
Florida Institute of Technology • December 2013

AMORE Beam Test Documentation
Michael Phipps

Prior to this fall, our implementation of AMORE was designed and used primarily for monitoring and
analysis of the MTS and small-scale detector tests. As our lab transitions to larger scale beam tests,
the DAQ process poses extensive challenges and the readout code demanded an overhaul. The purpose
of this documentation is to detail the challenges and implemented solutions for scaled-up, more general
applications of AMORE. Pay special attention to the mapping sections. By making use of three types of
inversions, the orientations of the APVs within particular planes and across different detectors can be
easily synchronized during readout.

I. Monitoring

The monitoring process for beam tests is similar to the process performed in the lab at FIT.
Raw data plots and higher level monitoring plots are checked at the beginning of each run and
continuously throughout the duration of the run.

The biggest challenge to monitoring during the FNAL beam test was implementing the proper
mapping and rewiring AMORE to handle multiple mapping types across detectors and within
particular APVs – and to do so in a timely fashion. This process was not finished by the time we
started the beam tests, and the only monitoring performed was with raw data plots.

For future beam tests, the current version of AMORE should be sufficient for most monitoring
needs.

II. Mapping Overview

Mapping refers to the process of aligning the data from particular readout channels from the APV
to physical strips on the readout board. This is done locally across each channel in the APV and
then globally to arrange the channels from multiple APVs across each plane of our detectors.

The DAQ process begins with the individual copper strips on the readout board. From
there, data is routed to individual pins on the Panasonic connector, and each pin is affiliated
with a particular channel in the APV. Once the data arrives at the APV, it undergoes an analog
multiplexing process that further scrambles the order of our initial strips. When it finally arrives
in AMORE, we have to rearrange the order of the data to match the physical layout on the strips.
Doing so is complicated, but the purpose of this note is to describe that process in detail.

Note: please see the Appendix for the C++ mapping implementation.

III. Mapping Configuration File

During the October beam test, there were four distinct mapping periods. The differences included:
the order in which APVs were connected to ADC channels, the number of APVs assigned to
particular detectors, the type of readout boards attached to detectors, the number of disconnected
FEC channel and the number of APVs displaying NAN (not a number) data. To simplify the
analysis process, we created four different configuration files, so that the only change made on
a run-to-run basis was the name of the appropriate configuration file in the shell script. The
files themselves are located within ~/amoreSRS/configFileDir, and have the naming scheme
/mappingFNAL[date].cfg.

1



Florida Institute of Technology • December 2013

The first section in the config file defines the detectors used and the basic properties of each:
number of planes, plane size, number of APVs, mapping type, local and global inversions, pitch
size and number of strips. The next section contains the alignment shift parameters. The section
after that lists each APV and assigns it to a particular detector plane and FEC channel number,
as well as a column indicating whether that FEC channel number is active or inactive. Active or
inactive, in this context, refers to FEC channels that are somehow empty. This can happen if a
master APV is connected to the ADC port without a slave APV.

The following three sections explain local, global and FEC channel inversions. If you apply
these inversions correctly, the shouldn’t have to use more than one inversion for any APV or
detector orientation.

IV. Local Mapping

The algorithm that routes a strip number on the readout board to a channel number of AMORE is
essentially the same for readout boards of the same type. The difficulty comes when the readout
board is installed on opposite sides of the GEM board or when the Panasonic connectors are
installed on opposite planes of the readout board. These cause 180 ◦ inversions of the channels,
either locally, globally or both.

A local inversion means that the channels in each APV are inverted. For example, if there are
two APVs along one readout plane, the channels in each APV would receive a 127 - strip number
local inversion (there are 127 + 1 channels in each APV). When you consider this globally across
the entire plane this causes the strips in the center of the board (strip numbers 127 from APV 1
and 128 from APV 2) to be flipped so that they flank the edges of the plane (strip numbers 0 and
255).

An example is shown in Figure 1. In the initial configuration, the APVs in the Y plane are
configured on the left side of the readout board. This causes APV channel 127 to be associated
with strip number 0 (and so on). In order to correct this, all you need to do is designate this plane
for a local inversion in the configuration file.

Figure 1: Local Inversion in Y. Master and slave APVs are labeled on each axis. Remember that both APVs
are connected to the same ADC channel, with the master then routed to the first FEC channel and the slave
to the second.

One important note: the current, default configuration in AMORE is a single local inversion.
So a NO in the configuration file actually denotes one local inversion; a YES denotes two local

2



Florida Institute of Technology • December 2013

inversions. This is done because the 0 pin on the APV is on the right side of the chip. In order to
make the left-most strip as 0, we need to locally invert the channels of the APV.

Within AMORE, these local corrections are implemented within SRSAPVEvent::StripNoCorrection.
They are implemented within all DAQ processes: raw pedestal, pedestals and analysis. Within anal-
ysis you can find this by following SRSPublisher to SRSProcessor to SRSDetectorPlaneEvent:SetHitList
to SRSAPVEvent::ComputeListOfAPVHits and finally to SRSAPVEvent::ComputeTimeBinCommonMode.
Within the pedestal process it is found by following SRSPublisher to SRSPedestal to SRSAPVEvent::ComputePedestalData
to SRSAPVEvent::ComputeTimebinCommonMode.

V. Global Mapping

A global inversion means that the channels across the entire plane are flipped. Using the previous
example, the two strips in the center would merely flip positions under a global inversion (strip
number 127 would become 128 and 128 would become 127). For a two APV detector plane, this
amounts to a 255 - stripNo global inversion.

An example is shown in Figure 2. The problem in this configuration lies in the Y plane. The 0
channel of the master APV is oriented with the 255th strip on the board (and so on). In order to
correct this, all we have to do is make a global inversion.

Figure 2: Global Inversion in Y. Master and slave APVs are labeled on each axis. Remember that both APVs
are connected to the same ADC channel, with the master then routed to the first FEC channel and the slave
to the second.

Within AMORE, global mapping is done in the SRSHit header file within the functions:
SetStripNo() and ComputePosition(). Global inversions are made within the function: SetGlobalIn-
version().

Global mapping is done during all DAQ processes: raw pedestals, pedestals and analysis. But
– and this is important – global inversions are not; they are only made in analysis, after pedestal
subtraction, common mode suppression and zero suppression.

To find the strip number mapping, follow SRSPublisher to SRSProcessor to SRSDetectorPla-
neEvent::SetHitList to SRSAPVEvent::ComputeListOfAPVHits. To find the positional mapping,
follow SRSPublisher to SRSProcessor to SRSDetectorPlaneEvent::GetZeroSuppressionData to
SRSCluster::CalculatePosition (or SRSCluster::CalculateCenter).

3



Florida Institute of Technology • December 2013

VI. FEC Channel Inversion

A FEC channel inversion is done by swapping the FEC channels of the master and slave APVs.
Due to the routing from the ADC to the FEC, the master slave is always sent to the first FEC
channel and the slave to the second. So if the only problem with your configuration is the order of
the master and slave APVs on the readout board, all you have to do is swap their FEC channel
number within the configuration file. In other words, if the master APV FEC channel is actually
channel 0, change it to 1, and change the slave channel to 0. An example is shown in Figure 3.

Figure 3: Inversion of the FEC Channels in X and Y. Master and slave APVs are labeled on each axis.
Remember that both APVs are connected to the same ADC channel, with the master then routed to the first
FEC channel and the slave to the second.

VII. Correlation Plots

To make sure your mapping is correct, you can produce correlation plots, in which the data from
the same event of the same plane of different detectors is plotted against each other. A positive
slope indicates consistent mapping across both planes; anything else is indicative of problems. An
example is shown in the follow figure:

4



Florida Institute of Technology • December 2013

Figure 4: The position of events occuring in coincidence on both detectors are plotted against each other. The
positive slope indicates consistent mapping.

VIII. Accommodating Empty FEC Channels

Our APV25 chips are typically grouped in pairs, with one set of channels set as the master and
the other as the slave. The two APVs share a single HDMI cable that passes both sets of analog
data to the ADC via a single input channel. The data is then digitized and broken up into two
separate channels, one for each APV, and sent to the FEC for compression and storage. However,
the new zigzag readout boards require fewer APVs than the cartesian readout and this sometimes
results in an odd number of APVs on a particular detector. If the boards are located close enough
along the beamline, it is sometimes possible to configure the master/slave setup across boards. If
they are not, and a master is left without a slave, then one of the channels in the FEC reads out
empty. This has to be accounted for within AMORE.

Doing so requires updates in both the decoding and encoding portions of AMORE. I initially
experimented with skipping these FEC channels completely during the decoding process. Doing
so required a complicated rewiring that was ultimately unnecessary. The easier way to handle
this was to read in these channels normally during the decoding process and simply skip them
during encoding. The encoding process happens within SRSEventBuilder, SRSAPVEvent and
SRSDetectorPlaneEvent, and currently this feature is hard-coded to skip particular channels during
analysis. This will be updated during the next round of updates and be set within the mapping
config file.

The other subtlety with the encoding process is setting the mapping file correctly. If a FEC
channel is skipped during readout, it should not be assigned within the config file. Just skip that
channel and the analysis proceeds properly.

5



Florida Institute of Technology • December 2013

IX. Accommodating NAN Data

If a FEC channel is empty, it sends NAN data to AMORE. To account for this, we added a simple
check within the modules: SRSRawPedestal, SRSPedestal and SRSDetectorPlaneEvent. The check
is merely:

i f (data! = data)continue;
The variable "data" is declared of type float, and a value is assigned to it before it reaches this

step. This equality check works because a nan value cannot be referenced, and this is the only
instance in c ++ in which a variable does not equal itself.

X. Accommodating events with Multiple readouts for a particular APV

This problem was encountered at the beginning of the beam test, as we tried routing through an
SRU storage device in parallel to the FECs. This caused a seg fault during the decoding process,
since the implicit assumption is that there is only a single readout per APV per event. To fix this a
check was written into SRSFECEventDecoder to count the number of readouts, and if it exceeds
one it outputs an error in the terminal. It then continues analysis by skipping additional readout.

After we simplified the readout procedure along the beamline and removed the SRU, this
problem disappeared. If it happens again, it should be dealt with immediately, since it significantly
compromises the data.

XI. TTree Output

We have two forms of analysis-related output within AMORE: histograms and TTrees. Histograms
are static ROOT objects that allow only minor changes (formatting, best fit lines, stats boxes, etc)
after they are initially produced. TTrees, on the other hand, can be dynamically accessed. Even
after they have been written to file, cuts can be easily made to a particular plot or the data within a
particular TLeaf can be accessed and plotted against other TLeaves. Enabling TTree output allows
us to quickly produce plots without reprocessing an entire data set.

TTree output was incorporated into AMORE and can be turned on or off through the shell
script. In order to allow TTree data to be easily read back into AMORE for tracking analysis, we
decided to directly write entire SRSCluster and SRSHit objects to file for each detector plane. The
final result can be seen in Figure 1.

6



Florida Institute of Technology • December 2013

Figure 5: TTree readout structure for beam test data

These objects give us access to all post-processed data within AMORE. In other words, pedestal
subtraction, common mode and zero suppression have already been performed and the data
available here comes from the clusters created from the remaining data channels. An explanation
of each of these variables is given below:

• Branch

– SRSCluster: All clusters from every event are kept, so total entries = number of events *
cluster multiplicity. Because of this, these plots are not simply copies of the histograms
we manually produce. Those histograms contain cuts; these don’t.

– Leaves

∗ fNbHits: Cluster size for all clusters.
∗ f Chi2: This contains the χ2/NDF measurement from the fit of each cluster’s

position and charge.
∗ fArrayOfHits: This is not accessible in histogram form but it is of type "TObjArray

*".. It’s an array of the SRSHit * for each cluster. In other words, it contains the data
from each strip in our cluster that ends up forming the SRSHit branch discussed
below.
∗ fTotalClusterCharge: This is the charge spectrum from ever strip in every cluster.

Again, this is different from the normal histo output because it has no cuts.
∗ fBarycentricPos: This is the barycentric position of each cluster – with no cuts

applied.
∗ fCenterStrip: This is the un-weighted middle strip of each cluster – no cuts.

7



Florida Institute of Technology • December 2013

∗ fBarycentricStrip: This is the barycentric strip of each cluster – no cuts applied.
∗ fMaxClusterSize: This is the max cluster size allowed in AMORE. Clusters larger

than this are discarded. Right now it is hard-coded and set conservatively high at
30 strips.
∗ fPlaneSize: plane size in mm.
∗ fNbAPVsOnPlane: number of APVs in the plane.
∗ fNbOfStrips: number of strips in the plane.
∗ fZigZagSector: This is currently deprecated but it was created by Mike Staib to

divide each zigzag sector into different parts and then map each part with either
coarse or fine mapping.

• Branch

– SRSHit: Information from each strip in each cluster (with no cuts for cluster multiplicity)
is kept here.

– Leaves

∗ fapvID: This has the APV ID numbers for each APV in the plane. If the plane has
multiple APVs, the number of entries for each is dependent on the number of hits
that APV produced.
∗ fStripNo: This is the same as the strip occupancy plot but it has no cuts for

multi-cluster events.
∗ fRawStripNo: Be careful with this plot. In some ways, its the analog of the fStripNo

plot but it’s at a lower level within Amore and probably not helpful for analysis
purposes. This plot contains no global mapping, and when a plane only has one
APV it will be identical to the fStripNo plot. However, when a plane has multiple
APVs the information from each APV is overlayed onto one 128 bin plot. So if
the beam profile for this run shows up between two APVs, this plot will have a U
shape with the strips near 0 and 127 having the highest count.
∗ fMaxTimeBin: Again, this plot is similar to the plot we output in manually produced

histograms but it includes timebins from each strip in each event. So the number
of entries = nEvents * (Average Cluster Multiplicity) * (Average Cluster Size).
∗ fCharges: Be careful with this plot as well. It is not the charge distribution from the

barycentric strip charge. It is a plot of the charge from every single strip of every
single cluster from every single event.
∗ fPosition: This plot should closely match the fStripNo plot. It is the positional

analog of that plot.
∗ fPlaneSize: Plane size in mm.
∗ fPitch: Pitch in mm.
∗ fIsFromRootFile: A boolean variable that tells us whether this data came from raw

data input or root file input.
∗ fTimeBinCharges: This is similar to the fCharges plot but it contains the charge

from every single time bin of every single strip from every single cluster of every
single event. This data comes after ped-subtraction, and common-mode and zero
suppression.

• Branch

8



Florida Institute of Technology • December 2013

– SRSRootEvent: I created this class in order to store aggregate information about each
event that would allow us to accurately reconstruct each event from just ROOT files
(not raw data).

– Leaves

∗ fClusterMult: Cluster multiplicity for each event.
∗ fEventNb: This saves the event number for each event written to file. We do this to

ensure no events were skipped.

XII. SRSProcessor

Previously, the process of forming clusters and accessing hit information was done in multiple sec-
tions of the code, whenever this data was needed. To cut down on computing time, I consolidated
these two processes within a unique module called SRSProcessor. It is instantiated and called
within SRSPublisher only once during each analysis run, and the cluster and hit lists it creates
are available through an SRSProcessor object. This can be used in histogram production, root file
output, track selection or any other analysis application.

XIII. Interpreting Raw Data

In order to diagnose higher level problems in monitoring and analysis, it may be necessary to
sift through the unaltered raw data. As an example, during analysis this fall, we noticed that
packets of data for a particular APV were occassionally empty inside the SRSAPVEvent module.
This manifested itself through an empty container whose size (zero) was being used in division
operations, resulting in nan values. The reason for this was apparently because time bin flags
were not being flipped during the decoding process in SRSAPVEvent, resulting in the ADC data
not being assigned to the data structure. In order to find the root cause, we output the raw,
hexadecimal data within SRSFECEventDecoder and compared the good data with the bad. What
we found was that the time bin headers – which usually fall under 1300 ADC (set within the
mapping config file) were missing. In their place were absurdly high ADC values that were not
low enough to signal a new time bin within AMORE. This is a similar problem that sometimes
shows up in the raw data plots on the MTS after an HDMI cable has been bumped. It is usually
indicative of a bad connection to the APV. The raw data readout for this problem is shown in
Figures 3 and 4.

Taking a step back, data is initially taken and stored by DATE in binary .raw files. This data
is converted to ASCII format by the low level processes within AMORE that occur before our
implementation of AMORE receives its input. Once this data is converted it is sent, one event at a
time, to the MonitorEvent process within SRSPublisher. Here the hexadecimal raw data is initially
read out through SRSFECEventDecoder and stored within SRSEventBuilder.

A single event is composed of the data from, at most, 16 FEC channels from every available
FEC. Each channel corresponds to a particular APV; the data dump from this APV includes data
from however many time bins are assigned per event (for the data set shown here there were 9
time bins). Typically, we read out 1,500 16 bit-ADC words per FEC channel per event (although
this is adjustable). With 128 channels per APV and 9 time bins in this particular data set, that
amounts to 1,152 ADC data words per readout. The remaining 348 words are divided between
headers, footers and meaningless fluff.

An example of the beginning of the readout for a particular FEC is shown in Figure 2. At the
beginning of each FEC readout, there is a 9 word event header. Currently, the only meaningful

9



Florida Institute of Technology • December 2013

data available in this header is the event number, although this could be changed in the future.
The next block of data represents the beginning of a 1,500 word readout for a particular FEC
channel. The first 32-bit word is the channel header, which includes the packet size. In order to
read a typical ADC word, the 32-bit word is broken up into two 16-bit chunks. Then each of these
chunks is broken up into 8-bit values, with the second value read first and the first value read
second. For example, in Figure 2, the ADC word 0c2c comes from reading the second 8-bit chunk
first and the first 8-bit chunk second.

The beginning of a time bin within a particular APV readout is marked by a series of six 32 bit
words, of which at least three consecutive words must be below the APV header setting. After this
header, the next 64 32-bit words contain the APV channel data for that particular time bin.

In the next update to AMORE, an option will be available within the shell script to enable
raw data readout to a text file. This will provide a sanity check during analysis and allow easy
debugging of low-level readout problems.

Figure 6: Interpreting raw data readout

10



Florida Institute of Technology • December 2013

Figure 7: Proper event readout, with time bin headers highlighted

Figure 8: Bad event readout. The time bin headers are missing from this readout.

11



Florida Institute of Technology • December 2013

XIV. Accommodating Multiple Mapping Types within a Single APV

This will be updated soon.

XV. Alignment

This will be updated soon.

XVI. Tracking

This will be updated soonk.

XVII. Delta Y Analysis

In order to determine the average spatial resolution of our one dimensional zig-zag detectors, we
created plots of the difference in y-hit position between adjacent detectors (ie. delta-y distribution).
This could also be done on the 2 dimensional reference detectors by comparing the hit positions
on a particular plane across detectors. We then fit a Gaussian curve to the data and extract the
sigma value of the peak. In Figure 5, the sigma value is ∆y = 0.122 strips and the strip pitch is
approximately 2 mm. Since the two detectors are constructed identically, the resolution of the
detectors can be found by taking ∆y√

2
≈ 173µm.

These plots are available within SRSHistomanager.

Figure 9: Initial ∆ y distribution for a portion of the data for the 48 strip zig-zag detector.

12



Florida Institute of Technology • December 2013

XVIII. Data Backup and Code Repository

The newest version of AMORE is available on the cluster at /home/g4hep/AmoreVersions/amoreSRS/.
Important previous versions of the code are also available there, but the most recent version will
always be titled amoreSRS. At this point, this code is also backed up on at least six other machines
(SRSPC, AmorePC, and the personal computers for Aiwu, Vallary, Jessie and myself).

Data and results from the FNAL beam test are stored on /mnt/nas1/FNALBeamTest/. This
data is fully backed up on the SRSPC, as well as Vallary’s and Aiwu’s hard drives. We will also
back the data up on the AmorePC.

XIX. Future Updates to AMORE

Some of these are mentioned in previous sections but included again for completeness.

• Raw data readout. This will be updated soon.

• Beam alignment. This will be updated soon.

• Beam tracking. This will be updated soon.

• Multiple mapping types within a single APV. This will be implemented over Christmas
break.

• Zero suppression within FPGA, rather than AMORE. This project is slated to begin in the
spring and will significantly reduce the processing time and the size of our raw data files.
The aim will be to discard all channels not showing a signal above baseline while the data is
still within the FEC, rather than writing out every single channel, only to throw away most
of this data during analysis.

• Visual beam tracking event display for the monitoring package. A simple ROOT-based
event display for the MTS already exists – although it is currently deprecated, since it was
never integrated into the monitoring package. An updated version of this could be created
for beam tests. The challenges would be setting the global positions for each detector and
performing tracking analysis during monitoring. Currently, tracking modules are only used
for offline analysis, in order to allow real-time monitoring. However, improvements could be
made to AMORE to allow for online tracking during monitoring runs.

13



Florida Institute of Technology • December 2013

XX. Appendix A: Mapping Configuration File

Figure 10: First part of the mapping configuration file. This section defines the detector planes of each
detector.

14



Florida Institute of Technology • December 2013

Figure 11: Second part of the mapping configuration file. This section assigns APVs to particular
FEC channels.

Figure 12: Third part of the mapping configuration file. This section assigns APVs to particular FEC
channels.

15



Florida Institute of Technology • December 2013

Figure 13: Fourth part of the mapping configuration file. This part is the hand mapped channel
numbers for the 30x30. This was done because there were four different readout types on the same
board. This is a hardcoded version of the automated work AMORE does all other readout boards.

16



Florida Institute of Technology • December 2013

Figure 14: Fifth part of the mapping configuration file. This part is the hand mapped channel numbers
for the 30x30. This was done because there were four different readout types on the same board. This
is a hardcoded version of the automated work AMORE does all other readout boards.

Figure 15: Sixth part of the mapping configuration file. This part is the hand mapped channel numbers
for the 30x30. This was done because there were four different readout types on the same board. This
is a hardcoded version of the automated work AMORE does all other readout boards.

XXI. Appendix B: Local Mapping

Figure 16: This code can be found in SRSAPVEvent.h. Each of the mapping types is syphoned off to a
separate function that handles the readout board specific mapping.

17



Florida Institute of Technology • December 2013

Figure 17: This code can be found in SRSAPVEvent.cxx. This is the local mapping for the basic,
straight strip readout boards.

XXII. Appendix C: Global Mapping

Figure 18: This code can be found in SRSAPVEvent.h. It shows the global strip assignment and the
global inversion function. Note: at the time the strip assignment function is called, global inversion
has not been done. This is done after common mode suppression to ensure the pedestal file aligns
properly to the analysis data.

Figure 19: This code can be found in SRSAPVEvent.h. It shows the positional calculation. This is
done after global inversion and is called within the SRSCluster module.

18


	Monitoring
	Mapping Overview
	Mapping Configuration File
	Local Mapping
	Global Mapping
	FEC Channel Inversion
	Correlation Plots
	Accommodating Empty FEC Channels
	Accommodating NAN Data
	Accommodating events with Multiple readouts for a particular APV
	TTree Output
	SRSProcessor
	Interpreting Raw Data
	Accommodating Multiple Mapping Types within a Single APV
	Alignment
	Tracking
	Delta Y Analysis
	Data Backup and Code Repository
	Future Updates to AMORE
	Appendix A: Mapping Configuration File
	Appendix B: Local Mapping
	Appendix C: Global Mapping

