
Classification Methods for t∗ Search
Undergraduate Research Report

Nico Braukman · April 2022

Abstract

A summary of the multivariate analysis (MVA) methods used for classification of events in the search
for t∗t̄∗ pair production in the CMS experiment in presented. Signal events are the pair production of
excited top quarks t∗ (sometimes denoted T) which decay into the lepton + photon + jets final states:
t∗t̄∗ → tt̄γg → l+γ+jets. Several MVA methods are investigated here: an Adaboost boosted decision tree
(BDTA) with the TMVA package, a BDT with the XGBoost package, and five neural networks (NN)
with the Keras package. The discriminant distributions and receiver operating characteristic (ROC)
curves are computed for each method. The upper limits on the signal strength (signal cross section) at
95% confidence level are also computed for the BDTA (TMVA) and NN (Keras) models.

I Background

The exited top quark t∗ is a particle predicted to ex-
ist in some beyond the standard model (BSM) frame-
works which consider the top quark t as a composite
rather than an elementary particle [1]. Experimental
discovery of the t∗ would provide direct evidence for
the composite nature of the top quark. The High
Energy Physics research group at Florida Institute
of Technology is performing a search for excited top
quark events (t∗t̄∗ → tt̄γg → l + γ + jets) in data
from the CMS experiment at CERN’s Large Hadron
Collider. This document focuses on events from the
2016 CMS data in the muon channel.

The Feynman diagram for the signal-region decay
of the t∗t̄∗ pair is shown in Figure 1. Here, one top
quark decays leptonically (producing the final-state
lepton l, a muon in this analysis), and the other top
quark decays hadronically (producing three jets from
b, q′, and q̄). In the “resolved” region, the three jets
are well-separated in space; in the “boosted” region,
they overlap.

Figure 1: Feynman diagram for t∗t̄∗ decay into tγtg,
where the tops decay semileptonically.

Several variables could in principle be used as
observables to separate these signal events from the
background. A multivarate analysis (MVA) is per-
formed to account for all of these variables. Table
1 lists all variables used in the resolved and boosted
regions. There were 15 (24) total variables in the re-
solved (boosted) region [3], where the boosted region
includes extra variables for the “fat jet” combination
of the three unresolved jets from the hadronically-
decaying top quark. Variables prefixed “Reco ” are
reconstructed.

Table 1: MVA Variables

Description Variable
Resolved and Boosted Regions

Mass of t∗ Reco mass T
Mass of µγ Reco mass lgamma[0]
η of leading µ Muon eta[0]
φ of leading µ Muon phi[0]
Number of jets Jet size
η of leading jet Jet eta[0]
φ of leading jet Jet phi[0]

Missing transverse energy Emiss
T Reco met

η of leading photon Photon eta[0]
φ of leading photon Photon phi[0]
Sum of pT for all objects Reco st

Angle between leading jet and Emiss
T Reco angle leadJet met

Angle between leading γ and µ Reco angle leadPhoton lepton

Angle between lepton (µ) and Emiss
T Reco angle lepton met

b-tag discriminator Jet deep b[0]

Boosted Region Only
pT FatJet pt[0]
η FatJet eta[0]
φ FatJet phi[0]
Mass FatJet mass[0]
Softdrop corrected mass FatJet msoftdrop[0]
DeepCSV FatJet btagDeepB[0]
DeepBoostedJet top vs QCD (mass decorr.) FatJet deepTagMD TvsQCD[0]
DeepBoostedJet top vs QCD FatJet deepTag TvsQCD[0]
DeepBoostedJet W vs QCD FatJet deepTag WvsQCD[0]

1

Undergraduate Research Report April 2022

Thorough descriptions of the datasets, high-level
triggers, and event selection cuts used in the analysis
will be given in the Analysis Note for this project,
and they are not covered here.

Figures 2 and 3 show the correlation matrices of
the variables analyzed in the resolved and boosted
regions, respectively. In the resolved region, the
most highly-correlated variables are Reco mass T and
Reco st, with a correlation coefficient of +71%,
which agrees with the expectation that a high-mass
t∗ will be correlated with high total pT for the event.

In the boosted region, the FatJet mass[0] and
FatJet msoftdrop[0] variables are highly correlated
(+89%), as expected, since both are measurements of
the mass of the fat jet. Similar correlations are seen
in the boosted and resolved regions for the shared
variables. Most variables used in the MVA are nei-
ther significantly correlated nor anti-correlated with
any other variable, as desired. Figures 4 and 5 show
the distributions for each variable in the boosted and
resolved regions, respectively.

Figure 2: Correlation matrix, resolved region.

Figure 3: Correlation matrix, boosted region.

Figure 4: Variable distributions, boosted region.

2

Undergraduate Research Report April 2022

Figure 5: Variable distributions, resolved region.

The following sections describe in detail the MVA
methods investigated. Section II describes the BDTA
model created within ROOT’s Toolkit for Multi-
variate Analysis (TMVA), section III describes the
BDT model created with XGBoost, and section IV
describes the neural network models created with
Keras. Finally, in section V, the 95% CL upper limits
are computed and compared for the BDTA (TMVA)
and NN (Keras) models.

II TMVA BDTA Model

The BDTA model described here is the same as in [3],
and it is the model ultimately used and described in
the Analysis Note. It is included in this document for
comparison with the XGBoost BDT and Keras NN
models, which are not described in the AN.

The BDTA model was constructed using the
Toolkit for Multivariate Analysis (TMVA) [2]. First,
the signal and background datasets are added to
a DataLoader object, as shown in the code be-
low, where “sigTree” and “bkgTree” are previously
loaded TTrees containing the signal and background
event data. A directory for the output ROOT file is
passed as an argument to the loader.

loader = ROOT.TMVA.DataLoader(outDir)

sigWeight = 1.0

bkgWeight = 1.0

loader.AddSignalTree(sigTree , sigWeight)

loader.AddBackgroundTree(bkgTree , bkgWeight)

Next, the MVA variables are added to the loader,
and the weight expressions are set. Here, “varDict”
is a dictionary containing the variables in Table 1.
The event cuts are applied to the loader using a
TCut object, and the events which pass the cut are
separated into training and testing sets using the
PrepareTrainingAndTestTree() method, which se-
lects half of the events at random for training and the
other half for testing. These steps are shown in the
code below.

Add variables

for var in varDict.keys():

loader.AddVariable(varDict[var][0], ’F’)

Set weight expressions

evtWeights_sig = "Weight_pu*Weight_mu* ...

Weight_ele*Weight_prefire* ...

Weight_btag*Weight_pho[0]"

evtWeights_bkg = "Weight_lumi*%s" ...

%evtWeights_sig

loader.SetSignalWeightExpression(

evtWeights_sig)

loader.SetBackgroundWeightExpression(

evtWeights_bkg)

Do event selection and train/test split

selStr = "Event_pass_presel_mu && %s" ...

%Regions[region]

evtSel = ROOT.TCut(selStr.replace("e.", ""))

loader.PrepareTrainingAndTestTree(evtSel ,

"SplitMode=Random :!V")

Finally, the classification is done with a TMVA
Factory object, shown in the code below.

m = method # method = "BDTA"

factory = ROOT.TMVA.Factory(

"TMVA_Classification",

outputFile ,

"!V:ROC:! Silent:Color: ...

!DrawProgressBar: ...

AnalysisType=Classification")

Book method; params previously defined

factory.BookMethod(loader , methodDict[m][0],

m, methodDict[m][1])

Do classification

factory.TrainAllMethods ()

factory.TestAllMethods ()

factory.EvaluateAllMethods ()

In booking the method, “methodDict” is an im-
ported dictionary with options for each MVA method.
For the BDTA model, the methodDict entry is:

3

Undergraduate Research Report April 2022

"BDTA": [ROOT.TMVA.Types.kBDT ,

"!H:!V:NTrees=850:nCuts=30: ...

MaxDepth=6: ...

BoostType=AdaBoost: ...

AdaBoostBeta=0.05: ...

UseBaggedBoost:

BaggedSampleFraction=0.5: ...

SeparationType=GiniIndex"]

The results of the training, testing, and evalua-
tion are an XML file containing the trained model
weights and a ROOT file containing several relevant
histograms, including the training and testing dis-
criminant distributions and the ROC curve, both
shown below.

Figure 6: Discriminant histograms for the BDTA
model in the resolved (upper plot) and boosted (lower
plot) regions. Note that the y-axis is log-scaled.

Figure 7: ROC curves for the BDTA model in the
resolved (upper) and boosted (lower) regions. The
area-under-the-curve (AUC) score for the resolved re-
gion was 99.21%; the AUC score for the boosted re-
gion was 98.13%.

III XGBoost BDT Model

A BDT model created with XGBoost was briefly con-
sidered, but the preliminary results were unpromis-
ing, so the model was abandoned. The model and its
early results are described here.

The signal and background TTrees were loaded
the same way as for the TMVA BDTA model,
but for the XGBoost model, the TTrees were con-
verted into NumPy (imported as np) arrays using
the root-numpy package, as shown below, where
“branchList” is a list containing the keys of the
varDict dictionary described previously.

sigArr = root_numpy.tree2array(sigTree ,

branches=branchList ,

selection=selStr.replace("e.", ""))

bkgArr = root_numpy.tree2array(bkgTree ,

branches=branchList ,

selection=selStr.replace("e.", ""))

4

Undergraduate Research Report April 2022

The signal and background arrays were combined,
reshaping as necessary, into a single array contain-
ing all variable information for every event. Labels
for the signal and background events were created as
an array: yArr = np.hstack([np.ones(num_sig),

np.zeros(num_bkg)]).

The train/test split was performed by converting
the variable and label arrays into Pandas DataFrame
objects (named X and y, respectively), then passing
these dataframes to Scikit-learn’s train test split

function, as shown below.

X_train , X_test , y_train , y_test = ...

train_test_split(X, y,

test_size=0.2,

random_state=123)

Finally, the XGBClassifier model was con-
structed and the fit was performed, as shown below.

Construct model

model = XGBClassifier(max_depth=5,

n_estimators=900)

Train model

model.fit(X_train , y_train)

The discriminant distribution was computed by
calling the predict() method on the trained model,
as shown below. The ROC curve and AUC score
were computed using Scikit-learn’s roc curve and
auc functions, also shown below.

Test model

y_pred = model.predict(X_test)

Compute ROC curve

fpr ,tpr ,thresholds = roc_curve(y_test ,y_pred)

AUC = auc(fpr ,tpr)

Figures 8 and 9 show the discriminant distribu-
tions and ROC curves, respectively, for both the re-
solved and boosted regions. As shown in the ROC
curves, the XGBoost BDT model only obtained AUC
scores of 87-88%, very low compared to the TMVA
BDTA model. The XGBoost BDT was not investi-
gated further due to this poor performance.

Note also that the XGBoost predict() method
returns a prediction of exactly 0 or 1, no values in be-
tween, so the discriminant histograms have only two
bins, and the ROC curves have an angular shape.

Figure 8: Discriminant histograms for the XGBoost
BDT model in the resolved (upper) and boosted
(lower) regions.

Figure 9: ROC curves for the XGBoost BDT model
in the resolved (upper) and boosted (lower) regions.

5

Undergraduate Research Report April 2022

IV Keras NN Model

Several different NN architectures were explored us-
ing the Keras framework within TMVA (implemented
as “PyKeras” methods). Using Keras within TMVA
allows for later use of the TMVA Reader, which in
turn allows for easy calculation of the 95% CL up-
per limits from the Keras NN model’s discriminant.
Note that the incompatibility of TMVA and XGBoost
is another reason why the XGBoost BDT was ulti-
mately abandoned.

The dataloader steps described in section II were
repeated for the Keras NN model. Variable pre-
processing was done when booking the method in a
TMVA factory; variable decorrelation and Gaussiani-
sation (where the mean of the distribution is normal-
ized to zero, and the width to unity) were performed
in that order [2]. When booking the method, similarly
to the TMVA BDTA model, parameters are passed
from the imported “methodDict” dictionary. For the

PyKeras models, the methodDict entry is:

"PyKeras": [ROOT.TMVA.Types.kPyKeras ,

"H:!V:VarTransform=D,G: ...

FilenameModel=kerasModel.h5: ...

NumEpochs=30:BatchSize=64"]

The primary layer type in each Keras model was
the “Dense” (densely-connected) layer, where each
node of the dense layer connects to every node of
the previous layer. Only dense layers were used in
the first model. In the second and fifth models, a
“Dropout” layer was added, which randomly drops
a fraction (in this case, 20%) of the previous layer’s
nodes in order to prevent overfitting. The optimizer
for models 1, 2, 4, and 5 was Stochastic Gradient De-
scent (SGD); for model 3, the Adam optimizer was
investigated. All models used the binary crossentropy
loss function, and all were trained over 30 epochs
with a batch size of 64. Summaries of each model
are shown below.

First (original) model, compiled as:

model.compile(loss=’binary_crossentropy ’, optimizer=SGD(lr=0.01), metrics=[’accuracy ’,])

Method: PyKeras1

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 64) 1024

dense_2 (Dense) (None, 8) 520

dense_3 (Dense) (None, 2) 18

===

Total params: 1,562

Trainable params: 1,562

Non-trainable params: 0

Second model: Dropout layer added. Compiled the same as first model.

Method: PyKeras2

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 64) 1024

dropout_1 (Dropout) (None, 64) 0

dense_2 (Dense) (None, 8) 520

dense_3 (Dense) (None, 2) 18

===

Total params: 1,562

Trainable params: 1,562

Non-trainable params: 0

6

Undergraduate Research Report April 2022

Third model: original model with Adam optimizer. Compiled as:

model.compile(loss=’binary_crossentropy ’, optimizer=Adam(lr=0.01), metrics=[’accuracy ’,])

Method: PyKeras3

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 64) 1024

dense_2 (Dense) (None, 8) 520

dense_3 (Dense) (None, 2) 18

===

Total params: 1,562

Trainable params: 1,562

Non-trainable params: 0

Fourth model: more nodes per layer. Compiled the same as first model.

Method: PyKeras4

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 128) 2048

dense_2 (Dense) (None, 32) 4128

dense_3 (Dense) (None, 2) 66

===

Total params: 6,242

Trainable params: 6,242

Non-trainable params: 0

Fifth model: dropout layer with more nodes per layer. Compiled the same as first model.

Method: PyKeras5

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 128) 2048

dropout_1 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 64) 8256

dense_3 (Dense) (None, 2) 130

===

Total params: 10,434

Trainable params: 10,434

Non-trainable params: 0

7

Undergraduate Research Report April 2022

Figure 10 shows the ROC curves calculated for
each Keras NN model, along with the ROC curve for
the BDTA model for comparison, in both the resolved
and boosted regions. In the resolved region, all five
NN models performed similarly to the BDTA model
(AUC: 0.9921). The NN models showed greater vari-
ation in the boosted region; the lowest AUC score
was 0.7639 for model 5, and the highest AUC score
was 0.9521 for model 4. In both regions, the BDTA
model outperformed the NN models.

Figure 10: ROC curves for each Keras model, along
with the TMVA BDTA model for comparison, in the
resolved (upper) and boosted (lower) regions.

Figures 11 through 15 show the training and test-
ing discriminant distributions for each Keras NN
model in the resolved and boosted regions. The
shapes of the NN discriminant plots are very dif-
ferent from the BDTA discriminant plot; the NN
plots show significantly more false negatives and (es-
pecially) false positives at the extremes of the his-
tograms compared to the BDTA plot in Figure 6.

Figure 11: Discriminant histograms for the model
PyKeras1 in the resolved (upper) and boosted (lower)
regions. Note that the y-axis is log-scaled.

8

Undergraduate Research Report April 2022

Figure 12: Discriminant histograms for the model
PyKeras2 in the resolved (upper) and boosted (lower)
regions. Note that the y-axis is log-scaled.

Figure 13: Discriminant histograms for the model
PyKeras3 in the resolved (upper) and boosted (lower)
regions. Note that the y-axis is log-scaled.

9

Undergraduate Research Report April 2022

Figure 14: Discriminant histograms for the model
PyKeras4 in the resolved (upper) and boosted (lower)
regions. Note that the y-axis is log-scaled.

Figure 15: Discriminant histograms for the model
PyKeras5 in the resolved (upper) and boosted (lower)
regions. Note that the y-axis is log-scaled.

10

Undergraduate Research Report April 2022

V Comparison of Results

In the search for t∗ events, an upper limit on the
signal strength modifier (represented as a product of
the signal cross section σt∗ t̄∗ and the branching ra-
tios B(t∗ → tg)B(t∗ → tγ) of the target decay mode)
at 95% confidence level is computed for several mass
points mt∗

[3]. The region where the observed product
σ×BB is less than the product predicted by theory is
excluded, i.e., the mass mt∗ is expected to be greater
than the point where the theory and MVA plots in
Figure 16 intersect. Since the theory curve in Figure
16 decreases with mt∗ , the better upper limit corre-
sponds to the curve with smallest σ × BB at each
mass point.

The limits computed from the six MVA discrim-
inants (one TMVA BDTA model and five Keras NN
models) are compared to the limits computed from
the Reco mass T and Reco st variables alone. The
tables in Figure 17 show the improvement of each
MVA discriminant over Reco mass T in the resolved
and boosted regions. From the limit plots in Figure
16, it is obvious that the TMVA BDTA model im-
proved over both the Reco mass T and Reco st vari-
ables as well as the Keras NN discriminants in both
regions for all mass points.

As for the Keras NN models, in the resolved re-
gion, every model except for PyKeras3 improved over
Reco mass T up to mass mt∗ = 1500 GeV , but no
model improved over Reco st. In this region, the
model PyKeras2 produced the best limits, but mod-
els 1, 2, 4, and 5 all gave similar results.

In the boosted region, all models performed con-
siderably worse than in the resolved region, as ex-
pected from the poor AUC scores in the boosted-
region ROC curves (Figure 10). Model PyKeras5, for
example, nowhere improved over Reco mass T. The
best limits were produced by model PyKeras4, but
even this model did not improve over Reco mass T

above mass mt∗ = 1300 GeV . Although other NN
model architectures could be investigated, it is not ex-
pected that these models will outperform the BDTA.

Figure 16: 95% CL upper limit plots for Reco mass T,
Reco st, BDTA, and all NN models in the resolved
(upper) and boosted (lower) regions over a range of
mass points mt∗ . The limit predicted from theory is
also shown for comparison with the observed limits.

11

Undergraduate Research Report April 2022

Figure 17: 95% CL upper limit improvements over Reco mass T for Reco st, BDTA, and all NN models
in the resolved (upper) and boosted (lower) regions. A value of, e.g., -37.0 for BDTA at mT = 700 (GeV
implied) means the BDTA model’s limit was 37% improved over the limit computed from Reco mass T,
which is shown in the second column.

References

[1] CMS Collaboration. Search for pair production of ex-
cited top quarks in the lepton+jets final state. Phys. Lett.
B, 778:349–370, 2018. ISSN 0370–2693. doi: 10.1016/j.
physletb.2018.01.049.

[2] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von
Toerne, H. Voss, M. Backes, T. Carli, O. Cohen, A. Chris-

tov, D. Dannheim, K. Danielowski, S. Henrot-Versille,
M. Jachowski, K. Kraszewski, A. Krasznahorkay, M. Kruk,
Y. Mahalalel, R. Ospanov, X. Prudent, A. Robert,
D. Schouten, F. Tegenfeldt, A. Voigt, K. Voss, M. Wolter,
and A. Zemla. TMVA - Toolkit for Multivariate Data Anal-
ysis. 2007. doi: 10.48550/ARXIV.PHYSICS/0703039.

[3] R. K. Verma. cms-TT-run2, 2022. URL https://github.

com/ravindkv/cms-TT-run2.

12

