X	0.2197	0.2197	-0.007696	-0.001119
GEM8Y	0.3394	0.3433	-0.07178	-0.04087

Angle Difference for Global Alignment

Final Shift Parameters [mm] for the Global Alignment

X	Y	Z	Mean Angle Difference (before)	Mean Angle Difference (after)
5.8	-1.8	6.6	-0.7888	-0.1964

- The alignment is done precisely because:
 1) The residual mean values are almost 0 after alignment.
 2)The Chi Square tests show a parabolic trend.
 3)The track angles are diagonal after alignment.
- The best final shift parameters and rotation angles is calculated from the track candidates.

- Using more detectors in order to get better statistics for doing alignment.
- Using 3D fit for doing Global Alignment
- Redesigning the Printed Circuit Board(PCB) of detectors
- Placing GEM 5 and GEM 6 completely vertical in the frame
- Using web base software Slow Control Run Initialization Byte-wise Environment(SCRIBE)
- Using cluster to process data

Thanks! Questions?