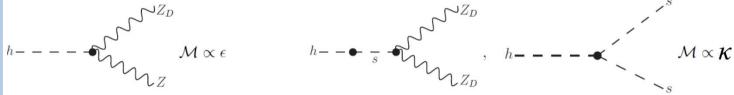

The Tenth Annual Large Hadron Collider Physics (LHCP2022), May 16-20, 2022, TAIPEI, TAIWAN (Fully Online) **Prospects for Dark Boson Searches via Exotic Higgs Decays in Run 3 and High Luminosity Era of the LHC**


<u>Tamer Elkafrawy</u>^{a,*}, Marcus Hohlmann^a, Teruki Kamon^b, and Paul Padley^c ^aFlorida Institute of Technology, Melbourne, Florida USA ^bTexas A&M University, College Station, Texas USA ^cRice University, Houston, Texas USA

*Speaker: telkafrawy@fit.edu, tamer.elkafrawy@cern.ch, taelkafr@fnal.gov

Introduction

Higgs is a key to new physics and can be the portal to BSM including dark matter (DM) particles such as the dark vector and dark Higgs bosons. The sensitivity of the Large Hadron Collider (LHC) to the dominant exotic Higgs decays with a final state of multiple displaced (by 1–7500 mm) dimuons is investigated in this presentation.

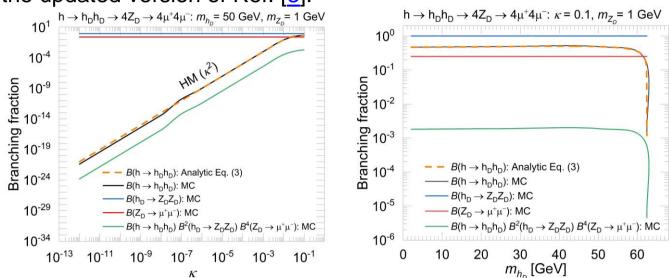
Figure 1: Feynman diagrams for the dominant exotic Higgs decays via the kinetic mixing (left) and Higgs mixing (middle and right) [1].

The current samples are generated by applying Monte Carlo (MC) simulation using the framework of MadGraph5_aMC@NLO v2.7.2 with Hidden Abelian Higgs Model (HAHM) [1].

Keys of acronyms used in this presentation: SM Higgs boson = hDark Higgs boson = $s = h_D$ Dark vector boson = Z_D

- Kinetic mixing parameter = ϵ
- Higgs mixing parameter = κ

Hidden sector's interaction with SM Hypercharge portal Free bortal C-Z_D kinetic mixing


Figure 2: Portals and mixings through which the dark sector can interact with the Standard Model (SM).

Exotic Higgs Decay Widths

The dominant exotic Higgs partial decay widths to LO in m_{ZD}^2/m_Z^2 (Eq. 1) and in κ (Eqs. 2 and 3) are given in Ref. [1].

Branching Fractions of Exotic Higgs Decays

The corresponding figures to Fig. 4 for the exotic Higgs decays $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ and $h \rightarrow Z_DZ_D \rightarrow 2\mu^+ 2\mu^-$ are given in Ref. [2], which is the updated version of Ref. [3].

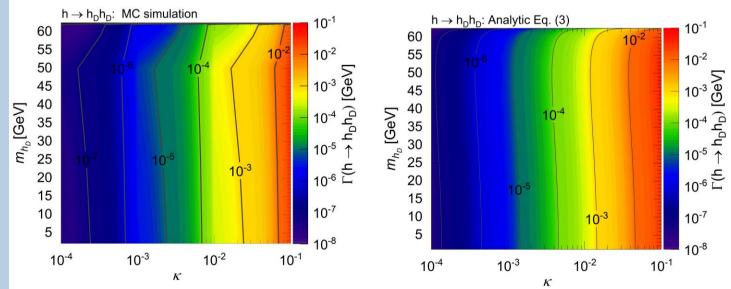
Figure 4: MC simulation of $B(h \rightarrow h_D h_D)$ (black), $B(h_D \rightarrow Z_D Z_D)$, $B(Z_D \rightarrow \mu^+ \mu^-)$, and the product of $B(h \rightarrow h_D h_D)$, $B^2(h_D \rightarrow Z_D Z_D)$, and $B^4(Z_D \rightarrow \mu^+ \mu^-)$ as well as an analytical calculation of $B(h \rightarrow h_D h_D)$ (orange) from Eq. (3) in a scan over κ (left panel) and over m_{hD} (right panel), which shows an excellent agreement between the two approaches.

Sensitivity of the LHC in Run 3 and HL Era to Various Exotic Higgs Decays

The SM Higgs is assumed to be produced through the production channel of gluon-gluon fusion (ggF) for which the production cross section of 49.85 pb, calculated to a combination of next-to-next-to-leading order with QCD corrections (N³LO QCD) and next-to-leading order with electroweak corrections (NLO EW) from Ref [5], is used.

 $---- \sigma(pp \rightarrow h) B(h \rightarrow ZZ_D) B(Z \rightarrow \mu^+\mu^-) B(Z_D \rightarrow \mu^+\mu^-) [fb]$

 $--- \sigma(pp \to h) B(h \to Z_D Z_D) B^2(Z_D \to \mu^+ \mu^-) [fb] --- \sigma(pp \to h) B(h \to Z_D Z_D) B^2(Z_D \to \mu^+ \mu^-) [fb]$

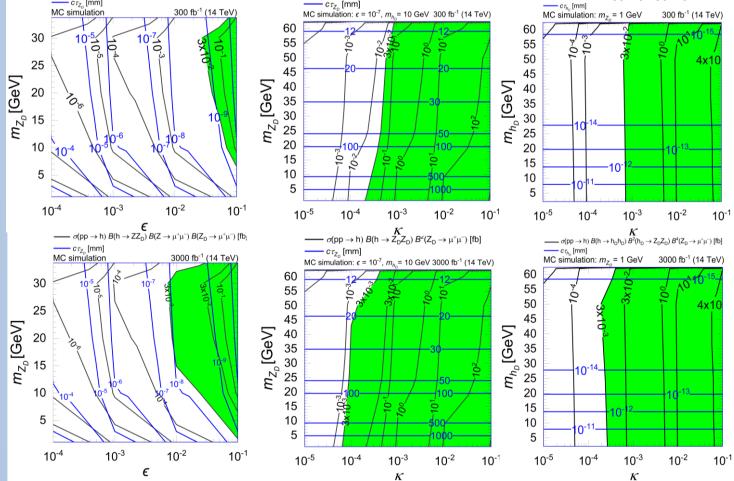

 $---- \sigma(pp \rightarrow h) B(h \rightarrow h_D h_D) B^2(h_D \rightarrow Z_D Z_D) B^4(Z_D \rightarrow \mu^+\mu^-) [fb]$

$$\Gamma(h \to ZZ_D) = \frac{\epsilon^2 tan^2 \theta_w}{16\pi} \frac{m_{Z_D}^2 (m_h^2 - m_Z^2)^3}{m_h^3 m_Z^2 v^2}$$
(1)

$$\Gamma(h \to Z_D Z_D) = \frac{\kappa^2}{32\pi} \frac{v^2}{m_h} \sqrt{1 - \frac{4m_{Z_D}^2}{m_h^2}} \frac{(m_h^2 + 2m_{Z_D}^2)^2 - 8(m_h^2 - m_{Z_D}^2)m_{Z_D}^2}{(m_h^2 - m_{h_D}^2)^2}$$
(2)

$$\Gamma(h \to h_D h_D) = \frac{\kappa^2}{32\pi} \frac{v^2}{m_h} \sqrt{1 - \frac{4m_{h_D}^2}{m_h^2}} \frac{(m_h^2 + 2m_{h_D}^2)^2}{(m_h^2 - m_{h_D}^2)^2}$$
(3)

where θ_{ω} is the Weinberg mixing angle that is measured as 28.75° by LHCb Ref. [4] and v = 246 GeV is the SM Higgs vacuum expectation value (vev).


Figure 3: MC simulation (upper panel) against an analytical calculation (lower panel) from Eq. (3) of the partial decay width $h \rightarrow h_D h_D$ in a scan over the κ - m_{hD} plane, which shows an excellent agreement between the two. The corresponding figures to Fig. 3 for the partial decay widths $h \rightarrow Z_D$ in the scan over the ϵ - m_{ZD} plane and $h \rightarrow Z_D Z_D$ in the scan over the κ - m_{ZD} plane and $h \rightarrow Z_D Z_D$ in the scan over the κ - m_{ZD} plane are given in Ref. [2], which is the updated version of Ref. [3].

References

- 1. D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992].
- T. Elkafrawy, M. Hohlmann, T. Kamon, P. Padley, H. Kim, M. Rahmani, S. Dildick, Illuminating long-lived dark vector bosons via exotic Higgs decays at √s = 13 TeV, <u>arXiv:2111.03960v2</u>.
- T. Elkafrawy, M. Hohlmann, T. Kamon, P. Padley, H. Kim, M. Rahmani, S. Dildick, Illuminating long-lived dark vector bosons via exotic Higgs decays at √s = 13 TeV, <u>PoS 397</u>, 224 (2021).
- 4. R. Aaij *et al.* (The LHCb Collaboration), Measurement of the forward-backward asymmetry in Z/Y * $\rightarrow \mu^+\mu^-$ decays and determination of the effective weak mixing angle, <u>JHEP 11</u> (2015) 190 [arXiv:1509.07645].
- 5. D. de Florian *et al.*, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, <u>CERN Yellow Reports: Monographs 2/2017 (2017) CERN-2017-002-M</u> [arXiv:1610.07922].

Acknowledgements

All institutions wish to thank the Office of Science (HEP) at DOE for its support of this work.

Figure 5: MC simulation showing the contour lines of total cross section (black) and decay length (blue) for the exotic Higgs decays $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ (left panels), $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ (middle panels), and $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ (right panels) in a scan over the $\epsilon - m_{ZD}$, the $\kappa - m_{ZD}$, and the $\kappa - m_{hD}$ planes, respectively, for Run 3 (upper panels) and high luminosity (HL) era (lower panels) of the LHC for which sensitivity regions are shaded in green.

Conclusion

1. The LHC is found to be more sensitive to $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ (down to $\kappa = 2.0 \times 10^{-4}$ and $\kappa = 6.5 \times 10^{-5}$) and $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ (down to $\kappa = 7.0 \times 10^{-4}$ and $\kappa = 2.5 \times 10^{-4}$) irrespective of the mass value acquired by Z_D or h_D compared to $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ (down to $\epsilon = 2.5 \times 10^{-2}$ for m_{ZD} range of 6.5–33.8 GeV and $\epsilon = 7.0 \times 10^{-3}$ for m_{ZD} range of 1.5–33.8 GeV) in Run 3 and HL era, respectively.

2. While the decay mode $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ can produce prompt or long-lived Z_D based on the kinetic mixing strength ($c\tau_{ZD} = 10-2000$ mm for $\epsilon = 10^{-7}$ with $c\tau_{ZD}$ and m_{ZD} being inversely proportional to each other), $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ and $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ are limited to produce prompt Z_D .