Undergraduate Research Report e May 2013

DAQ Software Documentation

MicHAEL PHIPPS

Florida Institute of Technology, Melbourne, FL

mphipps2010@my:.fit.edu

Abstract

This document is meant to provide a snapshot of the current state of software used in the data acquisition
process in HEP Lab A — including data taking, monitoring, and analysis. It includes trouble shooting
techniques for DATE, both in installation and application. It includes images and explanations of all
raw data, pedestal, data suppression, monitoring and analysis plots. It will also thoroughly explain the
concepts and structure behind the monitoring and analysis done in AMORE and its GUI. For more
conceptual issues and questions on hardware, Mike Staib’s thesis is more comprehensive, but this paper is
meant to fill the hole in a more technical standpoint. To be clear, though this is meant to describe the DAQ
system, it is not necessarily a "how-to” guide. For those sort of questions, please refer to the SRS How To

Guide.

I. ScALABLE READOUT SysTEM (SRS)

As the name suggests, the SRS was developed
as a DAQ system that could be easily imple-
mented across a small system of detectors or
scaled up to a larger, more practical station.
In the MTS’ current form, the SRS follows the
schematic shown in Figure 1.

| Scintillatorl ‘ ‘ Scintillator2 ‘ | Scintillator3 ‘ ‘ Scintillatord ‘

| [«

\
\\ DAQ Card

- — ——y
FEC1 FEC2 FEC3 FEC4 FECS—‘ FEC6
- —a ‘

‘ DATE (Data Acquisition and Test Environment)

!

‘ AMORE (Automatic MOnitoRing Environment)

Figure 1: SRS schematic diagram

Eight (approximately) 300 mm GEM detec-
tors (two top, two bottom, two left and two
right) surround a central, active region. Plas-
tic scintillator paddles connected to PMTs are
placed on the outside of each detector pair and
act as triggers. These triggers are synchronized
by a DAQ card, and when the card receives a
signal from two different scintillators within
the same time interval, it signals each of six
FPGA Front End Converters (FECs) to dump

their data. The FECs are constantly receiving
an analog signal from the 12 APV chips at-
tached to each detector. They convert this data
to a digital signal, store it and wait for instruc-
tions. When they receive a trigger, the appro-
priate data is released and filtered through one
of two ethernet switches and routed to DATE
and AMORE for processing, storage and anal-
ysis.

II. DAta ACQUISITION AND TESTING
EnviroNMENT (DATE)

II.1 Slow Control: Initialize the

SRS

Before each run, the active equipment (Net-
work switches, FECs, ADCs, and APVs) must
be properly configured. This occurs in two
stages. First, as part of the Start of Run (SOR)
processes, each SRS card is initialized. This
includes setting the IPs and initializing the
ADCs, FECs and APVs. These text files are
found in the slow control folder in the home
directory. The shell script is found in the same
place, but the script is run automically through
editDb (ie when "Start Processes" is clicked in
the Run Control GUI). If you type "editDb" in
the comand line, you will find this script refer-
enced under the "Files" tab and as part of the

mailto:mphipps2010@my.fit.edu

Undergraduate Research Report e May 2013

"SOR.commands". If you are adding or remov-
ing FECs from the previous implementation,
you will have to edit this slow control shell
script.

Of particular note, the FEC Cosmic Run
text file is used to set the trigger sequence, the
trigger delay and the number of time bins sent
for each trigger. The register values can be
found in the SRS Slow Control Manual in the
slow control folder.

Now that the SRS is configured, the final
step is to activate it. This is done at the start
of a run by entering the command "StartRun"
on the MTS PC. This command is set in the
computer’s ~/.bashrc file. If you are adding
or removing FECs, make sure the shell script
that this command references is activating the
proper FECs.

I.2 Run Control Troubleshooting

Within the Run Control GUI, you may run into
occassional trouble shooting issues. Problems
tend to occur more during installation than
during normal operations. The first three sug-
gestions are for normal operations while the
last one briefly addresses installation.

e Problem loading configuratino file: This
warning is benign and does not affect run
control. Disregard this error for now.

o Full disk: The raid is full and files need to
be transferred to the cluster and deleted
from the disk to open up storage space.

o Trigger mismatch: This error sometimes
shows up in the DATE Infobrowser or the
AMORE processing agent. If it does, stop
the run, delete the .raw file from the disk
and restart the run. This usually fixes the
problem.

e editDb

For most purposes, the DATE root direc-
tory should not be accessed directly. The
editDb configuration GUI is sufficient for
most configuration and installation pur-
poses. To access this GUI, type "editDb"
in the command terminal. Since we only

utilize a small portion of DATE for the
MTS, many of the settings in the GUI
are superfluous. For a detailed account
on configuring our implementation of
DATE, see Mike Staib’s documentation.

© O DATE Configuration Database Editor - Host:localhost DB:DATE_CONFIG

Figure 2: The editDb GUI

III. AutomaTic MONITORING
EnviRONMENT (AMORE)

AMORE was developed by the ALICE experi-
ment as a monitoring platform meant to work
in parallel with DATE . Because of its emphasis
on monitoring, it was important to be able to
perform analysis and visualization simultane-
ously, without interfering with or being depen-
dent upon one or the other. To that end, they
implemented a publisher/subscriber paradigm
in which data is cyclically published to an in-
dependent MySQL database by one agent and
subscribed to by another. In that way, the two
sides of AMORE never directly interact, and
visualization can proceed without interfering
with analysis.

This rigid structure for AMORE is de-
fined upon installation in the root directory
/opt/amore/, while the customizable, MTS-
specific analysis code is stored in the user di-
rectory ~/amoreSRS. Except for exceptional
circumstances, the former should never be al-
tered; all changes are made in the frontend
amoreSRS directory.

Within the ~/amoreSRS/src directory, there
are four modules: Common, Publisher, Sub-
scriber and Ul Source code in the common di-
rectory is available to source within Publisher,
Subscriber and UI, while source within one

Undergraduate Research Report e May 2013

of the latter three is restricted to other source
within the same directory. This is quintisential
to the publisher/subscriber paradigm.

In the current version of AMORE created
for the MTS, we use the common and pub-
lisher folders extensively. We have never made
use of the subscriber folder, and the ui folder
has been largely deprecated by the external
AMORE GUI described in section IV.

Though it is written in C/C++, there is
no main function in AMORE. SRSPublisher
is where all processes originate, and they are
done in a cyclic manner, so data is published
in the database after each cycle and made avail-
able to any subscribers. The structure of the
publisher is shown in Figure 3.

Figure 3: AMORE Publisher Routine

III.1 Mapping: Local and Global
Strip Corrections

The strips on the detector are ordered sequen-
tially, but by the time the data reaches the DAQ
system it has undergone a number of transfor-
mations. For most analysis purposes, we are
forced to develop mapping equations that un-
tangle these transformations and bring us back
to the original sequential order. The system we
follow is shown and described in Figure 4.

Order Pins are Connected to Strips in S4 Detector
(Numbers correspond to strip numbers. The back row of the Panasonic is
split in half with the first half preceding the front row and the
second half succeeding the first row. Our goal is to find an
algorithm that maps the following readout in sequential order)
024135791168 10
Code:

if (stripCorrection % 2 == 0 && stripCorrection < 64) stripCorrection = stripCorrection - stripCorre:
b ; B ion) / 2

else if (stripCorrection % 2 == 1) stripC tion = stripC + (63 - stripCi

else stripCorrection = stripCorrection + (128 - stripCorrection) / 2;

!

Order Pins are Connected to Strips in MTS Detectors
(Numbers now in terms of strip number. Since the APV is placed
upside down along the pins, the channel numbers are the inverse of the
detector strip numbers)

1357911
0246810
Code:
stripCorrection = 127 — stripCorrection;

APV Readout Order along the Panasonic
(Numbers correspond to channel number in APV. For simplicity,
we use 12 channels rather than 128) :
1086420
1197531

i

Internal APV Channel Mapping
(Specific to APV25 chip)

ode:
Int_t stripCorrection = 32 * (chNo%4) + 8 * (Int_t)(chNo/4) - 31 * (Int_t)(chNo/186) ;

Figure 4: Local Mapping Corrections

When working backwards, the first correc-
tion we must account for is the internal map-
ping within the APV25 chip. The code for this
transformation is shown in the image.

The APV is attached upside down with the
0-channel of the APV connected to the upper
right pin of the Panasonic. The rest of the con-
nections in a suppressed 12 channel format are
shown in the second box of Figure 4.

As long as the X and Y planes of APVs are
attached to the readout board in a right hand
coordinate system, this order must be inverted.
The 0-strip for the readout system in the MTS
and the S4 is connected to the Panasonic pin
in the bottom left corner. The rest of the ar-
rangement and code is shown in the third box
of Figure 4.

At this stage, the mapping for the MTS is
complete and the data being read in the DAQ
is returned to sequential order. In the 54, how-
ever, we have to make one last transformation.
Instead of a back and forth readout pattern
like the MTS, the first fourth of the strips are
attached sequentially to the first half of the
back row of pins. The next half of the strips
are attached across the front row of pins and
the final fourth of the strips are attached to the

Undergraduate Research Report e May 2013

second half of the back row. This pattern is
shown in Figure 5.

Figure 5: S4 Readout

To find the correct mapping, we used the
simplified 12-channel readout shown in the
third box of Figure 3 and opened up the back
row manner described for the 54 readout. This
results in the 12 digit pattern shown in the first
box of Figure 4. The challenge was to find
a set of equations that returned that series to
sequential order. To do so, we split the pat-
tern into three parts: the first three even digits,
the middle six odd digits and the final three
even digits. We then found the difference be-
tween each number and the number which we
needed to map to. For example, 0 transformed
to 0, giving a difference of 0; 2 transformed to
1 giving a difference of 1; 4 transformed to 2
giving a difference of 2. In other words, the
difference increases by 1 for each strip in this
group. The first if-statement shown in Figure
4, was developed to fit this pattern.

The final challenge for the S4 was correct-
ing for the left hand coordinate arrangement
of the X and Y APVs. This caused the readout
for the two detector planes to be inversions of
each other. To correct this, one final 127 - strip-
Correction tranformation is made for all y APV
channels. The enitre code for this mapping can
be found in the SRSAPVEvent.cxx file.

At this point, the local mapping is complete.
All strips within each APV are once again ar-
ranged sequentially. All that is left is to find a
global mapping that arranges each APV and
the strips it contains sequentially on each de-
tector plane. In the case of the MTS and S4,
each detector plane has six APVs. The order

of each APV is designated in the mapping con-
figuration file, and the strips of each APV are
globally corrected by adding 128 x APV number
to each strip. This mapping is applied within
the SRSHit.h file.

III.2 FEC Event Decoding

No matter what we plan to do in AMORE, the
first task always involves mapping and storing
our raw data. Subsequent processes will then
use this raw data for monitoring or analysis
purposes.

At the beginning of each monitoring cy-
cle in SRSPublisher, the raw data from one
complete event across all FECs and APVs is
retrieved from MySQL and parsed using the
DATE object, TDATEEventParser. This breaks
the event into individual units of local data
collection (LDC). The MTS, however, uses only
a single LDC, so this step is trivial. We then
use the EventParser to divide the LDC into six
separate components, one for each FEC. Each
FEC is referred to by a unique eqID variable.
We then cycle through each FEC and store its
raw data in a buffer. The buffer and the size
of the buffer are then used to instantiate an
SRSFECEventDecoder object for each FEC.

The event decoder constructor uses the
mapping file to initialize 16 APVs in each
FEC. We then loop through the raw data buffer
for each FEC. The discrete data in this buffer
is called a word and each APV contains 503
words, leaving each FEC 8049 words (with one
word added by DATE as an event counter).
The first check we make is whether we have
indeed reached the final word of the bulffer.
If we have, we construct the event from the
last APV, delete the final event counting word,
and exit the loop. If we have not, we then
check whether this is the beginning of a new
packet. A packet means all data for a particular
APV. At the beginning of each packet, we build
the apvEvent for the previous APV, unless this
is the first apv in the FEC, in which case we
initialize the event, clear our data container
(called data32BitsVector) and continue to the
next word in the packet. The next 500 words

Undergraduate Research Report e May 2013

in the packet are all raw data from one partic-
ular APV from one particular event. Each of
these words is cycled through and added to
data32BitsVector. At the end of the package,
we move on to the next APV, intiatialize an
SRSAPVEvent object and group all 500 words
under that object. Each SRSAPVEvent for a
particular event from a particular FEC is added
to the list fFECEvent in the SRSFECEventDe-
coder object. Each SRSFECEventDecoder is
then added as a FECEvent in an SRSEvent-
Builder object. The EventBuilder object will be
used by monitoring and analysis processes to
extract raw data.

In order to ensure our FECEvents are prop-
erly ordered, the event number for the first FEC
in any event is stored under the variable "fTrig-
gerCount". As we cycle through all six FECs,
this variable is compared to the event number
of each FEC. If they do not match, then we
have a trigger mismatch and AMORE throws
an exception.

II1.3 Raw Data

If raw data histograms are uncommented
within the designated histogram configuration
file, we can add the decoded data from each
FEC to raw data histograms for each APV. This
is done within the FillRawDataHistos() method
in the SRSHistoManager object. The event-
builder object described above is passed to the
SRSHistoManager and the histograms for all
96 APVs. An SRSAPVEvent object is declared
for each APV and the proper raw data for that
APV is extracted from eventbuilder. This data
is still in 32 bit vector format and needs to be
converted to a 16 bit vector format. This is
done through the following hexadecimal bit-
wise conversion:

for (rawData_itr = fRawData32bits.begin();
rawDat_itr != fRawData32bits.end(); ++raw-
Data_itr) {

Ulnt_t word32bit = * rawData_itr ;

if (((word32bit » 8) & Oxffffff) = 0x414443){
Ulnt_t datal = (word32bit» 24) & Oxff ;

Ulnt_t data2 = (word32bit » 16) & Oxff ;
Ulnt_t data3 = (word32bit » 8) & Oxff ;

Ulnt_t data4 = word32bit & Oxff ;
fRawDatal6bits.push_back(((data2 « 8) |
datal)) ;

fRawDatal6bits.push_back(((data4 « 8) |
data3)) ;

}

}

To perform this algorithm, note the follow-
ing conversions

x>>y=x/2Y (1)
x<<y=xx*x2Y. (2)

For an example illustrating the rest of
this bitwise hexadecimal calculation, see the
ComputeRawDatal6bits method within the SR-
SAPVEevent.

After performing the conversion, each 32
bit vector entry provides two entries to the 16
bit vector. Since each 32 bit vector for each APV
contains 500 entries, each 16 bit vector contains
1000 entries. Each entry corresponds to a dis-
crete voltage value provided by the ADC. And
each vector contains six separate time bins for
each channel in the APV. No mapping has been
done yet, so the strips are not displayed con-
secutively within each time bin.

Raw data histograms are configured with
1000 bins and each bin is filled with the appro-
priate 16 bit raw data entry. The final result is
shown bleow in Figure 7.

II1.4 Raw Pedestals

Plots produced for raw pedestal and pedestal
processes are slightly distinct from the other
monitoring plots because the root files of these
histograms are used in analysis for pedestal
subtraction. However, like the other monitor-
ing plots, they may also be published and mon-
itored within the AMORE GUIL

Raw Pedestal plots are filled, one event at a
time, within the SRSRawPedestal object. The
entire event is retrieved from eventbuilder and
stored in a TList. Each entry corresponds to an
APV and the data is stored in an SRSAPVEvent.
Each of the 96 APVs are then cycled through.
The header level is set from the mapping file

Undergraduate Research Report e May 2013

and the raw pedestal data for each APV is cal-
culated. The first step is to convert the APV
raw data from a 32 bit vector to a 16 bit vector.
This is done in the same way as described in
the FEC Event Decoder.

Next, the time bin common mode is
computed for the particular APV. The 1000
words in the fRawDatal6bits vector are cy-
cled through until three consecutive words are
found below the given header level. When that
condition is met, it means we have reached
the dividers that separate each time bin. We
jump forward nine words and begin processing
meaningful data that corresponds to particular
strips.

Each APV has 128 channels, but when com-
pared to the 128 strips of the detector, the chan-
nels are misarranged. To return our data to rec-
ognizable form, we must map each APV chan-
nel to its corresponding strip. This is known
as the local strip correction, since it rearranges
the strips within each APV but not each APV
within each detector plane. Each channel is
then cycled through and the appropriate cor-
rection is made. The raw data for each strip
is inverted by subtracting from 4096. In the
raw data plots, an event is marked by a voltage
drop. In all subsequent plots, an event will ap-
pear as a jump in ADC count. For raw pedestal
processes, the common mode offset is set to 0.
All that happens at this point is the mapping
of channels to strips and the inversion of the
raw data.

Then we return to ComputeRawPedestal-
Data() and cycle through each time bin for each
strip (post-mapping). The raw data in each
time bin is aggregated for each strip and then
divided by the number of time bins to find the
average raw data value in time for each partic-
ular strip. This value is the raw pedestal for
an individual strip across each time bin across
each of the 5,000 sampled events.

We then return to SRSRawPedestal and cy-
cle through the raw pedestals for each strip
and fill the raw pedestal histograms for each
APV with the appropriate raw data at each
strip. The RMS and Mean plots are not created
from this data until the pedestal process, but

their values at each strip are taken from this
raw pedestal plot.

II1.5 Pedestals

The pedestal process is designed to work in
a similar manner to the raw pedestal pro-
cess. We again work with one event at a
time, this time within the SRSPedestal object.
The data from each APV is assigned to an SR-
SAPVEvent. That apvEvent then uses the 1d
raw pedestal histograms previously created
and uses a ROOT method to solve for the RMS
(noise) and mean (offset) of each plot. The
header level is then set from the mapping file
and pedestal data is computed.

Again, the first step is to convert the raw
data from a 32 bit format to 16 bit. Then
the common mode values are calculated. For
pedestals, this again involves cycling through
each channel, finding the appropriate strip cor-
rection and inverting the raw data values at
each strip. The difference between this and
the raw pedestal process comes in substracting
the raw pedestal mean for each strip from the
raw data value at that strip. This value is set
equal to the total common mode offset and as
each strip is cycled through, the correspond-
ing offset is added to the total common mode
offset count. This is then divided by the total
number of strips to find the common mode
offset. Each time bin of each strip is then cy-
cled through and the common mode offset is
subtracted from the raw data at that particular
strip in time. This value is aggregated for each
of the six time bins and then divided by six to
find the pedestal value for that strip.

We then return to SRSPedestal and fill the
histogram for this particular APV with the
pedestal value of each strip. Again, the RMS
and Mean plots are not created from this his-
togram until the next process.

III.6 Analysis

The analysis section is specific to the MTS or
any station design that requires track selection
and more complicated event analysis.

Undergraduate Research Report e May 2013

We begin in SRSTrackBuilder::BuildDetHits
and cycle through each of the 8 GEMs and,
in turn, each plane for each GEM for a single
event. An SRSDetectorPlaneEvent is assigned
for each detector plane and composed of a list
of APV events from each APV on the detector
plane. Each SRSAPVEvent is extracted from
the eventBuilder described in the FEC decoder
section. The location of the particular APV
on the plane, its header level and number of
connectors are retrieved from the mapping con-
figuration file and assigned to the APV event.

Each of the six APV events must then un-
dergo the different methods of data suppres-
sion in order to isolate the event in time and
space and eliminate spurious data. The mean
and RMS pedestal data for each APV is re-
trieved and assigned to the corresponding APV
event. We then convert the raw data from
the FECs from 32 to 16 bits. Similar to the
raw pedestal and pedestal processes, the time
bin common mode is then computed, cycling
through each channel of APV raw data, per-
forming the strip corrections and inverting the
raw data at each strip. Unlike the previous
two processes, the total common mode offset
is equal to the raw data at each strip minus the
pedestal mean of the strip, aggregated across
all strips in the APV event. This value is then
divided by the total number of channels to
form the common mode offset for a particular
time bin.

We then cycle through the 128 strips and the
6 time bins for each strip and perform common
mode suppression. This is done by subtracting
the common mode offset at each time bin from
the raw data of each strip. We then take the
pedestal subtraction for each strip by subtract-
ing the pedestal mean at each strip from the
raw data of each strip. A cut is designated
as the sigma level multiplied by the RMS at
each strip. The resulting raw data values at
each time bin are added to a vector where the
mean charge, max charge and max time bin
are calculated for each strip. The charge for the
strip is then initially assigned as 0 minus the
baseline mean found from pedestal data. If the
mean charge across a strip is less than the cut

(sigma * pedestal RMS) then the charge at that
strip is assigned as the mean charge across the
time bins. If the mean charge is greater than
the cut, charge is assigned the max charge. We
perform zero suppression by checking if the
resulting charge is less than the cut. If it is, the
raw data at that strip is cleared, while those
strips that surpass the cut are designated as
hits and assigned an SRSHit object. As the
data from each APV is calculated, the hits are
stored, while the noise is suppressed.

Global mapping is done at this time to
map the location of the hit within the inidi-
vidual APV to its actual location along the
detector plane. This is done in the method SR-
SHit::SetStripNo() and described above in the
mapping section.

After data from all APVs in the detector
plane have been analyzed, the hits along each
detector plane are cycled through and clusters
of strips are formed. A single cluster is defined
as consecutive strips that register hits. If the
size of the cluster is greater than 30 strips, the
hit is suppressed and cleared. Please note, this
is somewhat arbitrary and should be optimized
for each station.

The position of the cluster is found in
SRSCluster.cxx through the following routine:

for (int i = 0; i < nbofhits; i++) {

q = ((SRSHit*)templ[i])->GetCharges();
hitposition = ((SRSHit*)temp][i])->GetPosition();
fcharges += q;

fposition += q * hitposition;

}

fposition /= fcharges;

All clusters in the detector plane are then
cycled through to check their quality. This is
done by graphing the position and charge of
each hit in the cluster and fitting it to a Gaus-
sian curve. The position of the cluster is then
adjusted and assigned as the mean of the fit if
the calculated cluster position lies within 0.4
of the mean of the fit. The reduced x? of each
cluster is also calculated and recorded in the
cluster list.

After performing these calculations for each

Undergraduate Research Report e May 2013

detector in the detector plane, we return to
SRSTrackBuilder and assign all detector plane
clusters to an SRSDetectorEvent. After doing
this process for each of the two detector planes
(X'and Y), we check if a hit is registered on both
planes. If it is, we create a station event and
add the detector event. This process is then
performed for each of the 8 detectors. We then
qualify an event for track selection if both de-
tectors from exactly two stations (top, bottom,
left or right) record a hit.

If the event qualifies for track selection, we
start by forming all possible track segments.
We cycle through each station event in SRSSta-
tionEvent::MakeAllHits(). Within this method,
we cycle through each of the detectors in the
event and assign that detector event to the SRS-
DetectorEvent object and create a list with all
hits on the detector. The position and charge
for each hit is recorded and the global coor-
dinates of the hit are calculated based off the
detector locations provided in the mapping
configuration files. This means the hit is local-
ized on a particular strip but then mapped to a
particular location in space based off the coor-
dinates and rotations provided in the configu-
ration file and calculated through an alignment
script. The charge and location is then assigned
and stored within an SRSDetectorHit object
which is stored in each SRSDetectorEvent.

We are still dealing with one particular pair
of detectors (top, bottom, left or right) and
to form the various track candidates we cycle
through the detector hits for each of the two
detectors, pivoting off one hit from one detec-
tor, such that every hit on (for example) the
first top detector is compared to every hit on
the second top detector. Each pair of hits is
designated and recorded in an SRSTrackCandi-
date.

Now, we can start track selection in
SRSTrackBuilder::FindTrack() by comparing
the track candidates in each of the two SRSSta-
tionEvents (top, bottom, left, or right). The
distance of closest approach (DOCA) threshold
is assigned as 10 and the minimum DOCA
as an arbitrarily high 3000. The direction in
space of each of the track candidates is calcu-

lated (using the global position of each of the
hits described above) and the angle between
these tracks is found using the ROOT library
TVector3::Angle() method and is defined as the
scattering angle of the track. To make ensure
this function returned the correct angle, we
check if the angle is greater than 180 - itself.
If it is, the angle is set to 180 - itself, giving
us the smaller of the two angles. The charge
of each track and the total charge of the two
are recorded, and the charge sharing is found
by taking the total charge in Y of both track
candidates divided by the total charge in X of
both candidates. The poca point for the track
candidates are then found by the following
routine:

hitl = trackCandidatel->GetFirstHitLocation();
hit2 = trackCandidate1->GetLastHitLocation();
hit3 = trackCandidate2->GetFirstHitLocation();
hit4 = trackCandidate2->GetLastHitLocation();

const TVector3 U = hit2 - hitl;
const TVector3 V = hit4 - hit3;
const TVector3 W = hitl - hit3;

Double_t a = U.Dot(U) ;
Double_t b = U.Dot(V) ;
Double_t ¢ = V.Dot(V) ;
Double_t d = U.Dot(W) ;
Double_t e = V.Dot(W) ;
Double_t D = (a*c)-(b*b) ;
Double_t sc, tc ;

if (D < 0.001) { // Lines are almost paral-
lel

sc=0.0;

tc=(b>c?d/b:e/c);

}

else {

sc = ((b*e) - (c*d)) / D;

tc = ((a*e) - (b*d)) / D;

}

TVector3 Psc = sc*U ;
TVector3 Ptc = tc*V ;
TVector3 subdP = Psc - Ptc ;
TVector3 dP = W + subdP ;

Undergraduate Research Report e May 2013

TVector3 PSc = hitl + Psc ;

TVector3 PTc = hit3 + Ptc;

TVector3 midPsc = 0.5*PSc ;

TVector3 midPtc = 0.5*PTc ;

TVector3 pocaPoint = midPtc + midPsc ;
doca = dP.Mag();

return pocaPoint;

If the resulting DOCA is less than the mini-
mum DOCA (defined earlier as 3000) then the
minimum DOCA is set to DOCA. The track
selection criterion is then the following:

1. The pair of SRSTrackCandidates (four
total SRSDetectorHits) from any given
SRSStationEvent with the shortest dis-
tance of closest approach (DOCA)

2. The POCA point for that track must be
greater than 10 mm from the nearest de-
tector hit.

III.7 Tracking

Tracking runs are those that produce monitor-
ing plots. They can be performed either online
or offline. SRSHistoMananager is the primary
class for these runs. They do not employ track
selection, and therefore can be used on the
MTS or single detectors like the S4 for detector
characterization.

We have three groups of tracking plots: zero
suppression, cluster statistics and 2d plots. The
type of plots produced are set within the histo
config files in the ~/amoreSRS/ configFileDir
directory. Look at the appropriate shell script
and determine which histogram config file you
are using. Then comment or uncomment the
appropriate lines in the configuration file to
produce a particular type of histograms in your
next run.

Histograms are initially configured and set
aside for publishing at the beginning of each
run in the Book Monitor Objects portion of SR-
SPublisher. This cycle appears just once each
run and precedes the Monitor Objects cycle.
Like the previous processes, during tracking
runs raw data is decoded by the FEC Event

Decoder, transformed from 32 bit to 16 bit vec-
tors, inverted, and subjected to common mode
suppression, pedestal subtraction and zero sup-
pression.

At that point, the various histograms are
filled as defined in SRSHistoManager. Suppres-
sion plots are made to display a single event
and show the evolution of data suppression
cuts made to the data. Cluster and 2d plots
are cumulative and provide large scale detecter
characterization. Examples and explanations
of all of these plots are shown below in the
monitoring section.

III.8 Alignment

This section should be expanded upon in fu-
ture documentation. It includes the alignment
routine in AMORE and the offline alignment
script found in the same location as the offline
POCA analysis (~/workspace/src).

IV. AMORE GUI

The AMORE GUI - accessible by the
"amoreGui" command - is the generic GUI
developed by the team at ALICE to work in
conjunction with but external from AMORE.
It appears on the subscriber side of the pub-
lisher /subscriber paradigm but its code can be
changed without affecting a current AMORE
process. This is in contrast to the Ul module
that is found directly in the amoreSRS direc-
tory. Any GUISs built in that directory are more
closely linked to the publisher and both the
publisher and the GUI have to be recompiled
any time changes are made.

In the past, we used crude GUIs that can
be found in the Ul module. These could still
be used but they are more heavily hard coded
and, in their current form, require separate
programs for each agent being used. For ex-
ample, if you are using the agent SRS01, you
would have to use the program SRSUL. If you
are using the agent SRS02, you would use the
program SRSUI2. You also have to suscribe
directly to a particular histogram in order to
have access to it in the GUI This means you

Undergraduate Research Report e May 2013

would have to know and input the name of the
file ahead of time. The user also has little to no
freedom to change the layout of these GUIs.

The generic GUI (accessible by the com-
mand "amoreGui") is much more dynamic and
overcomes all of these problems. It allows us to
visualize histograms beings published by any
agent at any time. We could even look at mul-
tiple histograms from multiple agents at the
same time and have the freedom to organize
the plots on our canvas in any way we choose.
To access a particular plot, you must first create
a canvas or have a previous one opened. You
can create a new canvas by clicking the "new
canvas" icon or you can open an existing can-
vas layout by clicking the "open folder" icon.
Once you have done this, you can access partic-
ular plots by opening the drop down menu on
the left hand side of the GUI. You will then see
all plots being published by the AMORE agent.
Double click the name and the plot will appear
on your canvas. We can access the root file of a
particular plot by double clicking that plot on
the canvas. We can then edit or save the plot
in a manner similar to a TBrowser (In ROOT, a
TBrowser is accessible by logging into ROOT
with the command "root -1" and then typing
"new TBrowser()". You are then able to view,
modify or save any files saved with a ".root"
extension.)

The source for this GUI is found in ~/dqmv.

|
7]

j

Figure 6: amoreGui

10

V. MySQL

Both DATE and AMORE use a MySQL
database to store data before writing to a
disk. In DATE, this is implemented by the
newMysql.sh script and the subsequent com-
mands "./date/setup.sh” and "newDateSite.sh".
In AMORE, this is implemented by the "amore-
MysqlSetup"” command. This is all demon-
strated in Mike Staib’s Final Documentation.

In general, you should not have to in-
teract directly with MySQL, as most of this
is automated and done behind the scenes.
However, if you are updating or reinstalling
DATE/AMORE and encounter errors in the
procedure described in the documentation, you
may need to manually remove already existing
MySQL tables.

To do this, open a command line and log
into the MySQL server by typing "mysql -
u root -p". When it asks for a password
leave it empty and press enter. You can
then see the databases on the system by typ-
ing "SHOW DATABASES;". Identify the cor-
rect database and type "DROP DATABASE
<Database Name>;". Be careful using this com-
mand because you will lose any information
stored in the old database.

You also may occassionaly receive an error
from AMORE stating that a particular agent
is dead. If that is the case and restarting the
machine does not resolve the problem, you
need to manually delete the agent from MySQL
and then recreate it using the "newAmore-
Agent" command described in the documen-
tation. To delete this agent, log into MySQL,
type "SHOW DATABASES;" to see the list of
databases. Identify the correct database and
type "USE AMORE;". Then type "SHOW TA-
BLES;". You should now see a list of all the con-
figured agents. Find the one you wish to delete
and type "DROP TABLE <Table Name>;".

Undergraduate Research Report e May 2013

VI. MONITORING

VI.1 Raw Data Plots

Raw data plots depict a single APV event be-
fore any form of strip correction, data suppres-
sion or tracking. In figure 7, the event is shown
in terms of a 16 bit data index that is only one
step removed from the 32 bit data format in
which it arrives from the FEC. Each event is
separated into six 25 ns time bins (as set by the
slow control FEC configuration file). Within
each time bin the raw data from each detector
strip is ordered in terms of the channel number
within the APV. As such, the hits within each
time bin do not appear sequentially in these
plots. What they do illustrate is the time bin of
maximum charge, giving us our best estimate
in time for our event. If our slow control set-
tings are properly configured, events should
generally peak in the middle time bins.

FEC 4 CH 10 eventNo 28229

Wl

3000

ADC Counts

2500

2000

1500

1000

e e b b b by b b P Py
0 100 200 300 400 500 600 700 800 900 1000

16 Data index

Figure 7: Raw Data Plot
Troubleshooting:

e Time bins show up empty or partially
empty — This often happens in the first
run after changing scenarios and is usu-
ally indicative of a bad connection be-
tween the HDMI cable and the APV. Use
the labels on the monitoring plot to iden-
tify the offending FEC and HDMI cable.
Then use the label on that cable to iden-
tify which APV it belongs to. If it’s from
one of the APVs by the station opening,
the cable was likely bumped while chang-
ing the station. Make sure the connection
between the APV and HDMI is secure

and very gently nudge the cable back
into place. Then shut off the power to
the corresponding FEC (waiting until all
lights inside the FEC are off), restart the
power and see if the problem is fixed.

The channel shows up with excessive
noise — This is usually indicative of a bad
connection between the HDMI cable and
the FEC. Unplug the FEC (waiting for all
of its lights to shut off) and then remove
and replug the HDMI cable that corre-
sponds to the faulty channel. Restart the
power to the FEC and see if the problem
is fixed. If this does not work after a few
tries, you may need to replace the HDMI
cable.

V1.2 DPedestal Plots

In order to properly suppress pedestal
data from each data run, we must per-
form two processes: raw pedestals and
pedestals. Each of these in turn publish
two types of histograms per APV: mean
and RMS histograms. The pedestal mean
is used to localize each event in space,
while the RMS is used to suppress noise
in each channel.

[This section edited by MH] Pedestal data
is taken at an HV where there is no gas
gain in the detector (typically 2000V). The
voltage baseline of each strip is sampled
5000 times. If the detector were per-
fect and without any noise, we’'d digi-
tize the same analog value 5000 times,
which would result in a distribution of
5000 identical digitized values that would
give a distribtuion that basically resem-
bles a zero-width delta function. With
analog noise present on the strips that
distribution widens. The mean of the
pedestal distribution is a measure of the
mean analog voltage, i.e. an offset from
0V or the “pedestal” on top of which a
signal pulse sits. The rms-width of the
pedestal distribution is a measure of the
noise in the channel. The more noise is

11

Undergraduate Research Report e May 2013

present, the more the sampled baseline
values will fluctuate and the wider the
pedestal distribution will be.

In raw pedestal plots, APV channels have
undergone strip correction and the raw
data in each channel has been inverted,
giving us a different measurement from
the raw data plots. Each time bin for
each strip is cycled through and the com-
mon mode offset — defined as 0 for raw
pedestal runs — is subtracted from each
strip in time. Once each time bin is cy-
cled through, the raw data for a particular
strip across each time bin are added and
divided by the number of time bins to
find the raw pedestal value for each strip.
The mean and RMS of these values across
all 128 strips is what appear in Figures 8
and 9.

e Raw Pedestal Mean

apvNo_0_rawOffset_allstrips

apVNo_0_rawOffset_allstrips

The only difference between the Raw
Pedestal and Pedestal plots is that the
common mode offset is no longer zero. It
is now defined as the average raw data
across all strip minus the raw pedestal off-
sets at each strip. This value is subtracted
from each strip in each time bin and the
average raw data across each time bin is
found for each strip. This data is plotted
and the mean and RMS of this plot are
used to produce Figures 9 and 10.

e Pedestal Mean

apvNo0_Offset

apvNo0_Offset

1580 Entries

1560

1640~

1520

1500

1480

1460

1440

T T T T T T T I T
=

1420

Mean 62.7
RMS 36.98

1560 T L RS 3650 Figure 10: S4 Pedestal Mean Plot
15A07 \L |
= L Lﬂ! ﬂ) e Pedestal RMS
1500/~ L | m
1480 H W‘ ﬂﬂJ
1460 — q ‘ “h JJL . .
g ' 2‘0 — 4‘0 — s‘o & — 1&0 i F RMS 356

12

Figure 8: S4 Raw Pedestal Mean Plot

e Raw Pedestal RMS

apvNo_0_rawNoise_allstrips

SpVNo 0 rawiise_alsips |

n Entries 728
Mean 63.9
6— RMS 367
s5)
N
z:.sﬂtL HI“HJ m \[JHWMWJ . “'
L £ gl ol
r ML o mn
‘o T I R o

Figure 9: S4 Raw Pedestal RMS Plot

), m ! ”HMMH

M:J il !

— ' Ll TR Lo T Lo L
0 20 40 60 80 100 120

Figure 11: S4 Pedestal RMS Plot

VI3 Suppression Plots

The following six plots were taken from
the MTS and depict a single event. The
procession of cuts made to the original
data is evident from one plot to the next.
By the end of the process, we will have

Undergraduate Research Report e May 2013

isolated each event at a particular loca-
tion and time and suppressed all unnec-
essary data.

Raw Plane Data

When an event is detected and triggered
by the scintillators, the FECs dump all
data stored for the corresponding detec-
tors from the appropriate time bins. This
process is controlled by DATE and the
slow control configurations sent to the
SRS. When the data is ready for process-
ing it is sent to AMORE and looks like the
data shown in Figure 12 when grouped
as a single time bin across a single plane
of each detector.

GEM2XRawPlaneData1D

000 “GEM2XRawPlaneData 1D
£F Entries 768
3 Mean 381
8 C RMS 222.1
Sro00 - 2221
219001

1800[—

1700

1600

1500

C | | | | | ! |

0 200 30 400 500 600 _ 700

Strip Number

Figure 12: Raw Plane Data PLot

Common Mode Suppression

Common mode suppression refers to the
event normalization across each time bin.
Each event is generally configured with
25 ns time bins, and, in the MTS, each
event is defined as six time bins. Since
there is baseline charge fluctuation from
time bin to time bin, common mode sup-
pression is necessary to normalize and
isolate the event at its time bin of maxi-
mal charge.

The difference between Figures 12 and
13 is subtle, and the way it is suppressed
is not completely clear from these plots
alone. That is because the suppression
made to each strip in Figure 13 is inde-
pendent of the other strips shown. It

is only dependent on the ADC count
for the same strip number at different
time bins. This information is suppressed
from these plots but an example of the
ADC count of the hit at strip 670 can be
seen in the Figure 15. For this reason, the
mean across all strips in Figures 12 and
13 changes by only 0.2 ADC counts.

GEM2XComMode1D

GEM2XComMode1D
Entries 768
Mean 381.2
RMS 2218

ADG Counts
H
=
S

| | 1 | | |
100 200 300 400 500 600

700
st Number

Figure 13: Common Mode Suppression Plot

Pedestal Subtraction

Pedestal subtraction refers to the stage at
which previously generated background
pedestal plots, like those shown in Fig-
ures 8-11, are used to suppress noise, nor-
malize the ADC count across each APV,
and localize each hit in space. This elim-
inates the downward sloping ADC pat-
tern across each APV and suppresses the
absolute noise.

GEM2XPedSub1D

GEM2XPedSub1D
Entries 768
Mean 369.1
LRMS 2119

S
3
53

&
2

ADC Counts
w o

8

3

n
>
g

~
3
8

v e Lo Lo b e e Loy Law
0 100 200 300 400 500 600 700

Mon May 6 17:29:22 2013, Run 1 Strip Number

Figure 14: Pedestal Subtraction Plot

e Zero Suppression

13

Undergraduate Research Report e May 2013

14

Zero suppression acts next to completely
isolate an event and suppress the remain-
ing noise. As Figure 15 shows, this
greatly reduces the data flow. Instead
of storing baseline fluctuations from 765
channels of noise (in the event shown in
this plot), we reduce those bins to zero
and adjust the three containing our event
accordingly.

GEM2XZeroSup1D

GEM2XZeroSup1D
Entries 3
Mean 662.1

|RMS 0.7129

ADC Counts
w
&
2

> =
8 g

@
=]

| | 1 1 1
100 200 300 400 500

Mon May 6 17:20:22 2013, Run 1

&

600 700
hit position (strip number)
Figure 15: Zero Suppression Plot

Plane Time Bin

This 2d histogram shows the evolution
of our event over multiple time bins af-
ter suppressing noise and normalizing
across each channel and time bin. For
a properly reconstructed event, like the
one shown, we see a wave like shape
that peaks in a particular time bin. The
final cut is then made to suppress all non-
maximal charge time bins.

GEM2XPlaneTimeBin2D

| GEM2XPlane TimaBin2D
Entries 18
Mean x 662.1
Meany 2537
RMSx 0.7118
RMSy 1536

700
A8
oo 500y o

Mon May 6 17:20:22 2013, Run 1

Figure 16: Plane Time Bin Plot

o Time Bin with Max Charge

This 2d histogram shows the effect of
the final cut across the time bins. After
undergoing this suppression process, we
now have an event that is localized in
both time and space and have eliminated
background noise.

Time bin with maximum charge for GEM2X

GEM2XMaxTimeBin2D
Entries 3
Mean x 11.2
Mean y 1.667
RMSx 0.3266
RMSy 04714

ez,
5'%1@

0 -150

Figure 17: Plane Time Bin with Max Charge

Plot

V1.4 Monitoring Plots

The following monitoring plots are de-
signed to be viewed in real time as we
take data, allowing a check on the in-
tegrity of our results. All the data in
these plots first undergoes the suppres-
sion techniques described above, and
as such, you must take and process a
pedestal file before you can view these
plots. But note, only the event display
uses data from more rigorous track selec-
tion.

Cluster Size

When an ionization event occurs multi-
ple strips in both dimensions register the
charge. These strips are referred to as
clusters, and the cluster size is the to-
tal number of consecutive strips in one
dimension showing noise above back-
ground levels. This is shown in plot 18.

Undergraduate Research Report e May 2013

GEM1X Cluster Size Distribution with 2920 Good Events

GEM1XClust 1D

Entries 3599

Mean 4.629
RMS 2251

900

Frequency

80

3

70

8

B0

3

50

404

3

3
L AT LR AR R R NN L AR TR

300

200

100

T) [S A |
2 4 6 8 10

Mon May 6 09:53:13 2013, Run 1

T
g 12 14
Nurmber of Strips in Gluster

Figure 18: Cluster Size Plot

The smaller the cluster size, the better
the spatial resolution of our detectors.
Because cosmic ionization events typi-
cally come from a 45 degree cone cen-
tered above the station, tracks transvers-
ing the top and bottom detectors occur
at smaller azimuthal angles (taken from
the z dimension) and result in smaller
cluster sizes than those entering the side
detectors. These plots can be seen as a
test of our ability to localize a particular
event.

The number of good events in these plots
refers to the number of differentiable
events, while the number of entries refers
to the number of good events times the
mean cluster multiplicity. So all clusters
appear as entries, even those that occur
within the same time bin and are indis-
cernible from one another.

Cluster Multiplicity

Whereas the cluster size refers to the
number of strips activated during a par-
ticular event, the cluster multiplicity
refers to the number of clusters found
at any given time within a single plane of
a single detector. This may be indicative
of multiple events being registered or of
sporadic noise. Regardless, a high cluster
multiplicity interferes with our ability to
properly reconstruct a track by present-
ing multiple routes by which the ionizing
particle may have traveled.

Note that the number of good events in
these plots is equal to the total number
of entries.

GEM1X Cluster Multiplicity Distribution with 2920 Good Events

GEMIXClusterMul D
Entries 2920
Mean 1.219
RMS 0.7221

n
&
2
3

f

Frequency

2000

1500

1000

500

01 2

Man May 6 09:53:13 2013, Run 1

7] 9 10
Number of Clusters per Event

w
Iy

5 6

Figure 19: Cluster Multiplicity Plot

Hit Distribution

The hit distribution refers to the number
of times any particular strip across the
detector has detected an event over the
course of the ongoing data run. Over
a large enough sample size, we would
expect to see this distribution to flatten
out across all strips. If it does not, then
the geometry of the station or the hard-
ware being used is biasing our results. In
Figure 20, the two empty strips occuring
at about £ 50 correspond to the spacers
used in each detector.

In these plots, the number of entries cor-
responds to the number of strips in each
cluster of hits across all events. In other
words, it can be seen as an aggregate
view of the data shown in the cluster size
and multiplicity plots.

GEM1X Hit Distribution with 2920 Good Events

GEM1XHitDist1D

g s Enties 17215
s L Mean -0.5404
g [RMS 87.61
g r
40—
30—
20
10|
L PN I ST BRI SR |
-150 100 50 0 50 100) 150
Position {mm]

15

Undergraduate Research Report e May 2013

16

Figure 20: Hit Distribution Plot

e Time Distribution

A time bin distribution plot shows the
distribution of time bins in which the
maximum charge occurs. These plots can
be used to adjust the slow control set-
tings to either suppress the number of
time bins or to adjust the window of the
event in relation to the trigger. Ideally,
the max time bin should be in the mid-
dle of this plot. That would indicate that
the triggers are configured correctly and
the FECs are not throwing out good data.
These plots can be used in conjunction
to the Plane Time Bin plots showing a
single event in time and space.

The number of entries in this plot are
tabulated in the same way as the hit dis-
tribution plot. It is equal to the number
of good events multiplied by the number
of clusters per event multiplied by the
number of hits per cluster. Note that the
number of good events listed at the top
of this plot is wrong. That bug has now
been fixed.

GEM1X Time Distribution with 48 Good Events

X
2

2
[

Entries
Mean
RMS

Frequency
® 3 B =
8 8 8 3 3
O;‘\H‘H\‘H\‘H\‘\H‘\ \H‘H

@
3

IS
S

N
S

GEM1XTimeDist1D

850633
6.665
5.436

Figure 21: Time Distribution Plot

e Hit Map

The 2d hit map plots the hits in x strips vs
y strips (or equivalently hits in x position
Vs y position) across the entire detector.
Like the previous plots, no track selection
occurs with these plots and the number

18
Time Bin

of entries is equivalent to the number of
entries in the x hit distribution plot multi-
plied by the number of entries in the y hit
distribution plot. Keep in mind, this im-
plies that many of the hits represent false
positives, since we assume that one event
has exactly one cluster in each dimen-
sion (and no track or cluster selection has
been made). To account for this, the top
and bottom hit and charge maps exclude
all events with a cluster multiplicity in x
and y not equal to one. To make the stats
more comparable, the side detector plots
are not set with this with restriction. As
such, symmetric-looking artifacts or false
positive events show up on the side hit
and charge maps.

Hit map for detector GEM1

& | Enties 29121

¥ Position [mm]

-150 -100 -50 0 50

0
Mon May 621:23:25 2013, Run 1 Position [mm]

108
X

Figure 22: 2d Hit Map

Charge Map

The 2d charge map is similar to the hit
map in plotting x vs y location but this
time it is the charge that is aggregated,
not the number of hits. The spacers that
are visible in the hit distribution plots
are again visible in a checker board type
of pattern. Charge across the spacers
should be low while charge across the
active strips should be uniform. Non-
uniformity is a sign of detector bias. Note
that the plot shown in Figure 23 is typ-
ically shown as the average charge in x
and y across all hits in each bin. The cur-
rent version of our code, however, does
not take the average. The fact that the

Undergraduate Research Report e May 2013

cosmics provide approximate spatial uni-
formity allows us to view these plots as
a sort of average. If the charge maps are
to be used with a station with a radia-
tion source, the average should be taken
explicitly.

Charge map for detector GEM1

¥ Position [mm]

-150 -100 -50 0 50 t

Mon May 621:23:25 2013, Run 1

A 5
X Position [mm]

Figure 23: 2d Charge Map

Charge Sharing

2d charge sharing plots map the charge
sum in the x strip clusters vs the charge
sum in the y strip clusters. Since one set
of strips physically overlays the other set
of strips in the detector, we expect clus-
ters in one dimension to be preferenced
slightly more than those in the other. This
is visible in the x dimension in Figure 24.
However, this preference is only slight,
and in general, we expect a symmetric
relationship between clusters of one di-
mension vs the other.

There is also a correlation between clus-
ter charge sum and cluster size and our
ability to localize a particular event. The
higher the charge sum, presumably the
more strips have been activated and the
lower our resolution. However, a high
ADC count could also be indiciative of a
more energetic event.

Charge Sharing for detector GEM1

cluster [ARC Counts]
S
S

sum in ¥ strip
&
z
S

000

Charge

o
3
3

S

[|
600 800 1000 1200 1400 1600 1

|
200 400 800
Charge sum in X strip cluster [ADC Counts]

Mon May 6 21:23:25 2013, Run 1

Figure 24: 2d Charge Sharing

e Event Display

Whereas the previous plots are all moni-
toring histograms, the event display was
designed to extrapolate the entire 2d path
of incoming and outgoing tracks. This
provides a final big picture look at detec-
tor monitoring, and over large enough
samples all active strips should register
hits. It also shows any geometrically pref-
erenced portions of the detectors.

It is important to note that unlike the
monitoring histograms that do not use
track selection, the event display requires
it. It uses the AMORE hit files as input,
and unless we are running the analysis
portion of AMORE, we cannot use the
event display. To save time, all analysis
is currently done offline, and thus the
event display cannot be used during on-
line monitoring.

In the display, hits are marked by white
dots, incoming tracks are red and outgo-
ing tracks are blue. Four detectors are
visible in the XZ projection and all eight
in the YZ projection. Since the side detec-
tors are localized in the YZ dimensions,
side detector hits show up as randomly
scattered dots in the XZ projection.

The event display can also be config-
ured to show only those events passing
through a particular target within the ac-
tive area.

This display will eventually be integrated
into the amoreGui to provide easy ac-

17

Undergraduate Research Report e May 2013

cess. In the meantime, the source is lo-
cated within the amoreSRS/src/ui direc-
tor, and the program can be accessed by
typing "amore -d SRS -m SRSEventDis-
play" in a terminal. Or on the amorePC, it
can be accessed by the shortcut command
"SRSEventDisplay". To work properly, an
offline analysis run must be started and
the agent used should match the agent
shown in the event display source. There
was a configuration file for the display,
but for trouble shooting reasons this is
now deprecated. This code needs to be
cleaned up in the future but works fine
for the time being.

Figure 25: Event Display

VII. ANALYSIS

The analysis methods described below are all
done offline. They occur after data is taken
and processed and typically require poca files
as input. The aggregate program is currently
configured in the Eclipse IDE and saved under
the name "POCA analysis". All of the plots
shown below were generated through the con-
figuration file "PocaConfig.txt" found in the
POCA analysis folder. The main function is
"PocaAnalysis.cc". Eclipse itself is accessed
on the AmorePC by the command "cd eclipse;
./eclipse".

For all these plots, please keep in mind
that MTS analysis involves two important and
distinct sources of information: scattering an-
gle and POCA statistics. Dense objects have a
higher distribution of Coulomb scattering and
also generate more POCA points. The analysis
techniques described rely on these two ideas.

18

VII.1 POCA Plots

Currently, 2D POCA plots are the primary vi-
sualization during MTS analysis. They use the
POCA files generated in AMORE and plot each
of the points and accompanying scattering an-
gle in 2D histograms.

Figure 26: POCA plot from the leadbox3x fcenario

To construct POCA plots, first make sure
that you have added the correct poca text file
to the POCA analysis directory. Then open the
PocaConfig.txt file and set "nInputFiles:" as "1".
Then change the name of "inputFilel" to re-
flect the poca file you just added. Since POCA
plots are only 2d plots, the abscissa refers to
the axis that is held constant. If you want to
see POCA plots for all three pairs of dimen-
sions, change "abscissa" to "XYZ". The output
directory is set to a particular file location and
the scenario name will be the name shown on
each plot. The world variables are the absolute
length of each spatial dimension in the MTS in
millimeters. In the current station, we usually
approximate this with 300 for each dimension.
The center of the station will then be aligned
halfway between each length. The depth of
your slice refers to the depth of the abscissa
axis. For example, if you are making XY POCA
plots, a 40 mm slice means that each plot will
include 40 mm in the Z dimension. The mean-
ing of the variables "nOffset" and "constant"
are rather complicated and explained in the
conifiguration file. In short, however, they are
defined such that we automatically generate
40 mm slices (for example) at every 5 mm in-
terval along the abscissa. As a general rule,

Undergraduate Research Report e May 2013

we keep "nOffset” at 16 and "constant" at 40.
The bin size refers to the dimension of each
histogram bin in the non-abscissa dimension.
This means that the 3d voxel area is equal to
binsize * binsize * slice. The minValue and max-
Value variables set the color scale for the POCA
plots.

The next set of values refers to the cuts
made to particular plots. Before a point is
placed in a bin, it undergoes a min and max
angle cut. If the scattering angle at that poca
point is less than the configured min angle cut
or greater than the max angle cut, that point is
excluded. After all the bins are filled a further
cut, called "min muon cut", may be made to
each bin. If that bin has fewer POCA points
than the min muon cut, all entries in the bin are
erased and its value set to 0. The final cut is a
neighboring muon cut (NMC) and it simply ag-
gregates the contents of each bin’s eight neigh-
boring bins. If the number of POCA points in
those eight bins is fewer than the NMC, the
contents of the central bin are erased and the
bin set to 0. Note that the color of each bin is
equivalent to the combined scattering angle of
all POCA points in that bin.

The histo output section is used to define
whether you want to generate POCA plots,
stats plots or both. If you do not want to output
spatial resolution plots and scattering density
plots, make sure "spatialRes", "nScenarios" and
"nObjects" are all set to 0.

VIL.2 Statistics Plots

Statistics plots (or stats plots) are similar to
POCA plots; the only difference being that
stats plots ignore the scattering angle. The
color value of each bin corresponds to the raw
number of POCA points found in the bin. The
same cuts applied to POCA plots are applied
to stats plots.

The importance of stats plots becomes clear
when observing the POCA distribution plots
described below. Both scattering angle and
POCA statistics are capable of discerning the
nuclear makeup of objects of interest, but
POCA statistics appear to paint that picture

quicker. Whereas scattering angle is highly
dependent on the resolution of the detectors
and the accuracy of the track reconstruction,
the simple presence of a POCA point is indica-
tive of higher levels of scattering and avoids
the false conclusions that a precise scattering
measurement might imply.

To construct stats plots, follow the same
instructions found in the POCA plot section.

statsX YatZ_minus65mm

10T

Figure 27: Stats plot from the leadbox3x scenario

VIL.3 Spatial Resolution

The horizontal and vertical resolution of our
DAQ system is an important metric in proving
the viability of muon tomography. Moreso, our
use of GEM detectors is largely predicated on
the idea that they provide better spatial resolu-
tion than drift tubes. One way to visualize this
resolution is through spatial resolution plots.

Spatial Resolution: WPb45mm

Total Events = 3390

’ H S
B
N

Z Position

=
3

140[-

9,
om

g

i
N
S

® 2
S 3
T T

Simple Scattering Density

@
=]
T

IS
S
T

Figure 28: Spatial resolution plot from the
WPb45mm scenario

These 1d plots map total scattering as a
function of location. We often use them in sce-
narios in which two objects are placed closely

19

Undergraduate Research Report e May 2013

together in the same plane. If we can resolve
the empty space between the two objects, then
we can claim a horizontal or vertical resolution
at that distance.

To generate these plots without
POCA /stats plots, first make sure your num-
ber of input files is set to 1 and the name of that
file is the same as the poca file you added to
the project directory (minus the .txt extension).
If you only want to generate spatial resolution
plots, make sure the "pocaPlots", "statsPlots",
"nScenarios" and "nObjects" variables are set
to 0 and the "spatialRes" variable is set to 1.
Then enter the 3d min and max coordinates
of the volume you wish to analyze. This area
should completely encompass the objects of
interest and include the empty space between
the objects.

VII.4 Scattering Distribution

Scattering distribution plots define explicit vol-
umes of interest within the MTS and bin the
scattering angle of each POCA point for each
volume defined. The resulting distribution is
smoothed with a Landau curve and normal-
ized by dividing each bin by the total number
of POCA points within the volume. As a rule,
we expect the highest proportion of scattering
angles to be low regardless of the density of
the object being imaged. However the mean
is shifted slightly to the right for heavier ob-
jects and the tail should be slightly higher. In
the figure shown below, the "No" label repre-
sents noise and is defined as any volume inside
the MTS that does not include the objects of
interest.

20

Scattering Distribution

L
0.257‘

o
S
o«
g
Tt
g
N
g
2

e
a
|

=3
Lgﬂ
E5E =

w

2

z

Fraction of tracks per 0.5 dOegrees [1/0.59
=
=3
o
£

T A
8 10 12
Scattering angle [°]

Figure 29: Scattering distribution plot

To generate these plots, make sure you
have added your POCA text file to the project
folder. Then turn off the POCA, stats and
spatial resolution plots by setting "pocaPlots",
"statsPlots", and "spatialRes" variables to O,
and activate scattering and poca distribution
plots by setting "nScenarios" to the number of
scenarios you would like to run at once and
"nObjects" to the number of objects you would
like to define. If you would like to turn on the
"noise" variable mentioned above, change that
value to 1. Then, as an example, follow the
following format for each object you wish to
define:

objectl Pb
minX1 -20
maxX1 23
minY1 -23
maxY1 20
minZ1 -32
maxZ1 11
radLen1 0.5612.

VII.5 POCA Distribution

While scattering distribution tests the ability of
scattering angle to differentiate objects, POCA
distribution plots test the utility of POCA statis-

. 1
tics alone. In general, we expect an 7 rela-

tionship between Coulomb scattering and radi-
ation length. So by plotting normalized values

Undergraduate Research Report e May 2013

of POCA points in each object vs the radiation
length of that object, we can test the ability of
the MTS to discriminate these objects. By com-
paring POCA and scattering distribution plots
at low statistics, we have found that POCA
statistics are a better indicator of object density
at low statistics than scattering angle. This has
implications in fast detection algorithms.

Poca Distribution

StargetPbl4junel_6k (solid Kne)
ChiSquared / ndf 1.93
lpb

0.

o

0.

=

POCA L
[cm]
= =
2 5
A e e e e R e

®
s

g
:

Lo b b Lo Lo L 11
0.3 1 T3 2 23 3 35
Radiation Length of Element [em]

Figure 30: POCA distribution plot

To generate these plots, follow the same di-
rections discussed above under scattering dis-
tribution. POCA and scattering distribution
plots will be generated at the same time.

21

	Scalable Readout System (SRS)
	Data Acquisition and Testing Environment (DATE)
	Slow Control: Initialize the SRS
	Run Control Troubleshooting

	Automatic Monitoring Environment (AMORE)
	Mapping: Local and Global Strip Corrections
	FEC Event Decoding
	Raw Data
	Raw Pedestals
	Pedestals
	Analysis
	Tracking
	Alignment

	AMORE GUI
	MySQL
	Monitoring
	Raw Data Plots
	Pedestal Plots
	Suppression Plots
	Monitoring Plots

	Analysis
	POCA Plots
	Statistics Plots
	Spatial Resolution
	Scattering Distribution
	POCA Distribution

