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AMORE Beam Test Documentation
Michael Phipps

Prior to this fall, our implementation of AMORE was designed and used primarily for monitoring and
analysis of the MTS and small-scale detector tests. As our lab transitions to larger scale beam tests,
the DAQ process poses extensive challenges and the readout code demanded an overhaul. The purpose
of this documentation is to detail the challenges and implemented solutions for scaled-up, more general
applications of AMORE. Pay special attention to the mapping sections. By making use of three types of
inversions, the orientations of the APVs within particular planes and across different detectors can be
easily synchronized during readout.

I. Monitoring

The monitoring process for beam tests is similar to the process performed in the lab at FIT.
Raw data plots and higher level monitoring plots are checked at the beginning of each run and
continuously throughout the duration of the run.

The biggest challenge to monitoring during the FNAL beam test was implementing the proper
mapping and rewiring AMORE to handle multiple mapping types across detectors and within
particular APVs – and to do so in a timely fashion. This process was not finished by the time we
started the beam tests, and the only monitoring performed was with raw data plots.

For future beam tests, the current version of AMORE should be sufficient for most monitoring
needs.

II. Mapping Overview

Mapping refers to the process of aligning the data from particular readout channels from the APV
to physical strips on the readout board. This is done locally across each channel in the APV and
then globally to arrange the channels from multiple APVs across each plane of our detectors.

The DAQ process begins with the individual copper strips on the readout board. From
there, data is routed to individual pins on the Panasonic connector, and each pin is affiliated
with a particular channel in the APV. Once the data arrives at the APV, it undergoes an analog
multiplexing process that further scrambles the order of our initial strips. When it finally arrives
in AMORE, we have to rearrange the order of the data to match the physical layout on the strips.
Doing so is complicated, but the purpose of this note is to describe that process in detail.

Note: please see the Appendix for the C++ mapping implementation.

III. Mapping Configuration File

During the October beam test, there were four distinct mapping periods. The differences included:
the order in which APVs were connected to ADC channels, the number of APVs assigned to
particular detectors, the type of readout boards attached to detectors, the number of disconnected
FEC channel and the number of APVs displaying NAN (not a number) data. To simplify the
analysis process, we created four different configuration files, so that the only change made on
a run-to-run basis was the name of the appropriate configuration file in the shell script. The
files themselves are located within ~/amoreSRS/configFileDir, and have the naming scheme
/mappingFNAL[date].cfg.
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The first section in the config file defines the detectors used and the basic properties of each:
number of planes, plane size, number of APVs, mapping type, local and global inversions, pitch
size and number of strips. The next section contains the alignment shift parameters. The section
after that lists each APV and assigns it to a particular detector plane and FEC channel number,
as well as a column indicating whether that FEC channel number is active or inactive. Active or
inactive, in this context, refers to FEC channels that are somehow empty. This can happen if a
master APV is connected to the ADC port without a slave APV.

The following three sections explain local, global and FEC channel inversions. If you apply
these inversions correctly, the shouldn’t have to use more than one inversion for any APV or
detector orientation.

IV. Local Mapping

The algorithm that routes a strip number on the readout board to a channel number of AMORE is
essentially the same for readout boards of the same type. The difficulty comes when the readout
board is installed on opposite sides of the GEM board or when the Panasonic connectors are
installed on opposite planes of the readout board. These cause 180 ◦ inversions of the channels,
either locally, globally or both.

A local inversion means that the channels in each APV are inverted. For example, if there are
two APVs along one readout plane, the channels in each APV would receive a 127 - strip number
local inversion (there are 127 + 1 channels in each APV). When you consider this globally across
the entire plane this causes the strips in the center of the board (strip numbers 127 from APV 1
and 128 from APV 2) to be flipped so that they flank the edges of the plane (strip numbers 0 and
255).

An example is shown in Figure 1. In the initial configuration, the APVs in the Y plane are
configured on the left side of the readout board. This causes APV channel 127 to be associated
with strip number 0 (and so on). In order to correct this, all you need to do is designate this plane
for a local inversion in the configuration file.

Figure 1: Local Inversion in Y. Master and slave APVs are labeled on each axis. Remember that both APVs
are connected to the same ADC channel, with the master then routed to the first FEC channel and the slave
to the second.

One important note: the current, default configuration in AMORE is a single local inversion.
So a NO in the configuration file actually denotes one local inversion; a YES denotes two local
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inversions. This is done because the 0 pin on the APV is on the right side of the chip. In order to
make the left-most strip as 0, we need to locally invert the channels of the APV.

Within AMORE, these local corrections are implemented within SRSAPVEvent::StripNoCorrection.
They are implemented within all DAQ processes: raw pedestal, pedestals and analysis. Within anal-
ysis you can find this by following SRSPublisher to SRSProcessor to SRSDetectorPlaneEvent:SetHitList
to SRSAPVEvent::ComputeListOfAPVHits and finally to SRSAPVEvent::ComputeTimeBinCommonMode.
Within the pedestal process it is found by following SRSPublisher to SRSPedestal to SRSAPVEvent::ComputePedestalData
to SRSAPVEvent::ComputeTimebinCommonMode.

V. Global Mapping

A global inversion means that the channels across the entire plane are flipped. Using the previous
example, the two strips in the center would merely flip positions under a global inversion (strip
number 127 would become 128 and 128 would become 127). For a two APV detector plane, this
amounts to a 255 - stripNo global inversion.

An example is shown in Figure 2. The problem in this configuration lies in the Y plane. The 0
channel of the master APV is oriented with the 255th strip on the board (and so on). In order to
correct this, all we have to do is make a global inversion.

Figure 2: Global Inversion in Y. Master and slave APVs are labeled on each axis. Remember that both APVs
are connected to the same ADC channel, with the master then routed to the first FEC channel and the slave
to the second.

Within AMORE, global mapping is done in the SRSHit header file within the functions:
SetStripNo() and ComputePosition(). Global inversions are made within the function: SetGlobalIn-
version().

Global mapping is done during all DAQ processes: raw pedestals, pedestals and analysis. But
– and this is important – global inversions are not; they are only made in analysis, after pedestal
subtraction, common mode suppression and zero suppression.

To find the strip number mapping, follow SRSPublisher to SRSProcessor to SRSDetectorPla-
neEvent::SetHitList to SRSAPVEvent::ComputeListOfAPVHits. To find the positional mapping,
follow SRSPublisher to SRSProcessor to SRSDetectorPlaneEvent::GetZeroSuppressionData to
SRSCluster::CalculatePosition (or SRSCluster::CalculateCenter).
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VI. FEC Channel Inversion

A FEC channel inversion is done by swapping the FEC channels of the master and slave APVs.
Due to the routing from the ADC to the FEC, the master slave is always sent to the first FEC
channel and the slave to the second. So if the only problem with your configuration is the order of
the master and slave APVs on the readout board, all you have to do is swap their FEC channel
number within the configuration file. In other words, if the master APV FEC channel is actually
channel 0, change it to 1, and change the slave channel to 0. An example is shown in Figure 3.

Figure 3: Inversion of the FEC Channels in X and Y. Master and slave APVs are labeled on each axis.
Remember that both APVs are connected to the same ADC channel, with the master then routed to the first
FEC channel and the slave to the second.

VII. Correlation Plots

To make sure your mapping is correct, you can produce correlation plots, in which the data from
the same event of the same plane of different detectors is plotted against each other. A positive
slope indicates consistent mapping across both planes; anything else is indicative of problems. An
example is shown in the follow figure:
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Figure 4: The position of events occuring in coincidence on both detectors are plotted against each other. The
positive slope indicates consistent mapping.

These should be included in the monitoring package during beam tests and should be checked
during each run. Data may be inversely correlated if the strips in one detector are globally inverted
relative to another detector. Data may be completely uncorrelated if the timing mechanism across
multiple FECs quits working. In this case, the hits on one detector may appear fine, but they may
belong to a different event from the one showing up on neighboring FECs.

VIII. Accommodating Empty FEC Channels

Our APV25 chips are typically grouped in pairs, with one set of channels set as the master and
the other as the slave. The two APVs share a single HDMI cable that passes both sets of analog
data to the ADC via a single input channel. The data is then digitized and broken up into two
separate channels, one for each APV, and sent to the FEC for compression and storage. However,
the new zigzag readout boards require fewer APVs than the cartesian readout and this sometimes
results in an odd number of APVs on a particular detector. If the boards are located close enough
along the beamline, it is sometimes possible to configure the master/slave setup across boards. If
they are not, and a master is left without a slave, then one of the channels in the FEC reads out
empty. This has to be accounted for within AMORE.

Doing so requires updates in both the decoding and encoding portions of AMORE. I initially
experimented with skipping these FEC channels completely during the decoding process. Doing
so required a complicated rewiring that was ultimately unnecessary. The easier way to handle
this was to read in these channels normally during the decoding process and simply skip them
during encoding. The encoding process happens within SRSEventBuilder, SRSAPVEvent and
SRSDetectorPlaneEvent, and currently this feature is hard-coded to skip particular channels during
analysis. This will be updated during the next round of updates and be set within the mapping
config file.
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The other subtlety with the encoding process is setting the mapping file correctly. If a FEC
channel is skipped during readout, it should not be assigned within the config file. Just skip that
channel and the analysis proceeds properly.

IX. Accommodating NAN Data

If a FEC channel is empty, it sends NAN data to AMORE. To account for this, we added a simple
check within the modules: SRSRawPedestal, SRSPedestal and SRSDetectorPlaneEvent. The check
is merely:

i f (data! = data)continue;
The variable "data" is declared of type float, and a value is assigned to it before it reaches this

step. This equality check works because a nan value cannot be referenced, and this is the only
instance in c ++ in which a variable does not equal itself.

X. Accommodating Events with Multiple Readouts for a Particular APV

This problem was encountered at the beginning of the beam test, as we tried routing through an
SRU storage device in parallel to the FECs. This caused a seg fault during the decoding process,
since the implicit assumption is that there is only a single readout per APV per event. To fix this a
check was written into SRSFECEventDecoder to count the number of readouts, and if it exceeds
one it outputs an error in the terminal. It then continues analysis by skipping additional readout.

After we simplified the readout procedure along the beamline and removed the SRU, this
problem disappeared. If it happens again, it should be dealt with immediately, since it significantly
compromises the data.

XI. TTree Output

We have two forms of analysis-related output within AMORE: histograms and TTrees. Histograms
are static ROOT objects that allow only minor changes (formatting, best fit lines, stats boxes, etc)
after they are initially produced. TTrees, on the other hand, can be dynamically accessed. Even
after they have been written to file, cuts can be easily made to a particular plot or the data within a
particular TLeaf can be accessed and plotted against other TLeaves. Enabling TTree output allows
us to quickly produce plots without reprocessing an entire data set.

TTree output was incorporated into AMORE and can be turned on or off through the shell
script. In order to allow TTree data to be easily read back into AMORE for tracking analysis, we
decided to directly write entire SRSCluster and SRSHit objects to file for each detector plane. The
final result can be seen in Figure 1.
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Figure 5: TTree readout structure for beam test data

These objects give us access to all post-processed data within AMORE. In other words, pedestal
subtraction, common mode and zero suppression have already been performed and the data
available here comes from the clusters created from the remaining data channels. An explanation
of each of these variables is given below:

• Branch

– SRSCluster: All clusters from every event are kept, so total entries = number of events *
cluster multiplicity. Because of this, these plots are not simply copies of the histograms
we manually produce. Those histograms contain cuts; these don’t.

– Leaves

∗ fNbHits: Cluster size for all clusters.
∗ f Chi2: This contains the χ2/NDF measurement from the fit of each cluster’s

position and charge.
∗ fArrayOfHits: This is not accessible in histogram form but it is of type "TObjArray

*".. It’s an array of the SRSHit * for each cluster. In other words, it contains the data
from each strip in our cluster that ends up forming the SRSHit branch discussed
below.
∗ fTotalClusterCharge: This is the charge spectrum from ever strip in every cluster.

Again, this is different from the normal histo output because it has no cuts.
∗ fBarycentricPos: This is the barycentric position of each cluster – with no cuts

applied.
∗ fCenterStrip: This is the un-weighted middle strip of each cluster – no cuts.
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∗ fBarycentricStrip: This is the barycentric strip of each cluster – no cuts applied.
∗ fMaxClusterSize: This is the max cluster size allowed in AMORE. Clusters larger

than this are discarded. Right now it is hard-coded and set conservatively high at
30 strips.
∗ fPlaneSize: plane size in mm.
∗ fNbAPVsOnPlane: number of APVs in the plane.
∗ fNbOfStrips: number of strips in the plane.
∗ fZigZagSector: This is currently deprecated but it was created by Mike Staib to

divide each zigzag sector into different parts and then map each part with either
coarse or fine mapping.

• Branch

– SRSHit: Information from each strip in each cluster (with no cuts for cluster multiplicity)
is kept here.

– Leaves

∗ fapvID: This has the APV ID numbers for each APV in the plane. If the plane has
multiple APVs, the number of entries for each is dependent on the number of hits
that APV produced.
∗ fStripNo: This is the same as the strip occupancy plot but it has no cuts for

multi-cluster events.
∗ fRawStripNo: Be careful with this plot. In some ways, its the analog of the fStripNo

plot but it’s at a lower level within Amore and probably not helpful for analysis
purposes. This plot contains no global mapping, and when a plane only has one
APV it will be identical to the fStripNo plot. However, when a plane has multiple
APVs the information from each APV is overlayed onto one 128 bin plot. So if
the beam profile for this run shows up between two APVs, this plot will have a U
shape with the strips near 0 and 127 having the highest count.
∗ fMaxTimeBin: Again, this plot is similar to the plot we output in manually produced

histograms but it includes timebins from each strip in each event. So the number
of entries = nEvents * (Average Cluster Multiplicity) * (Average Cluster Size).
∗ fCharges: Be careful with this plot as well. It is not the charge distribution from the

barycentric strip charge. It is a plot of the charge from every single strip of every
single cluster from every single event.
∗ fPosition: This plot should closely match the fStripNo plot. It is the positional

analog of that plot.
∗ fPlaneSize: Plane size in mm.
∗ fPitch: Pitch in mm.
∗ fIsFromRootFile: A boolean variable that tells us whether this data came from raw

data input or root file input.
∗ fTimeBinCharges: This is similar to the fCharges plot but it contains the charge

from every single time bin of every single strip from every single cluster of every
single event. This data comes after ped-subtraction, and common-mode and zero
suppression.

• Branch
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– SRSRootEvent: I created this class in order to store aggregate information about each
event that would allow us to accurately reconstruct each event from just ROOT files
(not raw data).

– Leaves

∗ fClusterMult: Cluster multiplicity for each event.
∗ fEventNb: This saves the event number for each event written to file. We do this to

ensure no events were skipped.

XII. SRSProcessor

Previously, the process of forming clusters and accessing hit information was done in multiple sec-
tions of the code, whenever this data was needed. To cut down on computing time, I consolidated
these two processes within a unique module called SRSProcessor. It is instantiated and called
within SRSPublisher only once during each analysis run, and the cluster and hit lists it creates
are available through an SRSProcessor object. This can be used in histogram production, root file
output, track selection or any other analysis application.

XIII. Interpreting Raw Data

In order to diagnose higher level problems in monitoring and analysis, it may be necessary to
sift through the unaltered raw data. As an example, during analysis this fall, we noticed that
packets of data for a particular APV were occassionally empty inside the SRSAPVEvent module.
This manifested itself through an empty container whose size (zero) was being used in division
operations, resulting in nan values. The reason for this was apparently because time bin flags
were not being flipped during the decoding process in SRSAPVEvent, resulting in the ADC data
not being assigned to the data structure. In order to find the root cause, we output the raw,
hexadecimal data within SRSFECEventDecoder and compared the good data with the bad. What
we found was that the time bin headers – which usually fall under 1300 ADC (set within the
mapping config file) were missing. In their place were absurdly high ADC values that were not
low enough to signal a new time bin within AMORE. This is a similar problem that sometimes
shows up in the raw data plots on the MTS after an HDMI cable has been bumped. It is usually
indicative of a bad connection to the APV. The raw data readout for this problem is shown in
Figures 3 and 4.

Taking a step back, data is initially taken and stored by DATE in binary .raw files. This data
is converted to ASCII format by the low level processes within AMORE that occur before our
implementation of AMORE receives its input. Once this data is converted it is sent, one event at a
time, to the MonitorEvent process within SRSPublisher. Here the hexadecimal raw data is initially
read out through SRSFECEventDecoder and stored within SRSEventBuilder.

A single event is composed of the data from, at most, 16 FEC channels from every available
FEC. Each channel corresponds to a particular APV; the data dump from this APV includes data
from however many time bins are assigned per event (for the data set shown here there were 9
time bins). Typically, we read out 1,500 16 bit-ADC words per FEC channel per event (although
this is adjustable). With 128 channels per APV and 9 time bins in this particular data set, that
amounts to 1,152 ADC data words per readout. The remaining 348 words are divided between
headers, footers and meaningless fluff.

An example of the beginning of the readout for a particular FEC is shown in Figure 2. At the
beginning of each FEC readout, there is a 9 word event header. Currently, the only meaningful

9



Florida Institute of Technology • V.III: Updated May 2014

data available in this header is the event number, although this could be changed in the future.
The next block of data represents the beginning of a 1,500 word readout for a particular FEC
channel. The first 32-bit word is the channel header, which includes the packet size. In order to
read a typical ADC word, the 32-bit word is broken up into two 16-bit chunks. Then each of these
chunks is broken up into 8-bit values, with the second value read first and the first value read
second. For example, in Figure 2, the ADC word 0c2c comes from reading the second 8-bit chunk
first and the first 8-bit chunk second.

The beginning of a time bin within a particular APV readout is marked by a series of six 32 bit
words, of which at least three consecutive words must be below the APV header setting. After this
header, the next 64 32-bit words contain the APV channel data for that particular time bin.

In the next update to AMORE, an option will be available within the shell script to enable
raw data readout to a text file. This will provide a sanity check during analysis and allow easy
debugging of low-level readout problems.

Figure 6: Interpreting raw data readout
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Figure 7: Proper event readout, with time bin headers highlighted

Figure 8: Bad event readout. The time bin headers are missing from this readout.
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XIV. Accommodating Multiple Mapping Types within a Single APV

In AMORE’s current design, the most basic element at the analysis level is an APV. So if there are
nonuniformities within a particular APV, it creates problems in analysis.

In this beam test, the readout board on our 30x30 was divided into four different readout
patterns. There were horizontal and a vertical zigzag planes, as well as a large and small radial
zigzag plane. The strips from the vertical plane were routed to a single APV, while the strips
from the remaining readout planes shared an APV. In future beam tests, avoid this type of design
at all costs! Readout boards may have multiple readout planes, but the mapping style within a
particular APV should be uniform.

That said, a work-around for this problem was implemented, and the remainder of this section
will describe that process.

Within the mapping configuration file, the properties of each detector plane and APV are
initialized. When there are inhomogeneities within an APV, the individual strips in that APV
must also be defined. To do so, you can include a section that looks like this:

##################################################################
# ChannelNumber refers to the channel within the APV, while StripNumber refers to the physical
strip location
# ONLY USED FOR THE S4 ZIGZAG
# VERTI 0-40; LRADI 41-81; SRADI 82-122; GROUND 123-127
# ChannelNumber, StripNumber, PlaneName, APV
##################################################################
STRIP, 0, 85, VERTI, 2
STRIP, 1, 86, VERTI, 2
STRIP, 2, 84, VERTI, 2
STRIP, 3, 87, VERTI, 2
STRIP, 4, 83, VERTI, 2
STRIP, 5, 88, VERTI, 2
STRIP, 6, 82, VERTI, 2
STRIP, 7, 89, VERTI, 2
STRIP, 8, 81, VERTI, 2
STRIP, 9, 90, VERTI, 2
STRIP, 10, 80, VERTI, 2

This work-around allows you to apply different configurations to different strips within the
same APV. However, it doesn’t truly separate each set of strips into its own detector plane. This
means that output from AMORE will show strips from different planes within the same plot. To
get around this, it must be understood which strips belong to which plane and then apply some
type of post-processing to extract that data and group it properly.

It should also be emphasized that the positional information from this APV will not be valid,
since the detector plane is initialized with an arbitrary planesize and pitch. This means that
meaningful data can only be extracted from the cluster strips. Care should also be made during
post-processing to ensure that invididual clusters do not overlap detector planes. Since the strips
in different planes are treated as contiguous strips in the code, it is conceivable that AMORE could
define a cluster across different planes. To avoid this, post-processing should exclude clusters that
contain strips along the boundary of each plane.
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XV. Offline Post-Processing

In order to prepare data for alignment and tracking analysis, certain cuts must be made and,
for the radial detectors, hits must be assigned a position in φ. This can be done in two ways:
by outputting a text file from AMORE with cluster information for each event or through TTree
analysis. TTrees are more systematic and a better long-term solution, but for most of the analysis
for this beam test we used text files. Post-processing analysis scripts are available for both methods
and will be discussed in this section.

XV.1 Text File Analysis

This text file is written to file within AMORE in the SRSOutputROOT module. Currently, only
single cluster events are written to file and each event contains the cluster size, total charge,
barycentric position, barycentric strip, and the individual strip numbers and charge from each
cluster.

We wrote an offline analysis script that reads this text file and applies cuts for cluster size and
events appearing in coincidence across detectors of interest. This file also converts strips on the
radial detector to an angular measurement. For the CMS detector, this formula looks like this:

doubleangleEta = −theAngle/2.0 + (sEta[i] + 128) ∗ theAngle/383.0; (1)

The file itself has the naming scheme "Data Output ..." and can be found on the cluster at
/nas1/FNALBeamTest/PostProcessingScripts/.

XV.2 TTree Analysis

TTrees are also written to file within the SRSOutputROOT module. Data can be accessed and
used for post-processing by setting the branch address and cycling through each entry. This must
involve a triple loop with three TTrees for every data file. One tree is used to store event-wide
data, like cluster multiplicity. The second tree is used to store cluster information, and the third
tree stores individual hits. In order to group each hit to the right cluster and each cluster to the
right event, the cluster multiplicity and cluster size must be used for the length of the two outer
loops.

A sample file for this type of analysis can be found on the cluster at
/nas1/FNALBeamTest/PostProcessingScripts/.

XVI. Alignment

After processing is complete, the next challenge is to align the station. This is a two-step process
with the first step involving the alignment of the four tracking detectors and the second step
involving the alignment of the detectors of interest.

XVI.1 Alignment of 2d Cartesian trackers

To align the four, 2d Cartesian readout tracking detectors, we assume minimal scattering along
the three meter length of our station. This allows us to take the 2d hits from each detector and fit
linear tracks through the four detectors, along the beam line axis. This process is shown in Figure
9.
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Figure 9: A sample illustration of track reconstruction. This illustration focuses on tracker two and fits
inclusive and exclusive linear fits relative to the hits in that detector.

For any given detector in this process, we are able to produce two viable linear fits: an exclusive
(unbiased) and inclusive (biased) fit. As the illustration shows, the exclusive fit excludes the hit
from the current detector in the track reconstruction, while the inclusive fit includes that hit. The
difference between the hit position and the track intersection is referred to as the residual and the
distribution of these quantities (both inclusive and exclusive) is used for alignment and spatial
resolution studies.

In order to align our trackers, we use the total distribution of exclusive residual tracks and
attempt to minimize the residual mean for each detector. This is an iterative process and each
iteration features a detector shift of 0.2 ∗ residual. Doing so, usually allows us to converge to
a minimal residual mean at a particular two-dimensional shift. The multiplicative constant is
arbitrarily chosen, but it is set preferably low to avoid overshooting the true offset.

Figure 10: The cluster positional distribution from a particular tracker before and after alignment corrections

We then attempted to find an initial estimate of the detector rotation by minimizing the χ2

for XY rotation of all trackers relative to the first tracker. After completing this process, we
were left with a double-peaked residual distributions – rather than the normal Gaussian. This
is indicative of a rotational problem in alignment, and to correct for this, we used the initial
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rotational parameters and iterated in φ for a single detector minimized the χ2 distribution of our
linear fit (again relative to the first tracker). We then held this new rotation angle constant and
repeated this precess for a different tracking detector. After repeating this process numerous times
for each tracker, our rotation angles converged. An example of the minimized χ2 is shown in the
following figure.

Figure 11: Correction for rotation via χ2 minimization of linear fits in φ

After completing this process, the double-peaked structure disappeared and the trackers
delivered predictably strong spatial resolution. These resolutions (in φ) are shown for each tracker
in the following figure.
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Figure 12: Spatial resolution results (in φ) for the four reference detectors. The width of the inclusive
residual is known to overestimate the resolution, while the width of the exclusive residual undershoots it
and is sensitive to systematic uncertainties. By taking the geometric mean of the two quantities, it has been
shown that we are left with the true resolution. [3],[4] The high exclusive resolution on the two flanking
trackers illustrates this phenomenon, since this metric is more sensitive to systematics and has less distance
in Z over which this uncertainty can smoothen out.

The files that perform this analysis are located on the cluster at
/nas1/FNALBeamTest/PostProcessingScripts/. The shifting script is called
Alignment_shi f t_trackers.C and the rotational script is called Alignment_rotate_tracers.C The fit
for the residual distributions is also dependent on the double Gaussian script called
doubleGausFit_withHistParameter.C.

XVI.2 Alignment of detectors of interest

The next step was to align the 2d, Cartesian tracking detectors to each 1d, radial detector. To do so,
we converted events on our tracking detectors to polar coordinates and attempted to offset these
in X and Y by fixed values until the system of trackers was aligned with the imaginary vertex of
the radial detector. Since the vertex point is different for each radial detector, this process had to
be repeated for each detector. This process is illustrated in Figure 11.

Figure 13: After converting the tracking detector hits from cartesian to polar coordiantes we shifted each hit
by a fixed offset in X and Y, such that the origin of each detector corresponded to the imaginary vertex of the
radial detector

To implement this, we have three quantities available from our inclusive fits: the residual mean,
residual sigma and χ2 of our linear fits. We also have two different ways we can iterate: with a
fixed Y or a fixed X. For a fixed Y, the residual sigma and χ2 can be minimized at particular offsets,
while the residual mean should go to zero near the point of alignment. Figure 14 shows each of
these three quantities for a single iteration of Y at a series of iterations for X. The composite plot
in the lower right hand corner then shows the minimized quantities from each of these metrics
at all values of Y. We found that the three typically intersect at a particular X and Y offset, and
this offset is the offset we choose. Sometimes, however, this pattern of intersection is arbitrarily
perverse, and these metrics intersect (or come close to intersecting) in different patterns. In these
cases, discretion should be shown in picking the proper offsets. The sigma at different critical
points can be compared to determine if there are any practical differences between the different
offsets. Typically, the potential alignment points lie within a µrad difference in resolution – a
difference of which is insignificant for analysis purposes.
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Figure 14: Inclusive fits using a fixed Y iteration. In other words, X was held constant as we iterated through
Y values. The plots in the lower left, upper left and upper right show these quantities at one particular fixed
X. We then repeated this same analysis at many different X points and the combined minimized points from
these individual plots are plotted in the combined XY plot in the lower right.

We can also use the exclusive fit parameters. However, χ2 does not minimize for exclusive
parameters, so we only have two metrics with which to work: residual mean and residual sigma.
The following figure shows the fixed Y analysis from the exclusive fits of one set of data.

Figure 15: Exclusive fits using a fixed X iteration. In other words, X was held constant as we iterated
through Y values. The plots in the lower left, upper left and upper right show these quantities at one
particular fixed X. We then repeated this same analysis at many different X points and the combined
minimized points from these individual plots are plotted in the combined XY plot in the lower right.
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For fixed X, this same procedure can be repeated. However, since our main offset appears in
X (about 2 meters) with Y only offset by a few millimeters, this technique is not as sensitive to
convergence. An example of inclusive and exclusive metrics available using this type of iteration
are shown in the following two plots:

Figure 16: Inclusive fits using a fixed X iteration. In other words, X was held constant as we iterated through
Y values. The plots in the lower left, upper left and upper right show these quantities at one particular fixed
X. We then repeated this same analysis at many different X points and the combined minimized points from
these individual plots are plotted in the combined XY plot in the lower right.

Figure 17: Exclusive fits using a fixed X iteration. In other words, X was held constant as we iterated
through Y values. The plots in the lower left, upper left and upper right show these quantities at one
particular fixed X. We then repeated this same analysis at many different X points and the combined
minimized points from these individual plots are plotted in the combined XY plot in the lower right.
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Finally, we can also combine this analysis across inclusive and exclusive metrics using fixed X
and fixed Y to search for convergence. This technique was used in the following plot:

Figure 18: Combined plot of fixed X and fixed Y inclusive metrics.

XVII. Spatial Resolution

Spatial resolution can be determined in two ways. The first method used was referred to as Delta Y
analysis and was used on the two 10x10 zigzag to for an initial rough estimate of spatial resolution.
The second method was more precise and available for all detectors in the beamline, as soon as
the alignment process was finished.

XVII.1 Resolution via Delta Y

The two 10x10 detectors were identical and placed within a few millimeters of each other along
the beamline. As such, they could be well-aligned by eye, and initial measures of resolution could
be extracted from their data even before the formal alignment process.

To do so, we plotted the difference in y-hit position between the adjacent detectors (ie. delta-y
distribution). This could also be done on the 2 dimensional reference detectors by comparing the
hit positions on a particular plane across detectors. We then fit a Gaussian curve to the data and
extract the sigma value of the peak.

These plots are available within SRSHistomanager.

XVII.2 Resolution via Tracking

Once we finished the alignment process, we were able to obtain our first precise measurements
of spatial resolution for the radial detectors. This is found by taking the geometric mean of the
width of each of the inclusive and exclusive residual distributions. Since the inclusive residual
underestimates the resolution and the exclusive residual overestimates the resolution, the geometric
mean of the two quantities should give a quantity that is around the true value. R.K. Carnegie, et
al have both demonstrated that this value is, in fact, the true resolution and allows us to ignore
the resolution from the tracking detectors in our calculation. [?]
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Figure 19: The geometric mean of the sigma of the exclusive residual and the sigma of the inclusive residual
gives our true spatial resolution.

XVIII. Correction of non-linearity of charge sharing. Impact-point

estimation

As the following figure shows, we also found that our resolution was significantly worse for events
with an odd number of strips, while it was significantly improved for events with an even number
of strips.

Figure 20: Resolution as a function of cluster size. Even cluster size events show significantly better spatial
resolution.

This reason for this dependancy between resolution and cluster size appears to lie with the
center of gravity method initially used for hit localization within a cluster.

xg =
∑i xiQi

∑i Qi
(2)

In using this charge-weighted algorithm to determine the hit location, we implicitly assume an
analog readout of charge across the cluster. This is far from true, however, since the finite length
of the strips causes a discretization of our signal. For clusters with an odd number of strips, the
center strip ends up biasing the localization of our hit. In other words, we are left with non-linear
charge sharing. To correct for this, the following clustering algorithm can be used: [?]
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ξ = p[smax −
1
2
+

∫ η
−1/2 h(η′)dη′∫ 1/2
−1/2 h(η′)dη′

] (3)

Once this is implemented, we expect to see a more consistent resolution across cluster size.

XIX. Data Backup and Code Repository

The newest version of AMORE is available on the cluster at /home/g4hep/AmoreVersions/amoreSRS/.
Important previous versions of the code are also available there, but the most recent version will
always be titled amoreSRS. At this point, this code is also backed up on at least six other machines
(SRSPC, AmorePC, and the personal computers for Aiwu, Vallary, Jessie and myself).

Data and results from the FNAL beam test are stored on /mnt/nas1/FNALBeamTest/. This
data is fully backed up on the SRSPC, as well as Vallary’s and Aiwu’s hard drives. We will also
back the data up on the AmorePC.

XX. Appendix A: Mapping Configuration File

Figure 21: First part of the mapping configuration file. This section defines the detector planes of each
detector.
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Figure 22: Second part of the mapping configuration file. This section assigns APVs to particular FEC
channels.
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Figure 23: Third part of the mapping configuration file. This section assigns APVs to particular FEC
channels.

Figure 24: Fourth part of the mapping configuration file. This part is the hand mapped channel numbers
for the 30x30. This was done because there were four different readout types on the same board. This is a
hardcoded version of the automated work AMORE does all other readout boards.
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Figure 25: Fifth part of the mapping configuration file. This part is the hand mapped channel numbers
for the 30x30. This was done because there were four different readout types on the same board. This is a
hardcoded version of the automated work AMORE does all other readout boards.
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Figure 26: Sixth part of the mapping configuration file. This part is the hand mapped channel numbers
for the 30x30. This was done because there were four different readout types on the same board. This is a
hardcoded version of the automated work AMORE does all other readout boards.

XXI. Appendix B: Local Mapping

Figure 27: This code can be found in SRSAPVEvent.h. Each of the mapping types is syphoned off to a
separate function that handles the readout board specific mapping.

Figure 28: This code can be found in SRSAPVEvent.cxx. This is the local mapping for the basic, straight
strip readout boards.

XXII. Appendix C: Global Mapping

Figure 29: This code can be found in SRSAPVEvent.h. It shows the global strip assignment and the global
inversion function. Note: at the time the strip assignment function is called, global inversion has not been
done. This is done after common mode suppression to ensure the pedestal file aligns properly to the analysis
data.
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Figure 30: This code can be found in SRSAPVEvent.h. It shows the positional calculation. This is done
after global inversion and is called within the SRSCluster module.
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