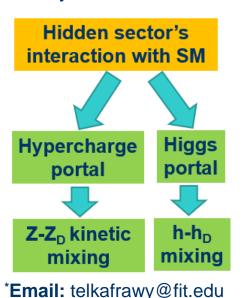
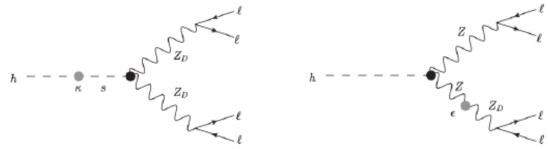
The Ninth Annual Conference on Large Hadron Collider Physics



Search for the dark boson through exotic Higgs decays


<u>Tamer Elkafrawy</u>* and Marcus Hohlmann Florida Institute of Technology

Objective:

The goal of this work is to search for a long-lived dark boson (onshell) Z_D via the two exotic Higgs decays $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ and $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$. We are interested in the final state of two dimuons, displaced by 1–7500 mm.

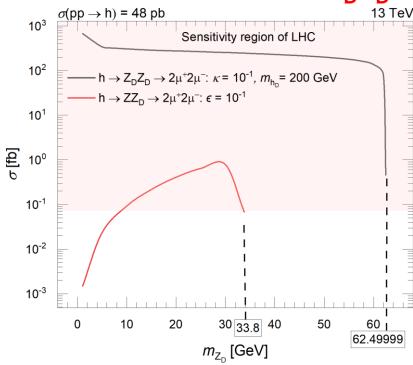
tamer.elkafrawy@cern.ch

Feynman diagrams for Higgs boson decay via Higgs mixing mechanism (left) or the kinetic mixing (right) [Ref. 2]

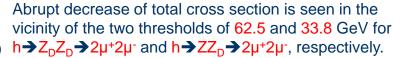
The exotic decay h→Z_DZ_D is induced if Higgs mixing (HM) dominates.

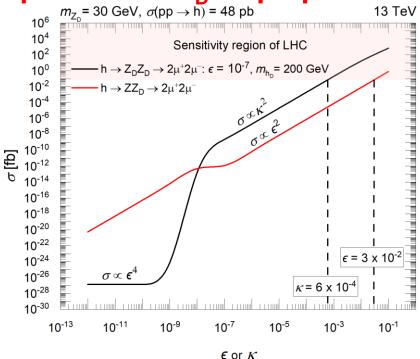
The exotic decay h→ZZ_D is induced if kinetic mixing (KM) dominates.

The current samples are generated by applying Monte Carlo simulation using the framework of MadGraph5_aMC@NLO v2.7.0.


Keys of acronyms used in this presentation:

 $Standard-Model \ Higgs \ boson = h$ $Dark \ Higgs \ boson = h_D \qquad \qquad Dark \ boson = Z_D$ $Kinetic \ mixing = KM \qquad \qquad Higgs \ mixing = HM$ $Dominant = ON \qquad \qquad Negligible = OFF$


Tamer Elkafrawy - LHCP2021 Conference - June 10, 2021



Expected total cross sections of Z_D in the scans of interest for $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ and $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$

If 0.1 is taken as the highest possible value of ϵ and κ , the LHC in Run 2 is sensitive to measure Z_D indirectly via $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ for m_{ZD} in the range of 1 - <62.5 GeV, and via $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ for $m_{ZD} > 10$ GeV where an acceptance of 100% is assumed.



If 0.1 is taken as the highest possible value of ϵ and κ and 30 GeV is chosen for m_{ZD} , then Z_D can be measured indirectly at the LHC in Run 2 via $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ only if HM is dominant ($k \ge 6x10^{-4}$) and via $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ only if KM is dominant ($\epsilon \ge 3x10^{-2}$) where an acceptance of 100% is assumed.

 $\sigma(pp \rightarrow h) = 48$ pb for ggF production channel, calculated to N³LO QCD + NLO EW. The LHC is assumed to be sensitive down to 0.073 fb based on 10 events to be measured for $L_{int} = 137$ fb⁻¹.

How the expected lifetime and cross section of Z_D change with each other for the two exotic decays

LHC is sensitive to the indirect measurement of Z_D if HM is dominant where $k \ge 6 \times 10^{-4}$ has to be verified.

Lifetime of Z_D is unchanged for all expected production/total cross sections in the scan over HM parameter k in the range of 10^{-12} – 10^{-1} . and ct is tuned mainly by the value of ϵ (here, $\epsilon = 10^{-7}$) and slightly by Z_D mass (here, $m_{ZD} = 30$ GeV).

Only prompt (and not long-lived) Z_D can be measured indirectly via $h \rightarrow ZZ_D \rightarrow 2\mu^+2\mu^-$ with a constraint of $\epsilon \ge 3x10^{-2}$.

 $c\tau_{ZD}$ is always inversely proportional to ϵ^2 , while production/total cross section of Z_D is directly proportional to ϵ^2 , which causes that production/total cross section of Z_D is inversely proportional to $c\tau_{ZD}$.

References

For the UFO model used to produce the current samples:

- "Exotic decays of the 125 GeV Higgs boson," David Curtin et al., Phys. Rev. D 90, 075004 (2014) (10.1103/PhysRevD.90.075004).
- "Illuminating dark photons with high-energy colliders," David Curtin *et al.*, *Journal of High Energy Physics* **2015**, 157 (2015) (10.1007/JHEP02(2015)157).

For the current project:

- "Study of Higgs and Vector Portals to Dark Matter," <u>Tamer Elkafrawy</u> et al., APS April Meeting, April 17–20, 2021, (https://absuploads.aps.org/presentation.cfm?pid=19067).
- "Modeling exotic Higgs decays to vector bosons with displaced dimuons in the final states", **T. Elkafrawy** and M. Hohlmann, Searching for long-lived particles at the LHC and beyond: Ninth workshop of the LLP Community, May 25–28, 2021. (https://indico.cern.ch/event/980853/timetable/)
- 5) The current presentation of LHCP2021 can be downloaded from (https://indico.cern.ch/event/905399/contributions/4335593/).