
Muon Tomography Simulations Using GEANT4 and the Cosmic Ray Shower
Library on a Linux Cluster

Rafael Pena (rpena@fit.edu)

Florida Institute of Technology
Department of Computer Sciences

Melbourne, Florida USA

Abstract

This paper encapsulates the process of building a
Geant4 application and running it on a Linux Clus-
ter running Condor. Our application is designed to
simulate cosmic ray muons traversing different mate-
rials. We use the Cosmic Ray Shower Library (CRY) to
create our input cosmic ray muon at varying energies.

1. MuonApp
In the course of the last semester I was able to put
together an application that simulated a cosmic ray
muon traversing a lead box. Slowly we have mod-
ified this application to simulate more complex situ-
ations. To properly use Geant4 for our purposes we
needed to implement CRY and install Geant4 on the
network attached Storage (NAS). The CRY Implemen-
tation allows us to simulate cosmic ray muons. While
installing Geant4 on the NAS will afford us the com-
puting power of the cluster.

1.1. Essentials
I was able to build the MuonApp with the help of the
Geant4 examples, the MOMO utility, and some online
tutorials. Using these utilities I created a simple GEM
detector which produced some output points. Using
the detector we then feed the data into the POCA ap-
plication implemented by R. Hoch. To get a properly
working application with Geant4 we need a minimum
of three classes G4VUserPrimaryGeneratorAction,
G4VUserDetectorConstruction, and
G4VUserPhysicsList.

These classes must be implemented in our source

code. The respective classes we use to call these
are MomoPrimaryGeneratorAction.cc, muonDetector-
Construction.cc, and muonAppPhysicsList.cc. These
three classes do most of the work in our program. The
main application muonApp.cc simply calls these are
their appropriate times.

1.2. Primary Generator Action
The Primary Generator Action was the hardest class
for me to implement as it had the most c++ intensive
code. In our application MomoPrimaryGeneratorAc-
tion.cc is in charge of handling the initialization of
the particles we need in our simulation. It enables all
of the CRY parameters and generates all the random
numbers used in the application. Here we also gener-
ate our input angle distribution from CRY.

To create this class I used MOMO which comes
with Geant4. MOMO is a utility that helps create the
classes required to build a Geant4 application. Al-
though we don’t use this anymore this turned out to
be a very useful tool to understand the way Geant4
created and used its objects.

1.3. Detector Construction
The Detector Construction is the simplest class to im-
plement as its parameters are very basic. We can cre-
ate a variety of geometries and place them where ever
we chose. This class produces our world, detector and
different materials.

In Figure 1 we see how to initiate a new material
and in Figure 2 we show how we make a box out of
our material.

With only a few lines of code we can create a box

1

Figure 1: Creating a new material

Figure 2: Creating a box made of lead

give it a name, pass its dimensions, make it a certain
material and place it anywhere inside our world. No-
tice that to make 10 cm box we actually have to set the
dimensions to 5 cm. Geant4 creates objects from the
center which took us a while to figure out.

1.4. Physics List

The physics list took quite some time to get working
as MOMO would not help produce these without some
technical knowledge of Geant4. When I first created
Geant4 application I only added one physics process to
the entire application. I was unsure as to how Geant4
added the physics at the proper time. The solution to
this problem actually turned out to be very simple.

After attempting to enable only certain physics pro-
cess I found an application which explained that it is
best to set up all the particles to ensure we don’t miss
anything. Then setup the physics process for the par-
ticles we want to use. So in our case we setup the
Leptons, Mesons, Baryons and for Bosons we only set
up the photon. Once these particles are created we can
then give them Physics processes. In Figure 3 we can
see the physics processes that were given to the muon.

Figure 3: Physics Processes of a muon

1.5. Cosmetics
Although with these three Classes we can run a sim-
ple Geant4 application most – if not all – useful ap-
plications will require some cosmetics such as visual-
ization, user interface, well defined process handling
and some output. In our muonApp we have another
six classes which work in conjunction with these. The
additional classes handle parts of the random number
generation process, visualization, and output of our
data into text files. In the future we will need more
classes to handle the AIDA interface.

2. CRY
To create our simulation we had to make use of CRY
which has a built in energy and momentum direction
distributions. CRY has an interface for Geant4 which
allows us to specify parameters such as the number of
particles, position of the created particles and height
in the atmosphere of the particle. CRY comes with
a simple example to combine it with Geant4. We
used the example code with very few changes. The
Geant4 application built to include CRY must have an
interface written into ”Primary Generator Messenger”
class. This class will allow Geant4 to change parame-
ters in the CRY implementation. The ”Primary Gener-
ator Action” class must be completely rewritten to ini-
tiate CRY and insert the specified particle into Geant4.

One of the main changes we needed to make to CRY
was our random number seed value. To get a random
number we used the system time in microseconds and
inserted the last 6 digits into the CLHEP random num-
ber generator. This allows us to get a unique seed every
time we run CRY. Figure 4 shows this implementation.
One of our goals when running our simulations was to
verify that CRY was producing the correct input angle
distribution. To get this distribution we simply output
calculate the angle using

θrad =
−pz√

p2
x + p2

y + p2
z

.

2

Figure 4: Getting Random Number From System
Time

Which we then convert to degrees using

θdeg =
180 · θrad

4 · tan−1(1)
.

Using this method we get the distribution in Figure
6. This is a problem as the distribution should have

Figure 5: Input Angle Distribution

a maximum around 0 degrees.

3. NAS Installation
To Install Geant4 on the NAS we created a user
called ”geant4”. This user will be accessible to
everyone who wants to run Geant4 batch jobs on
the cluster. This user home directory will exists in

/mnt/nas1/home/geant4 where the configured
applications will be installed. All data will also exist
in this directory. Placing all the data and the geant4
installation on the NAS allows for an efficient backup
for if the frontend was to crash a machine could easily
be inserted with no loss of data.

We needed to make some environmental variables
available to condor to run Geant4 on the cluster. With
Geant4 compiled in the geant4 home directory we
added the lines in Figure 6 to the /.bashrc file:

Figure 6: Environmental Variables

Additionally we need to add the lines in Figure 7 to
get AIDA running properly:

Figure 7: Additional Variables for AIDA

Notice that all the required scripts reside on the
NAS.

3.1. Condor Jobs
To run Geant4 through condor we have to ensure con-
dor has all the environmental variables to run the ap-
plication. Therefore we created a simple script which
would first initialize all the variables and then execute
the Geant4 application. Figure 8 shows a script that
can be submitted through condor. Notice that this fig-
ure runs /bin/sh which is then given an argument
script.sh.

Figure 9 shows the contents of the script.sh
file. The script first ensures that the environmental
variables are available and the proceeds to run the ap-
plication exampleN01.

3

Figure 8: Condor Script

Figure 9: Condor Job

We are looking for a better solution to this as it is
inconvenient to have a script that calls another script.
This is a temporary hack.

To submit a job like this to run we would simply run
condor submit condorScript

4

