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Introduction & Motivation

• An attractive conception of dark matter (DM) is the “Hidden Valley” or “Hidden Sector”

model, where a spectrum of DM particles, analogous to Standard Model (SM) matter,

exist [1]
• Standard Model (SM) gauge group is extended by a “dark,” U(1)D group

SU(3) ⊗ SU(2) ⊗ U(1) ⊗ U(1)D

• This extension produces a dark, massive, spin-1, Abelian mediator: the dark Z boson, ZD

• Kinetic mixing between U(1) and U(1)D fields enables DM current and electromagnetic

current interactions; spontaneous symmetry breaking allows DM-electroweak interaction

Interaction Lagrangian:

L ⊂ −
1

4
BµνB

µν −
1

4
ZDµνZ

µν
D

+
ϵ

2 cos θ
ZDµνB

µν +
1

2
m2

ZD
Zµ
D ZDµ

where Bµν and ZDµν are the SM and dark field

strength tensors for U(1) and U(1)D ,

respectively, and ϵ is the kinetic mixing

coefficient
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Introduction & Motivation

• The CMS Muon Dark Sector Working Group is engaged in a model-independent search for

two new bosons that decay to four muons each

• One of our model-dependent searches interprets this process in the context of the Dark

Fermion, or fD model [2]

pp → ZD → fD1
fD1

→ fD2
fD2

µ+µ−µ+µ−

where mfD1
> mfD2

and fD2
is the lightest, stable dark fermion
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Introduction

• A Fermionic dark matter model with four muons final state is considered [1, 2]

• Signal events in this model have a topology in which the final state muons come from

o↵-shell parent particles

• Defining a signal region in this analysis requires forming correct di-muons, i.e., paring muons

that come from the same parent particle

x

!!
!!"

timep

p

!!∗

!!∗

" #

" $

" #

" $

"

"

"

!!"

!!%

!!%

#$" #

#$" $

#$" $

Figure 1: Feynman diagram for the fermionic dark matter model, referred to as the fD model. The

dark Z boson (ZD ) provides a vector portal to the dark sector through kinetic mixing. Dark

Fermions, fD1
’s, then decay to di-muons through o↵-shell ZD particles and another stable dark

fermion, fD2
, that escapes detection.
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The Feynman diagram for the fD model

• The final state will consist of two fD2
particles that escape detection, and four muons,

paired into two dimuons, which decay from off-shell ZD particles
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The Problem

• The final state muons are produced from

off-shell dark bosons, meaning the invariant

masses of the two reconstructed ZD vertices will

not necessarily be equal

• The current analysis uses the signal mass window

approach to determine a signal region

• We need a different approach to pair the muons

into dimuons since we cannot require equal

invariant masses for the dimuons

• To solve this problem, we developed a machine

learning (ML) model to correctly pair each muon

into a dimuon

• The model is trained on Monte-Carlo generated

and reconstructed data of the fD model

• The resultant model will eventually be used on

real data collected by the CMS experiment
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Monte Carlo Simulation and Reconstruction

Flow chart of the sample generation process

Start
fD
model
UFO
files

MadGraph5 v2.6.5 LHE file Pythia v8.230 GEANT4 v10.4.3

MiniAOD
file

MuJetAnalysis
(CutFlow
analysis)

n-tuple
file

CMSSW v.10.2.18

Hard-scattering
event generation Event reconstruction

n-tuple production (cuts)

To analysis

• Samples of 104 events are generated and reconstructed for 85 ≤ mZD
≤ 400 GeV, with

5 ≤ mfD1
≤ 60 GeV (mfD2

= 2 GeV for all samples)

• Kinematic and geometric cuts placed during n-tuple production (e.g., pT > 8 GeV and

|η| < 2.4 for all 4 muons)

• Further cuts are placed to remove events that fail reconstruction (charge, η, ϕ, etc.)

• Roughly 4000 events survive the selection in each sample
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Data Pre-processing

GEN level track

RECO level track

p
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∆R
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µGEN
1 , µRECO

1

)
∆R

(
µGEN
1 , µRECO
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)µ1
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Angular separation

∆Rji =
√

(∆η)2 + (∆ϕ)2

=
√

(ηj − ηi)2 + (ϕj − ϕi)2, j ̸= i

• For each dataset, we pair the generator (GEN, or “MC truth”) level data to the fully

reconstructed (RECO) level muon objects, using the following algorithm:

1. ∆R is calculated between each GEN and RECO level muon

2. A GEN muon is chosen at random and matched with the RECO muon with the

smallest ∆R

3. The remaining RECO muon with like charge is paired with the remaining GEN muon

4. One of the oppositely charged µ selected randomly, then step 2 is repeated

5. The last RECO muon is paired with the remaining GEN muon
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The Final Dataset

• We then generate two additional, incorrect

permutations which are used as

“incorrectly reconstructed dimuons” for

training the model

• Requiring each dimuon to be composed of

a positive and negative muon, this comes

to two additional permutations

• Binary labels assigned to correct (1) and

incorrect permutations (0)

• The dataset contains all permutations and

their associated observables:

• For each muon: pT , η, ϕ, Q

• For each dimuon: ∆R, ∆ϕ,

invariant mass, minv

• Each dataset is then randomly shuffled and

split into a 70%/30% train/test datatset

Correct Permutation

ZD1 ZD2

µ+
1 µ−

2 µ+
3 µ−

4

Incorrect Permutation 1

ZD1 ZD2

µ+
3 µ−

2 µ+
1 µ−

4

Incorrect Permutation 2

ZD1 ZD2

µ+
1 µ−

4 µ+
3 µ−

2

Positive muons

swapped to

different parent
particles

Negative muons

swapped to

different parent
particles
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The XGBoost Model

• eXtreme Gradient Boosted decision tree: a “boosted,” ensemble decision tree algorithm

(supervised machine learning algorithm)

• Individual decision trees (DTs) are randomly created and the input data are

randomly sampled (“boosting”)

• Each successive DT generated such that it minimizes error/impurity

• Uses gradient descent for optimizing a loss function

• Parallelized computation and better caching (improvement to gradient boosting

algorithm)

• For the base model all default hyperparameters are used (learning rate, η̃ = 0.3; maximum

tree depth, Dmax = 6, L1 and L2 regularization, α = 0, λ = 1, respectively, etc.)

Tree 1 Tree 2 Tree N

Weighted final result

+ + · · · +

An (extremely) simplified schematic of an XGBoost model
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Training/Testing Results for All Mass Points

• The initial approach: train a separate model on each of the 150 different mass points

(85 ≤ mZD
≤ 400 GeV, 5 ≤ mfD1

≤ 60 GeV,

and mfD2
= 2 GeV)

• Statistics for the testing performance metrics are displayed below for all of the 150 mass

points

Table 1: Training results for all mass points

Average Median Std. dev. Min. Max.

Accuracy 0.959 0.996 0.075 0.688 1.00

Matthew’s correlation coefficient (MCC) 0.907 0.990 0.170 0.272 1.00

Area under the receiver operating characteristic curve 0.981 1.00 0.045 0.761 1.00

Execution time [s] 1.19 0.895 0.735 0.127 3.19

Recall 0.939 0.993 0.121 0.442 1.00

Precision 0.937 0.994 0.109 0.550 1.00

Work in progress

True Positives

1329

False Positives

843

False Negatives

1029

True Negatives

3746
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mfD1
= 55 GeV
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Work in progress

No Skill
Logistic

Example receiver operating curve (ROC) curve for

mZD
= 125 GeV, mfD1

= 55 GeV
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A Different Approach

• In reality, we don’t know the mass of ZD

• To capture all of the variability in the kinematics and physics over the mass range

85 ≤ mZD
≤ 400 GeV and 5 ≤ mfD1

≤ 60 GeV, we aggregate all of the mass points into

a single dataset

• The dataset is split into a 70/30 train/test split

• We also perform hyperparameter tuning via a grid search to optimize performance

+ + + + =

mZD
= 85 GeV

mfD1
= 5 GeV

mZD
= 85 GeV

mfD1
= 15 GeV

mZD
= 85 GeV

mfD1
= 20 GeV

mZD
= 400 GeV

mfD1
= 60 GeV

· · ·
Aggregated Dataset

Events: ∼ 106
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Training and Hyperparameter Optimization Results

• Pretty good performance with such a

diverse input dataset; ∼97% accuracy!

• Hyperparameter tuning provides minimal

improvement in performance

• ∼ 0.3% increase in accuracy, but

∼ 55% increase in computation time

Table 2: Training results for aggregated dataset

Default Optimal

Learning rate (η̃) 0.3 0.4

Maximum dept (Dmax) 6 10

L1 regularization (α) 0 5

L2 regularization (λ) 1 0

Table 3: Training results for aggregated dataset

MCC AUC Accuracy Time (s) F1 Precision Recall

Default hyperparamers 0.934 0.997 0.971 62.3 0.956 0.960 0.952

Optimal hyperparameters 0.942 0.998 0.974 96.3 0.961 0.963 0.960

% difference between opt. and def. 0.857 0.100 0.309 54.6 0.523 0.313 0.840
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Evaluating Aggregated Model Performance on all Mass Points

• Two trained models, using the aggregated dataset, with the default and optimal

hyperparameters used to evaluate all 150 individual samples

• Distributions reflect the prediction metrics for all 150 mass points

Default Optimal
Hyperparameter configuration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Default
Average = 0.708
Median = 0.700

= 0.041

Optimal
Average = 0.968
Median = 0.711

= 0.058

Default Optimal
Hyperparameter configuration

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
C

C
Default
Average = 0.247
Median = 0.256

= 0.171

Optimal
Average = 0.928
Median = 0.275

= 0.191

Default Optimal
Hyperparameter configuration

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Default
Average = 0.650
Median = 0.644

= 0.103

Optimal
Average = 0.986
Median = 0.609

= 0.103
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Parametrizing the dataset

• The performance metrics distributions shown on the previous slide are much poorer than the

testing metrics

• The model is probably over-training on the aggregated dataset

• Hyperparameter tuning doesn’t help with the over-training

• To improve results, we tried parametrizing [4] the dataset

• For each event, we add mZD
, mfD1

, and mfD2

A screenshot of the parametrized dataset used for training the XGBoost model

• A new model is trained on the aggregated and parametrized dataset
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Evaluation results of aggregated, parametrized dataset-trained model

• Models are trained on the aggregated and parametrized dataset (both w/ default

hyperparameters) and used to predict pairing for each of the 150 mass points

• Comparison of performance metric distributions of models trained on unparametrized and

parametrized datasets with default hyperparameters

• All of the 150 mass points are represented in the box plots

Unparametrized Parametrized
Dataset configuration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Unparametrized
Average = 0.708
Median = 0.700

= 0.041

Parametrized
Average = 0.968
Median = 0.999

= 0.065

Work in progress

Unparametrized Parametrized
Dataset configuration

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
M

C
C Unparametrized

Average = 0.247
Median = 0.256

= 0.171

Parametrized
Average = 0.928
Median = 0.997

= 0.147

Work in progress

Unparametrized Parametrized
Dataset configuration

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Unparametrized
Average = 0.650
Median = 0.644

= 0.103

Parametrized
Average = 0.986
Median = 1.000

= 0.041

Work in progress
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Summary & Conclusion

The ML approach to correctly pair muons to off-shell dark bosons works!

• Low-level observables for each muon (pT , η, ϕ, Q), and high-level observables for each

dimuon (∆R, ∆ϕ, minv) are used as input for training

• XGBoost models trained on individual mass point datasets show a 95.9% average accuracy

for the test dataset

• An aggregated dataset of all individual mass points was constructed and used to train a

model; test dataset prediction accuracy: 97.1%

• Hyperparameter tuning on the aggregated dataset showed marginal improvement (∼ 0.3%

increase in accuracy but 50% increase in computation time)

• The aggregated, parametrized dataset yielded the highest performance metrics when

testing individual mass points (the most important case)

• Average unparametrized accuracy: 70.8%

• Average parametrized accuracy: 96.8%

• For analyzing real data, we now have a very accurate model that can accept three free

parameters: mZD
, mfD1

, and mfD2

• These parameters can be chosen based off of simulation or theoretical considerations
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Dark Photon — EM Current Coupling

• Consider just the kinetic terms of the interaction Lagrangian:

Lkin = −
1

4
BµνB

µν −
1

4
XDµνX

µν
D +

ϵ

2 cos θ
XDµνB

µν

• Diagonalizing the terms in the above expression by rotating the field [?]:

(
Ωµ

0

Ωµ
1

)
=

(
(1 − ϵ2)−1/2 0

−ϵ(1 − ϵ2)−1/2 1

)(
cos θ − sin θ

sin θ cos θ

)(
Zµ
D

Aµ

)

• Writing the interaction Lagrangian in terms of currents so we can substitute the

diagonalized result:

L = eEMJEMµΩ
µ
0 + eDJDµΩ

µ
1

where Ωi are Abelian gauge bosons
• Substituting the matrix/vector product of

(
Ωµ

0 Ωµ
1

)T into the Lagrangian above and

requiring sin θ = 0 and cos θ = 1

L = (1 − ϵ
2)−1/2(eDJDµ − eϵJEMµ)Z

µ
D + eJEMµA

µ

• Showing that the dark photon ZD is coupled to the EM current of SM particles (and the

dark sector current)

S. D. Butalla, S. Hirsch, & M. Hohlmann – “Using XGBoost to Pair Final State Muons” – Apr. 25, 2023 18



D
ra
ft

Dark Photon — Z Boson Coupling

• The same procedure can be conducted to determine the couplings to the weak bosons
• Diagonalizing the SM neutral fields W 3, Bµ, and our new dark photon field, Xµν [?]:

W 3
µ

Bµ

Xµ

 =

 cos θW sin θW −ϵ sin θW
− sin θW cos θW −ϵ cos θW
ϵ tan θW 0 1

 Zµ

Aµ

ZDµ


where θW is the Weinberg weak mixing angle

• After some algebra, the interaction Lagrangian takes the form [?]:

L = −eEMϵJµZDµ + eD tan θW Jµ
D Zµ + eDJ

µ
D ZDµ

thus showing the coupling of the ZD to SM EM current and the ZD coupling to the SM Z

boson
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Data Pre-processing: Matching GEN to RECO muons, Step 1

• Angular separation, ∆R =
√

(∆η)2 + (∆ϕ)2, calculated between each GEN and RECO

level muon

+ – + –
GEN µ0 GEN µ1 GEN µ2 GEN µ3

– RECO µ0 ΔR00 ΔR01 ΔR02 ΔR03

+ RECO µ1 ΔR10 ΔR11 ΔR12 ΔR13

– RECO µ2 ΔR20 ΔR21 ΔR22 ΔR23

+ RECO µ3 ΔR30 ΔR31 ΔR32 ΔR33

(Pseudo)-random 
number generator

[0, 3]
2

min = ΔR12

RECO µ1 = GEN µ2 

Step 1: Randomly select a GEN muon and properly match it with a RECO 
muon
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Data Pre-processing: Matching GEN to RECO muons, Step 2

• A GEN muon is chosen at random (0–3), and is matched with the RECO muon that has a

minimum ∆R

+ – + –
GEN µ0 GEN µ1 GEN µ2 GEN µ3

– RECO µ0 ΔR00 ΔR01 ΔR02 ΔR03

+ RECO µ1 ΔR10 ΔR11 ΔR12 ΔR13

– RECO µ2 ΔR20 ΔR21 ΔR22 ΔR23

+ RECO µ3 ΔR30 ΔR31 ΔR32 ΔR33

RECO µ1 = GEN µ2 

Step 2: Remaining GEN muon with same charge is paired with 
other RECO muon

RECO µ3 = GEN µ0
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Data Pre-processing: Matching GEN to RECO muons, Step 3

• One of the oppositely charged muons are selected randomly, and the minimum ∆R process

is performed again

+ – + –
GEN µ0 GEN µ1 GEN µ2 GEN µ3

– RECO µ0 ΔR00 ΔR01 ΔR02 ΔR03

+ RECO µ1 ΔR10 ΔR11 ΔR12 ΔR13

– RECO µ2 ΔR20 ΔR21 ΔR22 ΔR23

+ RECO µ3 ΔR30 ΔR31 ΔR32 ΔR33

RECO µ0 = GEN µ1

Step 3: Random opposite charge GEN muon randomly selected, 
minimum ΔR between GEN and RECO muon used to pair

min = ΔR01

(Pseudo)-random 
number generator

(1 or 3)
1
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Data Pre-processing: Matching GEN to RECO muons, Step 4

• The last RECO muon is paired with the remaining GEN muon

+ – + –
GEN µ0 GEN µ1 GEN µ2 GEN µ3

– RECO µ0 ΔR00 ΔR01 ΔR02 ΔR03

+ RECO µ1 ΔR10 ΔR11 ΔR12 ΔR13

– RECO µ2 ΔR20 ΔR21 ΔR22 ΔR23

+ RECO µ3 ΔR30 ΔR31 ΔR32 ΔR33

RECO µ0 = GEN µ1

Step 4: Remaining oppositely charged GEN muon paired with other 
RECO muon

RECO µ2 = GEN µ3 
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Dimuon Invariant Mass Distributions
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Review of statistical metrics for binary classification problems

• We need metrics to quantitatively assess the performance of any predictive model

• Suppose we have two categories that we need to place things in (binary classification

problem), being group 0 (negative classification) and group 1 (positive classification)

• In our case, we are classifying whether event data contain properly reconstructed

(correctly-ordered) final-state muons (true/false) or not

• At the lowest level, we have the confusion matrix; for a binary classification problem, the

matrix elements are:

C =

[
TP FP

FN TN

]
where TP = true positive, FP = false positive (the so-called “Type I error”)

FN = false negative (the so-called “Type II error”), TN = true negative

Note: scikit-learn fills its confusion matrix out-of-order!

• From here, we can construct more sophisticated metrics:

• Accuracy (also known as the “Hohlmann Metric”)

• Precision

• Recall

• F1 score

• Receiver operating characteristic (ROC) curve

• Area under the (ROC) curve (AUC)

• And many more...
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Accuracy

• Exactly how it sounds: the ratio of the truly classified events out of all classifications

performed

• Note: this includes both categories! So the true positives and true negatives for classifying

data into both category 0 and 1

• Mathematical expression:

A =
TP + TN

TP + FP + TN + FN

=
C00 + C01∑

i

∑
j Cij

with A ∈ [0, 1]
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Matthew’s Correlation Coefficient

• An improved version of the F1 score (the definition of the coefficient includes all elements of

the confusion matrix; F1 only includes 3)

• Measures the magnitude of correlation between true positives/negatives, and false

positives/negatives

• Essentially equivalent to the chi-square test for a 2 × 2 table

∣∣M∣∣ =√χ2/n

• Mathematical expression:

M =
TP(TN) − FP(FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

with M ∈ [−1, 1]
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Precision

• Out of all of the positive classifications (group 1), the ratio of the truly classified events

out of the true and false positives

• The name is quite fitting, as it really describes how precise the model is at classifying the

data and not erroneously classifying the data on “accident”

• Mathematical expression:

P =
TP

TP + FP

=
C00

C00 + C01

with P ∈ [0, 1]
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Recall

• The ratio of the truly classified data in group 1 to the truly classified and erroneously

classified (false negative) data

• Gives an idea of how often you are correctly classifying the data into group 1 (positive

classification) out of all of the data in group 1 that exist

• Mathematical expression:

R =
TP

TP + FN

=
C00

C00 + C10

with R ∈ [0, 1]
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F1 score

• The harmonic mean of the recall and precision

• Provides an “average” of the recall and precision

F1 =
2

R−1 + P−1

=
2RP

P + R

=
TP

TP +
1

2
(FP + FN)

with F1 ∈ [0, 1]

• Another related (but less commonly used) statistic is the Fowlkes-Mallows index:

FM =

√
TP2

(TP + FP)(TP + FN)

with FM ∈ [0, 1]

• Provides roughly the same information as the F1 score
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ROC curves and AUC

• The true (ordinate) and false (abscissa)

positive rates plotted against each other at

different thresholds

• True positive rate (TPR):

TPR =
TP

TP + FN

• False positive rate (FPR):

FPR =
FP

FP + TP

• Can also be interpreted as a plot of the

sensitivity as a function of the FPR at

different thresholds

• Area under the curve is the integral of the

ROC curve (AUC ∈ [0, 1])

• AUC provides a compact, single statistic

that can be used to evaluate the

performance of the model
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Hyperparameter tuning

• Hyperparameter: a manually chosen, user-defined value that is used as input to the model

and specifies the model architecture or facets of the underlying mathematical machinery.

Examples:

1. In deep neural nets: the learning rate (LR), number of layers, neuron activation

function, etc.
2. In boosted decision trees: the LR, maximum tree depth, L1 and L2 penalty values, etc.

• Most models are extremely sensitive to the values of the hyperparameters ⇒
hyperparameters usually need to be tuned to achieve the best performance

• Tuning can be done manually (e.g., grid search, random search, or intuition) or

automatically (e.g., Bayesian tuning)

• We consider 5 parameters:

• Objective/loss function: The function that evaluates the performance of the model by

comparing the actual and predicted value (this is what is being minimized by the

optimization algorithm!)

• L1 (lasso) and L2 (ridge) regularization parameters: a “penalty” term added to the

loss function which helps prevent overfitting (the Li name come from the Li norms)

• Maximum tree depth: the maximum “height” of the tree; maximum number of nodes

from the root to the furthest leaf node

• Learning rate: the “step size” of the optimization algorithm

• The process of optimizing the performance is always a tradeoff between the metric

gauging the performance and the execution time
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Hyperparameter descriptions

• Objective/loss function: The function that evaluates the performance of the model by

comparing the actual and predicted value (this is what is being minimized by the

optimization algorithm!):

• General form:

L(y, ŷ,ϕ) =
∑
i

l
(
yi , ŷi

)
+ f (ϕ)

where y is the true label and ŷ is the prediction (∈ [0, 1]), f is (are) some penalty

function(s), and ϕ is the vector of variables for that (those) penalty function(s)

• Binary logistic regression:

L(y, ŷ) = −
1

N

∑
i

[
− yi ln ŷi + (1 − y) ln(1 − ŷi )

]
• Squared error (SE) regression (default):

L(y, ŷ) =
1

2

∑
i

[
ln(yi + 1) − ln(ŷi + 1)

]2
• Hinge function:

L(y, ŷ) =
∑
i

max
(
0, 1 − yi · ŷi

)
• NOTE: the default loss function is best suited for regression, not classification!

• Both the hinge and binary logistic regression functions are purposed for binary

classification (binary logistic regression = binary classification)
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Hyperparameter descriptions

• L1 (parameter denoted by α) and L2 (parameter denoted by λ) regularization parameters:

L′(y, ŷ, α, λ) = L(y, ŷ) + α
∑
j

∣∣wj

∣∣ + λ

2

∑
j

w2
j

where wj are the weights of each leaf node

• Maximum tree depth: the maximum “height” of the tree; maximum number of nodes from

the root to the furthest leaf node

• Learning rate (η): the “step size” of the optimization algorithm; directly impacts the

weights at leaf nodes:

wj = η

∑
k

∂L

∂yk∑
k

∂2L

∂y2
k

+ λ + α

• We want to optimize the output of the model with respect to these five hyperparameters

(i.e., achieve the highest metric value with the correct combination of hyperparameters)

• This is just an optimization problem with an N-dimensional hyperplane (N = 5 here)

• A 5D grid is set up, and the following hyperparameter values are iterated over

(default in red):

1. Objective function: Binary logistic, squared error, hinge

2. L1 regularization: α ∈ [0, 1, 2, 3, 4, 5]

3. L2 regularization: λ ∈ [0, 1, 2, 3, 4, 5]

4. Maximum tree depth: m ∈ [3, 6, 10, 12, 15]

5. Learning rate: η ∈ [0.1, 0.3, 0.4, 0.5, 0.6]
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Feature Importance

• The model is trained on the aggregated, parametrized dataset
• This bar plot displays the feature importance, i.e., the proportion that each observable

contributes to making the decision (correct permutation or incorrect permutation)
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