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Abstract: Nuclear materials that pose a homeland security 
threat typically have high atomic numbers (Z > 82). It is of vital 
importance to develop smart, efficient, and inexpensive systems 
to detect such high-Z materials without opening a container.  
Muon Tomography (MT) provides a non-invasive channel for 
such investigation. We have been investigating such muon 
scattering with numerical simulation with GEANT4 for some 
time [6]. In this article we report the development of an efficient 
clustering algorithm for detecting threat objects in a probed 
volume. 

 

INTRODUCTION 

Muons produced by primary cosmic rays at the upper 
atmosphere provide an excellent source as passive probes for 
discriminating materials with different atomic numbers (Z), 
without any extra radiation or incurring any extra cost for the 
probe generation [5]. Highly penetrating muon tracks may 
suffer from multiple scatterings by Coulomb interaction with 
nuclei of atoms on its path. The angle of scattering depends on 
the charge Z of the corresponding nucleus [3] (Fig. 1). The 
incoming and outgoing tracks for each muon may be detected 
by appropriate sensors.  

Muon Tomography (MT), based on the measurement of 
multiple scattering of atmospheric cosmic ray muons 
traversing cargo or vehicles, is a promising technique for 
Homeland security application of nuclear contraband 
detection. Many groups around the world are studying and 
developing MT systems. For the purpose of reconstruction the 
standard iterative algorithms, where the probed volume is 
voxelized, are adapted from medical imaging [7, 10]. These 
algorithms often does not run in real time and tend to be slow 
for the homeland security purpose. 

However, since in this application both the incoming and 
outgoing track of a scattered muon is known, a special feature 
of the underlying scattering event in MT is the existence of a 
point of closest approach (poca) between the two tracks, 
which represents the scattering region quite well. A 
geometrical algorithm (POCA-algorithm) that detects poca 
points and their corresponding angle of scattering is 
surprisingly efficient in identifying most of the metallic targets 
in a probed volume of a MT station. Expectation 
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Maximization algorithms based on maximum likelihood 
estimation [9] are very useful in estimating scattering 
parameter of each voxel, but have slow convergence  and 
typically computes the parameters for all voxels even when 
many of them are not of interest.  

In this work we studied the muon scattering properties for 
possible target materials and tried to address the question on 
how to effectively utilize the poca points generated by the 
tracks. We have used GEANT4 simulation software, enhanced 
with the CRY package as the source for cosmic ray generated 
muons, for this purpose. Empirical studies of muon scattering 
from a target, with a MT-station like geometry, is essential in 
developing tomography systems and reconstruction 
algorithms. One of our objectives is to develop efficient real-
time algorithm for the reconstruction purpose for MT systems. 
We expect our work will make a broader impact on some 
transmission tomography applications including those used in 
medical areas. 

EXPERIMENTAL SET UP 
A typical geometry for our simulation using GEANT4 

software [2 Allison] is shown in Fig. 1. In our simulations, z-
axis is the vertical direction, x-axis is the axial direction (cargo 
movement), and y-axis is perpendicular to the xz-plane. Sensor 
arrays parallel to the xy-plane (typically three) are deployed 
above and below the probed volume. The CRY Monte Carlo 
generator [11] produces muons over a    5  5 m2 square plane. 
Underneath this CRY plane a top and a bottom detector array - 
each comprising 3 detector planes - sandwich a “floating” 
Uranium target cube of volume 40 40 20 cm3. The detector 
planes have an area of 4 4 m2 and encloses the probed volume 
of 3m height in the z-direction.  

 

 
Figure 1: Geometry of the probed volume 

 
The geometric POCA-algorithm [8] is used to locate the 

point-of-closest-approach (poca) between the ingoing and 
outgoing vectors of a scattered muon track (Fig. 2). All 
unscattered tracks are ignored by this algorithm. For each such 
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poca point we also note the corresponding scattering angle 
(between the two vectors), and the distance-of-closest-
approach (doca). 

 

 
Figure 2: Point of closest approach 

 
We use the doca values to filter more tracks. Higher doca 

values are considered to have scattered over a much larger 
region (for multiple scattering events). So, the relative 
confidence that the corresponding poca actually represents the 
scattering region is low for a large doca value. In order to test 
this hypothesis we collected unfiltered poca points and filtered 
poca points inside the Uranium target in this experiment. We 
calculated the scattering density λ  (definition: square of the 
variance of the scattering angles over the collection of poca 
points per unit length of path in the target, approximated as 
per unit height of the target, for muons with nominal 
momentum, in miliradian square per mm) for each collection 
(Table 1). The unfiltered value is unreasonably higher - 
possibly because it involves more scattering events per poca 
than that for the filtered ones, as the large values of doca 
would suggest. In our subsequent works utilizing poca we 
have eliminated tracks with doca values greater than 1 mm. 
We have also not considered those tracks whose poca’s  are 
outside the probed volume as they cannot represent the actual 
scattering region.  

 

Table 1: Scattering densities with and without doca cut 
 

SCANNING STUDY WITH SLABS 
Preliminary results from our study are shown below (Figures 

3 and 4). We discretize the probed volume into slabs 
perpendicular to each axis. We studied by varying the width of 
each slab. In each slab we collect all the valid poca’s (after the 
filtering of poca’s as mentioned above) and compute the 
average scattering angle. The plots below show the values of 
average scattering angles (in degrees) against the mid-position 
of the slabs on the corresponding axis. Fig. 3 shows the plots 
over the z-axis or height, for three slab sizes 5cm, 3cm and 1 
cm respectively. The target is actually located between (-
10cm, +10cm) on the z-axis. Graphs only near the actual target 

position are shown here. All three plots can discriminate the 
target. Please note that the smaller the slab size more the 
computation time for a scanning algorithm is. An interesting 
phenomenon in these graphs is that a good number of high 
scattering-angle poca’s converge just below the target, making 
it difficult to isolate the lower boundary of the target with high 
precision. This is an unexpected observation and could be an 
indirect cause of non-Gaussian (high-tailed) nature of the 
distribution of scattering angle known in the literature [3 
Bethe], or alternatively an artifact from the simulation using 
GEANT4. 

 

  
Figure 3: z-axis variation, 5, 3, 1 cm slab-sizes 

 
Fig. 4 shows similar plots with slabs sliding along the x-axis. 

The target is located between (-20cm, +20cm) in this 
direction. The boundary discrimination with 3cm could be a 
good compromise for optimum slab-size. The precision of 
boundary appears good in these plots. For symmetry reason 
plots along y-axis is not shown here, but they are very similar 
in nature as that along the x-axis. 

 

   
Figure 4: x-axis variation, 5, 3, 1 cm slab 

 
 For a very simple scenario as in the above experiment, a 

linear slab-scanning algorithm over the poca points may 
suffice for detecting a threat object. However, in any 
complicated real life scenario simple scan along three axes 
will not be enough. An example of a three-target (iron, 
tungsten, uranium) are shown in Figure 5. Discerning 
capability as well as localizing capability significantly reduces 
with the complicacy of the scenario.  

 

 

  
 

Figure 5: Scan over a three target scenario 
  

 Inside Target Outside Target 
DOCA filtered 

(1.0mm) 
203.404900 3.859259 

Unfiltered 808.751000 8.218831 
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The purpose of our above study was to mainly elucidate the 
power of local identification capability of poca points. An 
obvious next step is to go beyond axis-wise scan and cluster 
the poca points regionally. For this purpose, we developed a 
density based clustering algorithm and studied somewhat more 
complicated multi-target scenarios with it. 

POCA CLUSTERING STUDY 
Our previous studies with poca points [6] have shown that 

they tend to form dense clouds around high density or high 
atomic number materials. Also, higher atomic number 
materials tend to have more scattering angles. The scattering 
property of a material may be characterized by the scattering 
density λ  as defined before that relates to the variance of the 
scattering angle distribution over the respective material (also 
inversely related to the radiation length). From these 
observations we developed the unsupervised density-based 
clustering algorithm that we call POCLust algorithm (Figure 
6).  POCLust returns dense region of poca points that are 
related to each other by respective scattering angles. As a 
cluster grows in size starting from a single poca, the variance 
of the scattering angles as well as the spatial density of poca 
points within a cluster is kept track of as the cluster quality 
parameter. POCLust is a real-time algorithm working with 
each track sequentially, thus having a linear time complexity 
(with respect to the number of tracks) and a low memory 
requirement. The asymptotic time-complexity is O(m|C| + 
|C|2), for m tracks and |C| number of clusters.  

 
Input: Geant4 output (list of all muon tracks and 

associated parameters) 
 1.  For each muon track   { 

   2.    Calculate the POCA pt P and scattering-angle  
   3.     if (P lies outside container)  continue;   
   4.    Normalize the scattering angle (angle*p/3GeV). 
   5.    C  = Find-nearest-cluster-to-the (POCA pt P); 
   6.     Update-cluster C for the new pt P;  
   7.      After a pre-fixed number of tracks remove 

sporadic-clusters; 
   8.      Merge close clusters with each-other  } 

 9.  Update λ (scattering density) of each cluster C using 
straight tracks passing through C  

   
 Output:  Clusters as regions of interest (ROI) 
 
Figure 6: POCLust algorithm for clustering poca 

points 
 
POCLust initially ignores non-scattered tracks. However, in 

stand-alone mode it needs to make a second scan over the 
tracks to include all non-scattered tracks passing through each 
cluster (identified in first pass) in order to update the 
scattering density λ  computation, as the latter value would be 
very high if the zero-angle non-scattered tracks are ignored. 
POCLust may also be used in a pre-processing mode where 
only the clusters are output as regions of interest (ROI) for 
further analysis or for subsequent reconstruction purpose. In 
this mode only the first real-time pass is enough.  

The main challenge in the algorithm is to avoid comparing 
each poca with all other ones. Also, cluster explosion needs to 
be tackled by filtering unpromising clusters from time to time 
(line 7, typically after processing each 5000 events).   

 In the following Figures 7-11 we show some of our results 
in using POCLust over multiple target scenarios. The scenario 
plot from GEANT4  is on the left hand side and corresponding 
clusters are shown on the right of each figure. Color of the 
cluster indicates the lambda value of each corresponding 
cluster after the second pass over the poca points (line 9, 
Algorithm in Figure 6). 

 

  
Figure 7: U, W, Pb, Fe, Al targets each 4x4x2cm3, medium 

is air, 10 million total tracks equivalent to 10 min of exposure 
 
POCLust parameters are adjusted to detect three of the 

targets U, W and Pb (Fig. 7), and these parameters are used in 
all subsequent scenarios. We could distinguish between all 
three of the targets, where distinction between U and W using 
iterative reconstruction algorithms remain a challenge in the 
literature. The algorithm takes 29.2 sec run time on a PC. 
Minimum number of points inside a cluster must be 100, and 
minimum distance between the centers of any pair of clusters 
must be 250mm. Scattering angles are normalized with 
corresponding momentum values associated with the tracks. 

 

  
Figure 8: Vertical clutter Al, Fe, W, each gap=100cm 

 

 
Figure 9: Vertical clutter Al, Fe, W, each gap=10cm 

 
In the two above vertical clutter scenarios (Figs. 8 and 9) 

only W could be detected, and detection of Fe and Al are not 
possible with the POClust parameters that we are using. False 
positives (clusters) will increase significantly if we readjust 
the parameters to detect low-Z materials like Fe and Al. 
However, the proximity effect of the two low-Z targets above 
W box in Fig. 8 makes the cluster corresponding to the latter 
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much larger and with lower λ-value as opposed to that in Fig. 
9. 

 

 
 

Figure 10: Reverse vertical clutter U, Pb, Al, each 
gap=10cm 

 
 This reverse vertical clutter scenario with small gap 

between each pair of targets (Fig. 10) is a classic example 
where reconstruction algorithms may be challenged because 
the higher-Z material above lower-Z ones may produce a 
“shadow” effect over the lower-Z materials. Even the poca 
points’ cloud for the higher-Z target gets somewhat confusing 
and a slabbing-scan fails to detect the threat. Attempts to 
detect such scenarios may result in higher false positives.  

 

 
 

Figure 11: U target of 10x10x10 cm3 inside a Pb box of 
200x200x200 cm3 with 10 cm thickness, surrounding medium 

is vacuum 
 
 Here the left side is poca visualization with color 

representing each poca point’s scattering angle (Fig. 11). 
POCLust clears up the cloud and detects the threat object at 
the center. This is an example closer to reality (as a threat 
object is likely to be hidden in a box of some dense material 
like lead), where purely visualization of poca may not suffice, 
and some type of quantitative study (e.g., done with POCLust) 
is necessary. 

POCLUST AS PREPROCESSOR 
 
In this section we address the usefulness of POCLust as a 

preprocessor to a standard iterative reconstruction: maximum 
likelihood expectation maximization (MLEM) algorithm [7]. 
MLEM typically runs over the whole probed volume. In our 
case it is the volume surrounded by the detector arrays. It 
needs the volume to be discretized over voxels of pre-
determined size (Fig. 1) and produces value of λ over each 
voxel over the iterations. As the targets are likely to be limited 
in space in some regions within this probed volume, the 
algorithm wastes significant amount of computing resources. 
Here, the POCLust preprocessing may hypothesize the volume 
of interest (VOI) as a minimum rectangular bounding box over 
the clusters it produced. The non-scattered tracks are not 
required for VOI detection, and so, a single pass algorithm (as 

mentioned before) is sufficient. MLEM becomes much more 
time and memory efficient as the volume over which it runs 
reduces. The following (Fig. 12) shows the result of such an 
experiment over the five-target scenario (as in Fig. 7). The 
VOI is 235x235x45 cm3 in volume (19881 voxels, each voxel 
of size 5x5x5 cm3) as opposed to the whole probed volume of 
400x400x300 cm3 (with 384000 voxels), almost 95% probed 
space reduction, resulting in 80% in time reduction. As seen in 
Fig. 12, the Pb is not well detected after MLEM run, but the 
two high-Z targets are clearly identified. 

 

  
Figure 12: MLEM reconstruction over Volume of Interest 

extracted by POCLust 
 

CONCLUSION  
 
In this work we have developed an efficient density-based 

clustering algorithm for detecting high-Z targets with cosmic-
ray generated muon tracks scattered from the targets within a 
probed volume. Results from numerical simulation using 
phantoms are presented here. The algorithm may also be used 
as a pre-processor to significantly reduce the computational 
resource requirements of a standard iterative statistical 
algorithm. 

 An open question remains if ever cosmic ray generated 
muons may be used for medical purpose, because of its low 
flux rate, even though its free source is very attractive. Also, 
the scattering of muons from low-Z biological materials may 
not be significant enough. To initiate some thought in this 
direction we simulated the scattering in low-Z materials like 
water and calcium. A simple poca plot from such a simulation 
is shown in Fig. 13. 

  

  
Figure 13: A 130x10x10 cm3 Ca block, inside a 150x30x30 

cm3 H2O block, in air background 
20 million muon tracks, equivalent to 20 minutes of exposure 
 

ACKNOWLEDGMENT AND DISCLAIMER 
This material is based upon work supported in part by the U.S. 

Department of Homeland Security under Grant Award Number 2007-
DN-077-ER0006-02. The views and conclusions contained in this 
document are those of the authors and should not be interpreted as 
necessarily representing the official policies, either expressed or 

2368



 

implied, of the U.S. Department of Homeland Security. Patrick Ford 
has provided some computational support. Banerjee and Waweru 
were supported by NSF. 

 

REFERENCES 
[1]   Agostinelli, S., and one hundred twenty nine others, (2003) 

“GEANT4 – a simulation toolkit,” Nucl. Instrum.Meth. A, 506, 250-
303. 

[2]   Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, 
P., Asai M., and others (2006) “GEANT4 developments and 
applications,” IEEE Trans. Nuclear Sc., 53(1), 270-278. 

[3]   Bethe, H. (1953) “Moliere's theory of multiple scattering,” 
Physical Review, 89(6), 1256.   

[4]   Hagmann, C., Lange, D., and Wright D. (2007) “Cosmic-ray 
shower generator (CRY) for Monte Carlo transport codes,”  Proc. 
IEEE Nucl. Sci. Symp., Honolulu, HI, 2, 1143-1146. 

[5]  Hogan, G.E., et al., (2004) “Detection of high-Z objects using 
multiple scattering of cosmic ray muons,” AIP Conf. Proc., vol. 698, , 
pp. 755-758, presented at 8th Conference on the Intersections of 
Particle and Nuclear Physics (CIPANP 2003), New York, NY, 2003. 

[6]  Hohlmann, M., Ford, P., Gnanvo, K., Helsby, J., Pena, D., 
Hoch, R., and Mitra, D. (2009)   “GEANT4 Simulation of a Cosmic 
Ray Muon Tomography System with Micro-Pattern GasDetectors for 
the Detection of High-Z Materials,” IEEE Transactions on Nuclear 
Science, vol. 56, no. 3, pp. 1356-1363, June 2009.   

[7]  Schultz, L. J., Blanpeid, G. S., Borozdin, N., Fraser, A. M., 
Hengartner, N. W., Klimenko, A.V., Morris, C. L., Orum, J. C., and 
Sossong, M. J. (2007) “Statistical reconstruction for cosmic ray muon 
tomography,” IEEE Trans. Image Processing, 16(8), pp. 1985-1993. 

[8]  Sunday. D. (2006) “Distance between Lines and Segments 
with Their Closest Point of Approach.” At: 
http://geometryalgorithms.com/Archive/algorithm0106/algorithm010
6.htm 

[9]  Verdi, Y., Shepp, L. A., and Kaufman, L. (1985) “A statistical 
model for positron emission tomography.” l. Of American Statistical 
Association, 80(389), 8-20. 

[10] Wang, G., and Qi,    J. (2008) “Statistical image 
reconstruction for muon tomography using Gaussian scale 
mixture model.” ICIP-2008, pp. 2948-2951, 15th IEEE 
International Conference on Image Processing, San Diego, 
CA. 

[11]   Wright D., and others from the Cosmic-ray Physics Team at 
the Lawrence Livermore National Laboratory (2006) “Monte Carlo 
Simulation of Proton-induced Cosmic-ray Cascades in the 
Atmosphere,” Lawrence Livermore National Lab., CA, Tech. Rep. 
LA-UR-06-8497. 

 
 
 

2369


