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Abstract. In this article on Muon Tomography we report our work on the development of an
intelligent pattern detection system for materials with high atomic numbers (Z) for Homeland
Security application. Muons are naturally produced in the upper atmosphere by primary cosmic
rays and are used as passive probes of a cargo volume. By sensing the incoming and outgoing
tracks and measuring the momentum of each muon for a probed volume one may derive the
scattering parameters. A statistical algorithm is being used to estimate scattering densities of
the material in each unit volume (voxel) of the probed volume. The article describes the
algorithm and some results from our simulation experiments.

1. Introduction

Nuclear materials that pose a homeland security threat typically have high atomic
numbers (Z > 82). It is of vital importance to develop smart, efficient, and inexpensive
systems to detect such high-Z materials without opening a container.

Muons are produced by primary
cosmic rays at the upper atmosphere
provide an excellent source as passive

ed probes for discriminating materials

KJ\K/\/ with different Z, without extra

radiation or incurring any extra cost

for the probe generation. Highly

penetrating muon tracks may suffer
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Fig. 1. Scattering of a particle interaction with nuclei of atoms on its

path. The amount of scattering

depends on the charge Z of the corresponding nucleus [3] (Fig. 1). The incoming and

outgoing tracks for each muon may be detected by appropriate sensors. In our

simulations, z-axis is the vertical direction, x-axis is the axial direction (cargo

movement), and y-axis is perpendicular to xz-plane. Sensor arrays parallel to the xy-
plane (typically three) are deployed above and below the probed volume.
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2. Reconstruction Algorithms

Our first algorithm for reconstruction of scattering points makes a naive assumption:
each scattering is a single event, or only one atomic nucleus (a point) is involved in



scattering. This Point-of-closest-approach is called the POCA point [6]. We assign
the scattering angle to that point instead of distributing it to multiple points on a muon
track as would be the case in multiple scattering. This is a purely geometric algorithm
that ignores any underlying physics of scattering. The corresponding POCA-
algorithm is shown in Fig. 2.

First, the lines corresponding to Algorithm POCA
incoming and outgoing tracks are Input: A list of {for each muon i, three
computed from the corresponding incoming sensor points (a;, b;, ¢;) where the

muon is detected, and three corresponding
exiting sensor points (d;, e;, f;)}

Output: Corresponding list of {for each
muon i, point of closest approach P; between
each incoming and respective exiting tracks,

three sensor points where the muons
are detected above and below the
probed volume, respectively (three
sensor-array planes above and three

below). We presume that the sensor- and the scattering angle 6; at that point}
electronics will be able to associate

the muon detection points to a single (1) for each muon /=1 to M in the list

muon path by using the timing (2)  create incoming track /;, and exiting
information of muon detections on the track E; by least-square-fitting the respective

three points each

(3) using analytical formula, find closest
pts s; and #;, respectively, on [; & E;

(4) compute mid-pt P; between s; & ¢;

sensor arrays.
In 3D, the incoming and the
outgoing tracks are not necessarily co-

planar due to scattering and (5) compute angle 0; between lines /; & E;
measurement errors, and they are (6) return the list of {(P,, 6)) | 1<i < M}
unlikely to meet at a single point. Fig. 2. The POCA Algorithm

Consequently, for each line (incoming
or exiting) the point closest to the
other line is computed using a linear algebraic formulation. The mid-point to these
two points is the POCA-point corresponding to each muon (Fig. 3). Also the
scattering angle for each muon is computed in line 5. POCA-point and scattering
angle pairs are returned for all muons where the angle is not very close to zero
(POCA point does not exist for parallel lines or where a muon has traversed without
any scattering). Complexity of POCA is O(M) for M tracks.

The POCA algorithm is a simple algorithm with a very strong assumption of
single-point scattering. A better algorithm, originally proposed by Verdi et al. [7], and
subsequently adapted by Schultz et al. [5] utilizes both the scattering angle and the
measured linear displacement of a muon-track over the xy-plane [Fig. 3]. Actually, the
scattering angle has a near normal distribution that depends on the material and
distance of traversal within the material [Eq. 1]. Our next algorithm, Expectation
Maximization (EM)-reconstruction, uses both the information — scattering angles and
linear deviations as input. Here, the scattering angle 6; is measured between the
incoming and outgoing track-vectors of a muon. The linear deviation §; is measured



between the point £ representing the
actual emergent track at the topmost
bottom detector plane and the point
F where the projected-incoming PocA
track hits the same horizontal plane
of £ (Fig. 3). We use the two x and y
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components for each of the two —_—

parameters (8;, §;) that improves the '.16

chance of determining scattering v

location by adding extra Fig. 3. Linear deviation of a track

information. The EM-reconstruction algorithm (Fig. 4) attempts to distribute the
scattering location along the POCA-track instead of assigning the scattering event to a
single point as the POCA algorithm does. The track of a muon connects a
representative entering point to the POCA point and then the POCA point to a
representative exiting point (typically the detection point on the respective nearest
sensor- array plane to the volume).

This algorithm views a discretized volume for the interrogated space. Each
unit of volume is called a voxel and its dimension is predetermined. Scattering is
presumed to have happened over some voxels along the POCA track of the muon.

The conditional probability (likelihood) of the observed data D; = (8;, 3;) for a muon i,
given the scattering density distribution 4 (a vector) over the voxels (j) is given by
equation (1).

P(D,|2)=

exp(—lD[.TZilDij with '3 = p> > AW, M
273 |2 2 =
where the sum is taken over all n voxels along the i-th muon track, p, isthe

momentum ratio inversely proportional to momentum p;, J; is the scattering density
of the j-th voxel, and W is the symmetric 2x2 covariance matrix between scattering
angle 6 and linear deviation d. Elements of / depend on the path length of muon i
through voxel j, and the vertical height of the voxel j from the bottom plane [5].

Maximizing the total likelihood of observation D, (by equating a partial
derivative of the total log-likelihood with respect to A to zero, under an assumption of
independence between voxels), we get the update equation for the scattering density

+ 2 . k Tg-l = =
}f; = }é_ +(}¥;) medzan[(CU. =D %, VKfZilDi —Trace(ZilVKf))] )

where the median is taken over all tracks i that go through voxel j, and £ indicates the
iteration index. Asymptotic complexity of the EM-reconstruction is O(IMN), where 1
is the number of iterations, M is the number of muons, and N is the number of voxels,
and the memory requirement is O(M +N).

3. Simulation Experiments

GEANT4 [1], a common stochastic physics toolkit for simulating the passage of
subatomic particles through material, is used for our experimental set up.



For generating cosmic ray muons we have used a package called CRY, developed at
Lawrence Livermore National Lab [8, 10].

The geometry of our standard
simple scenario that is used for
testing has a probed area with the
dimensions 4mX4m in X and Y and
3m in Z. The rectangular targets of
five different materials are centered
as  following:  Aluminum at
(-1000mm, -1000mm, Omm), Iron at
(1000mm, -1000mm, Omm), Lead at
(Omm, Omm, Omm), Tungsten at

Algorithm EM-reconstruction
Input: A list {for each muon i, (D;, p,;), where
D;=(6;, 9;)} & 0; is the scattering angle, J;is
the displacement of the track, and p,; is the
muon momentum parameter;
Initial A-value for each voxel;
Maximum number of iterations /;
Output: A-value for each voxel

(1) set initial vector A"
(2) for each iteration k=1 to / do

(-1000mm, 1000mm, Omm), and | (3)  setvector A" =3""
Uranium at (1000mm, 1000mm, (4)  for each muon-track i =1 to M do

Omm). Each of these boxes is of size ) compute C,j , using eq. (2)
(6) for each voxelj=1to N do

40cmx40cmx20cm. @) find median of correction term 44;
(8) A=) + Ak, using eq. 3
(9) return vector 4

Fig. 4. The expectation maximization algorithm

4. Implementation and Results

For reconstruction, we have run the POCA algorithm first, which returns a set of
POCA points and scattering angles at each point. In Fig. 5, the color of a point may
indicate the value of the angle Zposaiypacaxpocavpoca

assigned to the scattering event at

that point.

We run the EM-
reconstruction algorithm on the
same simulation data  after

appropriate pre-processing of the
input. One of the major challenges
in implementing the algorithm is
the median calculation for the
correction factor of A; for each
voxel in each iteration. Typically,
each such computation requires O(H) amount of memory (and steps), where H is the
number of tracks through the voxel. This blows up the resource requirement to an
impractical level. In order to avoid this we have developed an approximate technique
for the median calculation.

The total range of the A-correction factor is divided into bins of fixed sizes d.
For each bin, the number of data points in the bin and the mean value over the bin is
stored which reduces the requirement of storing all data points. Subsequently, the
frequency parameters on the binned data points are used to find the median bin and
the corresponding mean of that bin is used as the median of the whole data set. The
complexity for this computation (for each voxel in each iteration) is O(K), where KX is
the number of bins, which is far smaller than H. The error incurred in this

Fig. 5. POCA reconstruction



approximation is less than the bin size d. The smaller d the better the accuracy is, but
a smaller value of d will increase the value of K and will consequently decrease
computation time and increase memory consumption. To the best of our knowledge
this approximate median calculation is new.

x,yz distribution 5Tar404020m x,y.2 distribution 5tar100m

Fig. 6. Reconstruction from Expectation Maximization algorithm (average method left;
approximate median method right). The top figures are a 3D representation of the A-values of
each voxel. The bottom figures represent A-values in the plane z=50mm.

The result from the EM-reconstruction algorithm for the experimental setup
discussed in the previous section is shown in Fig. 6. Note that here the output is a
voxel-wise A value, an important difference from Fig. 5. The top plots in Fig. 6 are 3D
representations of the A value for each voxel. Statistically more accurate method is to
use average in eq. 2 but median provides better result. The results from the average
method are shown on the left. The targets in this plot are barely visible and there is
much noise at the bottom of the volume. With the median method shown on the right
the reconstruction is much clearer. The targets are clearly visible (though the box
shape is distorted) and there is no noise at the bottom. However, the plots at the
bottom of Fig. 6, which show the A values of the voxels in the plane z=50mm,
indicate that there are still improvements to be made. Both methods discriminate
between the targets and the surrounding vacuum, yet for the average method the
absolute A values appear too low and for the median method the values appear too
high. Both methods also reconstruct the outer target voxels with higher A values
compared to the interior voxels. The median method does appear to reconstruct the



scenario better than the average method, but there is work left to do to improve the
overall discriminatory power and to reproduce actual physical A values.

5. Discussion, Future Direction, and Summary

In this article we report our work on two tomography algorithms for reconstructing
images from the scattering of cosmic ray muons for Homeland security applications.
We also discuss an efficient but approximate median computation technique that we
have developed to make the EM-reconstruction algorithm using the median feasible.

Some of the future directions of this work are to develop an integrated
algorithm that will combine the two reconstruction algorithms described here for
better efficiency and accuracy. We will also develop an online anytime-good
reconstruction algorithm that will run as the data collection is ongoing where the
accuracy will continuously improve over time to the maximum possible limit. For
homeland security purposes such an algorithm should have a high practical value,
where resource consumption is very important and cargo interrogation time is of the
essence. Finally, we will run our experiments with more complex real life scenarios.
We are also waiting for the availability of actual noisy experimental data [4] rather
than using somewhat pure simulation data, to test the algorithms.
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