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WORK IN PROGRESS

e An attractive conception of dark matter (DM) is the “Hidden Valley” or “Hidden Sector”
model, where a spectrum of DM particles, analogous to Standard Model (SM) matter,
exist [1]

e Standard Model (SM) gauge group is extended by a “dark,” U(1)p group

SURB) ® SU(2) ® U(1) ® U(1)p

e This extension produces a dark, massive, spin-1, Abelian mediator: the dark Z boson, Zp

e Kinetic mixing between U(1) and U(1)p fields enables DM current and electromagnetic
current interactions; spontaneous symmetry breaking allows DM-electroweak interaction
. . Energy
Interaction Lagrangian:
L C 1B B"Y 12 V7o Portal
——buv — T 4Duv orta .
4 47ommme Hidden
€ PR S R Sector
+ TG cosGZDWB T 5 mz,Zp Zop
where B,,,, and Zp,,,, are the SM and dark field
strength tensors for U(1) and U(1)p, Standard
respectively, and ¢ is the kinetic mixing Model
coefficient
Direct
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WORK IN PROGRESS

>

e The CMS Muon Dark Sector Working Group is engaged in a model-independent search for
two new bosons that decay to four muons each

e One of our model-dependent searches interprets this process in the context of the Dark

Fermion, or fp model [2]

pp — Zp — fp, fp, — fp, fp,ut ™

where m¢,, > myg,, and fD2 is the lightest, stable dark fermion

The Feynman diagram for the fp model

DA e The final state will consist of two sz particles that escape detection, and four muons,
TECH paired into two dimuons, which decay from off-shell Zp particles
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WORK IN PROGRESS

o The final state muons are produced from

off-shell dark bosons, meaning the invariant
masses of the two reconstructed Zp vertices will
not necessarily be equal

e The current analysis uses the signal mass window

approach to determine a signal region

e We need a different approach to pair the muons

into dimuons since we cannot require equal
invariant masses for the dimuons

e To solve this problem, we developed a machine

learning (ML) model to correctly pair each muon
into a dimuon

e The model is trained on Monte-Carlo generated

and reconstructed data of the fp model

e The resultant model will eventually be used on

real data collected by the CMS experiment

= 25 T T 7
) Control Region
~20F / Signal Region |
Z 5 o/ M
15[ « - 4 ]
* 7 Control Region]
10F /., g
/ . « Background
/ ° + Signal
G L L
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A sketch of the mass signal window method
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WORK IN PROGRESS

Flow chart of the sample generation process

Event reconstruction

CMSSW v.10.2.18
MadGraph5 v2.6.5 (Pythia v8.230}—~(GEANT4 v10.4.3

n-tuple production (cuts)

To analysis Mi?ljrgOD

analysis) :

e Samples of 10* events are generated and reconstructed for 85 < mz, < 400 GeV, with
5 < mg,, < 60 GeV (my,, = 2 GeV for all samples)

e Kinematic and geometric cuts placed during n-tuple production (e.g., pr > 8 GeV and
|m| < 2.4 for all 4 muons)

e Further cuts are placed to remove events that fail reconstruction (charge, 7, ¢, etc.)

e Roughly 4000 events survive the selection in each sample
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WORK IN PROGRESS

GEN level track
————————— ~  RECO level track

AR (UGN, pkeco)

AR(GEN BCO)

Angular separation
ARy = /(B + (B9F

e For each dataset, we pair the generator (GEN, or “MC truth”) level data to the fully

reconstructed (RECO) level muon objects, using the following algorithm:

1.
2.

AR is calculated between each GEN and RECO level muon
A GEN muon is chosen at random and matched with the RECO muon with the
smallest AR
The remaining RECO muon with like charge is paired with the remaining GEN muon
One of the oppositely charged 1 selected randomly, then step 2 is repeated
The last RECO muon is paired with the remaining GEN muon
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WORK IN PROGRESS

o ) Correct Permutation
We then generate two additional, incorrect

permutations which are used as
“incorrectly reconstructed dimuons” for
training the model

Requiring each dimuon to be composed of @ @ @

a positive and negative muon, this comes

@
@

to two additional permutations .
o Incorrect Permutation 1

Binary labels assigned to correct (1) and .
. . Positive muons
incorrect permutations (0)

. . swapped to
The dataset contains all permutations and

different parent
their associated observables: @ @ @ particles
e For each muon: pr, 1, ¢, Q
e For each dimuon: AR, Ag,
invariant mass, Miny Incorrect Permutation 2

@
@

Each dataset is then randomly shuffled and Negative muons

split into a 70%/30% train/test datatset swapped to

@
@

different parent

@ @ @ particles
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WORK IN PROGRESS

e eXtreme Gradient Boosted decision tree: a “boosted,” ensemble decision tree algorithm

(supervised machine learning algorithm)
e Individual decision trees (DTs) are randomly created and the input data are
randomly sampled (“boosting”)
e Each successive DT generated such that it minimizes error/impurity
e Uses gradient descent for optimizing a loss function
e Parallelized computation and better caching (improvement to gradient boosting
algorithm)
e For the base model all default hyperparameters are used (learning rate, 7j = 0.3; maximum
tree depth, Dimax = 6, Ly and L, regularization, & = 0, A = 1, respectively, etc.)

B

Tree 2 +—

Weighted final result

An (extremely) simplified schematic of an XGBoost model
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WORK IN PROGRESS

0
D
0
D
O

>

e The initial approach: train a separate model on each of the 150 different mass points
(85 < mz, <400 GeV, 5 < myg,, < 60 GeV,
and my,, = 2 GeV)

e Statistics for the testing performance metrics are displayed below for all of the 150 mass

points
Table 1: Training results for all mass points
Average | Median | Std. dev. ‘ Min. ‘ Max.
Accuracy 0.959 0.996 0.075 0.688 1.00
Matthew's correlation coefficient (MCC) 0.907 0.990 0.170 0.272  1.00
Area under the receiver operating characteristic curve | 0.981 1.00 0.045 0.761 1.00
Execution time [s] 1.19 0.895 0.735 0.127  3.19
Recall 0.939 0.993 0.121 0.442 1.00
Precision 0.937 0.994 0.109 0.550 1.00
Confusion matrix s @ o T T T ™
3500_§ &:ﬂ :
g Sogf ]
True Positives False Positives 300035 ‘%
1329 843 % & 06l 1
25005 F
i F o4 |
2000 € o skill AUC = 0.500]
=z Model AUC = 0.949
False Negatives True Negatives 1500 0.2 > o Skmyi
1029 3746 —— Logistic
0.0 L 1 L L |
1000 000 025 050 075 10

False Positive Rate
Example receiver operating curve (ROC) curve for

mgp, = 55 GeV mz =125 GeV, mg_ = 55 GeV
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WORK IN PROGRESS

ere Approa

e In reality, we don’t know the mass of Zp

e To capture all of the variability in the kinematics and physics over the mass range
85 < mz, < 400 GeV and 5 < my,, < 60 GeV, we aggregate all of the mass points into
a single dataset

e The dataset is split into a 70/30 train/test split

o \We also perform hyperparameter tuning via a grid search to optimize performance

mz, =85 GeV mz, =85 GeV mz, = 85 GeV
Miy =5 GeV Miy, = 15 GeV Mgy, =20 GeV

+ + +

Aggregated Dataset

Events: ~ 10°
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WORK IN PROGRESS

Table 2: Training results for aggregated dataset

e Pretty good performance with such a
diverse input dataset; ~97% accuracy! -
3 ° Y Default  Optimal
e Hyperparameter tuning provides minimal Learning rate (7}) 0.3 0.4
improvement in performance Maximum dept (Dinax) | 6 10
e ~ 0.3% increase in accuracy, but Ly regularization (a) 0 5
~ 55% increase in computation time L, regularization () 1 0
Table 3: Training results for aggregated dataset
MCC AUC  Accuracy Time (s) F Precision  Recall
Default hyperparamers 0.934 0.997 0.971 62.3 0.956 0.960 0.952
Optimal hyperparameters 0.942 0.998 0.974 96.3 0.961 0.963 0.960
% difference between opt. and def. | 0.857 0.100 0.309 54.6 0.523 0.313 0.840
A
H
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WORK IN PROGRESS

=

e Two trained models, using the aggregated dataset, with the default and optimal
hyperparameters used to evaluate all 150 individual samples
e Distributions reflect the prediction metrics for all 150 mass points

Accuracy
o
&

o
o
T

°
.

0.2r

Al

Optimal

8 | Average = 0.968
Median = 0.711
0-0058

Default

0=0.041
I

0.0

\
Default Optimal
Hyperparameter configuration

MCC

1.0 T o110
2
¥ <
0.81 g=0.191 1 0.8F a ]
0.61 1 L
0.6 b
0.4 - T
0.4f N
0.2 q
0.0F 1 o2 1
Median = 0.609
.10
-0.2 Def‘ault Opt‘;ma\ 0.0 Def‘aull Opt%ma\

Hyperparameter configuration

Hyperparameter configuration
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WORK IN PROGRESS

e The performance metrics distributions shown on the previous slide are much poorer than the

testing metrics

o The model is probably over-training on the aggregated dataset
o Hyperparameter tuning doesn’t help with the over-training

e To improve results, we tried parametrizing [4] the dataset

e For each event, we add mzy, My, and Mep,

SelpTO  selpll  selpT2  selpT3  selftad  selEtsl  selfta  selEta3  selPhi0 O O T — mfo1 mfo2
27203215 937 8010424 6051712 0210876 0168951 0035462 0212726 0934701 10 0107267 -0Ma202 o11st6e 0210866 1469280 50 20
27203215 6051712 8010424 0378386 0210876 0212726 0036462 068951 0934701 . 10 1442097 1436062 1442909 1442253 16949601 11463321 50 20
8010424 9378386 27203215 60GI7I2 0035462 0168951 0210876 0212726 2263496 . 10 1436052 1442007 1442253 1442999 11463321 16949601 50 20
20021888 4583572 9627180 3E34181 0548159 0366273 -07BS6 -0574T16 2699803 2602110 410 0097693 0154653 0206463 0249087 2023875 1514236 50 20
9627180 4583672 20921888  3B34181 -0376BS6 0366273 O5ABISO 0574116 15867 2602110 .. -4188820 444167 4254578 4 12571520 17762714 50 20

3006661 46458000 66191505 13.230703 20568367 0917999 -0122839 1526046 2017315 3544260 851109 3179915 4000 600
3006662 20568367 13230703 66191505 46.458000 -0.936213 0588407 0917999 -1676499 1397632 307131 3179915 3851108 2000 600

3006663 755621 3 17005875 0021898 1011629 -0.08 -2.240009 2681245 0441236 -, 0530665 1089862 24 4000 600

3006664 z 20421379 17005875 0021898 272916 0083937 -2.240009 -0040200 2199810 2430502 3218601 45026500 4000 60.0

3006665 17.095875 2 33 75 1011620 0021898 0531803 -2.681245 3213048 21908 6 02 45026509 111325321 4000 60.0

3006666 rows x 25 columns.

A screenshot of the parametrized dataset used for training the XGBoost model

o A new model is trained on the aggregated and parametrized dataset
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WORK IN PROGRESS

e Models are trained on the aggregated and parametrized dataset (both w/ default
hyperparameters) and used to predict pairing for each of the 150 mass points

e Comparison of performance metric distributions of models trained on unparametrized and
parametrized datasets with default hyperparameters

e All of the 150 mass points are represented in the box plots

10k ! 10 S L L 1040k ! ]
% 1.0 (&) 1.0 Unparametrized ) 1.0 ‘E’
5 s Average = 0.247 <C
o H 0.8F Median = 0.256 [ ] 8
20.8F i B : 0.171 ° 0.8 ! ]
< 1 : ~ : :
= H 0.6 $ 8
0.61 N 8 0.61 1
0.4 s j
0.4- B 2 0.4F J
@ > 0.2r ] P
Unparametrized | | Parametrized Parametrized Unparametrized |Parametrized
0.2 | Average = 0.708 | |Average = 0.968 - Average = 0.928 0.2} Average = 0.650 | Average = 0.986 B
Median = 0.700 | Median = 0.999 0.0 Median = 0.997 Median = 0.644  Median = 1.000
0=0.041 0=0.065 0=0.147 0=0.103 0=0.041
0.0 1 . 02 I 1 0.0 | I
. Unparametrized ~Parametrized - Unparametrized Parametrized B Unparametrized ~Parametrized
Dataset configuration Dataset configuration Dataset configuration
TLORIDA
TECH
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WORK IN PROGRESS

The ML approach to correctly pair muons to off-shell dark bosons works!

e Low-level observables for each muon (pr, 1, ¢, Q), and high-level observables for each
dimuon (AR, A¢, miny) are used as input for training

o XGBoost models trained on individual mass point datasets show a 95.9% average accuracy
for the test dataset

e An aggregated dataset of all individual mass points was constructed and used to train a
model; test dataset prediction accuracy: 97.1%

e Hyperparameter tuning on the aggregated dataset showed marginal improvement (~ 0.3%
increase in accuracy but 50% increase in computation time)

e The aggregated, parametrized dataset yielded the highest performance metrics when
testing individual mass points (the most important case)
e Average unparametrized accuracy: 70.8%
e Average parametrized accuracy: 96.8%
e For analyzing real data, we now have a very accurate model that can accept three free
parameters: mz,, me,,, and my,,

e These parameters can be chosen based off of simulation or theoretical considerations
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Consider just the kinetic terms of the interaction Lagrangian:
Lain = =B, B — Lxp,, X1 -
kin = 3 By — 2 puvXp + ol Dpv

Diagonalizing the terms in the above expression by rotating the field [?]:

Qe [ (1)1 0\ [cosf —sinb\ (Z}
Q) T \—e@ -2 1) \sinf  cosO AH
Writing the interaction Lagrangian in terms of currents so we can substitute the
diagonalized result:
L = eemJemuSy + epdpu
where Q; are Abelian gauge bosons

Substituting the matrix/vector product of (Qé‘ Qf) ™ into the Lagrangian above and
requiring sin® = 0 and cos =1

L= (1 — 62)71/2(60_]9“, — EEJEMM)ZE P eJEMuA“'

Showing that the dark photon Zp is coupled to the EM current of SM particles (and the

dark sector current)
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o The same procedure can be conducted to determine the couplings to the weak bosons
o Diagonalizing the SM neutral fields W3, B*, and our new dark photon field, Xuv [?]:

Wi cos Oy sin Oy —esin Oy Z,
B, = | —sinfy cosOy —ecosOy Au
Xu etan Oy 0 1 Zpy,

where Oy is the Weinberg weak mixing angle
e After some algebra, the interaction Lagrangian takes the form [?]:

L= —egmeJ“ZDu + ep tan QW_/ELZ“ + eDJEZD[J.

thus showing the coupling of the Zp to SM EM current and the Zp coupling to the SM Z
boson
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e Angular separation, AR = /(An)? + (A¢)?, calculated between each GEN and RECO

level muon

Step 1: Randomly select a GEN muon and properly match it with a RECO
muon

(Pseudo)-random + - v -
number generator GENpp | GENp; | GENpu, | GEN g
0,3] — | RECOW, | ARe DRos | ORey | ARes
+ RECO u; | ARy ARy ARy, | 4Ry
- RECO 1, | ARy ARy, ARy, | 4Ry
+ RECO i3 | ARsp ARy ARz | ARy
min =AR;,

|

RECO p; = GEN g,
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e A GEN muon is chosen at random (0-3), and is matched with the RECO muon that has a

minimum AR

Step 2: Remaining GEN muon with same charge is paired with
other RECO muon

+ - + -
GENpo | GENp; | GENpp | GEN p; RECO p; = GEN i,
- RECO Ho AROO ARgl ARoz AR03 1
+ RECO u; ARpp ARy AR, AR;3 RECO Us= GEN Uo
_ RECO 4, |ARap ARy, ARy | AR,
+ RECO M3 AR30 AR31 AR_;Z AR33
TLORIDA
TECH
S. D. Butalla, S. Hirsch, & M. Hohlmann — “Using XGBoost to Pair Final State Muons” — Apr. 25, 2023 21




e One of the oppositely charged muons are selected randomly, and the minimum AR process

is performed again

Step 3: Random opposite charge GEN muon randomly selected,
minimum AR between GEN and RECO muon used to pair

(Pseudo)-random u - 2 -
number generator 1 — GEN pp | GENp; | GEN pp | GEN p3
(1 or3) = RECO 1y | ARgo ARy ARy | ARos

+ | RECOu; | 4Ry ARy | ARy, | ARy

- RECO 11, | ARy ARy, ARy | ARy

+ RECO u3 | AR3p AR3; AR3, AR33

|

min =ARy;

|

RECO Ho= GEN Ma
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e The last RECO muon is paired with the remaining GEN muon

Step 4: Remaining oppositely charged GEN muon paired with other

——> RECO pp= GEN 1y

|

RECO u, = GEN p3

RECO muon
+ - + -
GENpy | GENpy | GENp, | GEN s
= RECO 1ty | ARpo ARg; ARy, ARg3
+ RECO u; | 4Ry ARy, ARy, ARy;
= RECO 1, | ARy ARy, AR, ARy3
+ RECO u; | AR3 AR5, AR;, AR3;
FLORIDA
TECH
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We need metrics to quantitatively assess the performance of any predictive model

Suppose we have two categories that we need to place things in (binary classification
problem), being group 0 (negative classification) and group 1 (positive classification)

In our case, we are classifying whether event data contain properly reconstructed
(correctly-ordered) final-state muons (true/false) or not

At the lowest level, we have the confusion matrix; for a binary classification problem, the

c— [TP FP]

matrix elements are:
FN TN

where TP = true positive, FP = false positive (the so-called “Type | error”)
FN = false negative (the so-called “Type Il error”), TN = true negative
Note: scikit-learn fills its confusion matrix out-of-order!

e From here, we can construct more sophisticated metrics:

e Accuracy (also known as the “Hohlmann Metric”)
® Precision

® Recall

e [ score

e Receiver operating characteristic (ROC) curve

e Area under the (ROC) curve (AUC)

e And many more...

S. D. Butalla, S. Hirsch, & M. Hohlmann — “Using XGBoost to Pair Final State Muons” — Apr. 25, 2023 25




Exactly how it sounds: the ratio of the truly classified events out of all classifications
performed

Note: this includes both categories! So the true positives and true negatives for classifying
data into both category 0 and 1

Mathematical expression:

TP + TN
" TP + FP + TN + FN
G + Cou
B Z,‘ Zj Cr'j

with A € [0, 1]
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An improved version of the F; score (the definition of the coefficient includes all elements of
the confusion matrix; F; only includes 3)

Measures the magnitude of correlation between true positives/negatives, and false
positives/negatives

Essentially equivalent to the chi-square test for a 2 X 2 table

|M| = y/5¢/n

Mathematical expression:

TP(TN) — FP(FN)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

with M € [—1,1]
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Out of all of the positive classifications (group 1), the ratio of the truly classified events
out of the true and false positives

The name is quite fitting, as it really describes how precise the model is at classifying the
data and not erroneously classifying the data on “accident”

Mathematical expression:

TP
TP + FP
Coo
Coo + Co1

P=

with P € [0,1]
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The ratio of the truly classified data in group 1 to the truly classified and erroneously
classified (false negative) data

Gives an idea of how often you are correctly classifying the data into group 1 (positive
classification) out of all of the data in group 1 that exist

Mathematical expression:

TP
TP + FN
Coo
Coo + Cio

R =

with R € [0,1]
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e The harmonic mean of the recall and precision

e Provides an “average” of the recall and precision

2
R-14p-1
2RP
P+R
TP

/=

1
TP + > (FP + FN)

with Fy € [0, 1]

e Another related (but less commonly used) statistic is the Fowlkes-Mallows index:

TP?
FM =
(TP 4 FP)(TP + FN)

with FM € [0, 1]

e Provides roughly the same information as the F; score
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The true (ordinate) and false (abscissa)
positive rates plotted against each other at
different thresholds

True positive rate (TPR):

TP

TPR = ———
TP + FN

False positive rate (FPR):

FP
FPR = ———
FP + TP
Can also be interpreted as a plot of the
sensitivity as a function of the FPR at
different thresholds

Area under the curve is the integral of the

ROC curve (AUC € [0, 1])

AUC provides a compact, single statistic
that can be used to evaluate the
performance of the model

True Positive Rate

Iy
=)

S
e

0.2

0.0

No skill AUC = 0.500]
\Model AUC = 0.947

——————— No Skill
—— Logistic

0.2 0.4 0.6 0.8 1.0

False Positive Rate

Example ROC curve for

mz, =125 GeV, msy = 40 GeV
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o Hyperparameter: a manually chosen, user-defined value that is used as input to the model
and specifies the model architecture or facets of the underlying mathematical machinery.
Examples:

1. In deep neural nets: the learning rate (LR), number of layers, neuron activation
function, etc.
2. In boosted decision trees: the LR, maximum tree depth, L; and L, penalty values, etc.
o Most models are extremely sensitive to the values of the hyperparameters =
hyperparameters usually need to be tuned to achieve the best performance
e Tuning can be done manually (e.g., grid search, random search, or intuition) or
automatically (e.g., Bayesian tuning)

e We consider 5 parameters:

e Objective/loss function: The function that evaluates the performance of the model by
comparing the actual and predicted value (this is what is being minimized by the
optimization algorithm!)

e [; (lasso) and L, (ridge) regularization parameters: a “penalty” term added to the
loss function which helps prevent overfitting (the L; name come from the L; norms)

e Maximum tree depth: the maximum “height” of the tree; maximum number of nodes
from the root to the furthest leaf node

e Learning rate: the “step size” of the optimization algorithm

e The process of optimizing the performance is always a tradeoff between the metric
FLORIDA gauging the performance and the execution time
H

TEC
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e Objective/loss function: The function that evaluates the performance of the model by
comparing the actual and predicted value (this is what is being minimized by the
optimization algorithm!):

e General form:

L(y, 9, 0) = D 1(yi- i) + ()
where y is the true label and ¥ is the prediction (€ [0, 1]), f is (are) some penalty
function(s), and ¢ is the vector of variables for that (those) penalty function(s)
e Binary logistic regression:

L(y,9)=—— Z —yilngi+(1—y)In(l - 3)]
e Squared error (SE) regression (default):
oy _ L N 2
L(y,¥) = > Z [In(yi +1) — In(9; + 1)]
e Hinge function:
=> max(0,1-y;- %)
i

e NOTE: the default loss function is best suited for regression, not classification!
DA e Both the hinge and binary logistic regression functions are purposed for binary
TECH classification (binary logistic regression = binary classification)
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Ly (parameter denoted by ) and L, (parameter denoted by \) regularization parameters:
L'(y, 9, 0,X) = L(y,§) +az [wi + = ZW

where w; are the weights of each leaf node
Maximum tree depth: the maximum “height” of the tree; maximum number of nodes from
the root to the furthest leaf node
Learning rate (n): the “step size” of the optimization algorithm; directly impacts the
weights at leaf nodes:
oL
T
o Yk
W= 7727
> 7L + A+ a
k 8)’3

We want to optimize the output of the model with respect to these five hyperparameters
(i.e., achieve the highest metric value with the correct combination of hyperparameters)
This is just an optimization problem with an N-dimensional hyperplane (N = 5 here)

A 5D grid is set up, and the following hyperparameter values are iterated over

(default in red):

1. Objective function: Binary logistic, squared error, hinge

2. L; regularization: o € [0, 1, 2, 3, 4, 5]
3. L, regularization: A € [0, 1, 2, 3, 4, 5]
4. Maximum tree depth: m € [3, 6, 10, 12, 15]

o

Learning rate: n € [0.1, 0.3, 0.4, 0.5, 0.6]
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o The model is trained on the aggregated, parametrized dataset

e This bar plot displays the feature importance, i.e., the proportion that each observable
contributes to making the decision (correct permutation or incorrect permutation)
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