Event characterization of dark bosons via exotic Higgs decays with final states of displaced dimuons in high luminosity era of the LHC

Tamer Elkafrawy^{a,*}, Marcus Hohlmann^a, Teruki Kamon^b, and Paul Padley^c

^aFlorida Institute of Technology, Melbourne, Florida, USA

^bTexas A&M University, College Station, Texas, USA

^cRice University, Houston, Texas, USA

*Speaker: telkafrawy@fit.edu, tamer.elkafrawy@cern.ch, taelkafr@fnal.gov

Introduction

Higgs is a key to new physics and can be the portal to BSM including dark matter (DM) particles such as dark vector Z_D and dark Higgs h_D bosons. The sensitivity of the Large Hadron Collider (LHC) to the dominant exotic Higgs decays with a final state of multiple displaced dimuons by 1 - 7500 mm is investigated in this presentation.

Figure 1: Feynman diagrams for the dominant exotic Higgs decays via the kinetic mixing (left) and Higgs mixing (middle and right).

of MadGraph5_aMC@NLO v2.7.2 with Hidden Abelian Higgs Model (HAHM) [1].

(left) and Higgs mixing (middle and right).

The current samples are generated by applying Monte Carlo (MC) simulation using the framework

Keys of acronyms:

SM Higgs boson = hDark Higgs boson = $s = h_D$ Dark vector boson = Z_D Kinetic mixing parameter = ϵ Higgs mixing parameter = κ

Figure 2: Portals and mixings through which the dark sector can interact with the Standard Model (SM).

Sensitivity of the LHC in Run 2, Run 3, and HL-LHC to various exotic Higgs decays The SM Higgs with mass of m_h = 125.09 GeV is assumed to be produced at the LHC through the

The SM Higgs with mass of m_h = 125.09 GeV is assumed to be produced at the LHC through the production channels of ggF, VBF, VH (i.e., Wh, Zh, lvh, llh, vvh, tth, and th with a production cross section of 55.88 and 63.06 pb for 13 and 14 TeV, respectively, calculated to either NLO QCD, N²LO QCD, or N³LO QCD combined or not combined with NLO EW depending on the production channel, see Ref. [2]. The top left and top middle panels of Fig. 3 were produced for ggF only in Ref. [3].

Figure 3: MC simulations showing the contour lines of total cross section (black) and $c\tau_{ZD}$ (or $c\tau_{hD}$) (blue) for the exotic Higgs decays $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ (left column), $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ (middle column), and $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ (right column) in a scan over the ϵ - m_{ZD} , the κ - m_{ZD} , and the κ - m_{hD} planes, respectively, for Run 2 (top row), Run 3 (middle row), and HL-LHC (bottom row) of the LHC for which sensitivity regions are shaded in green.

Lifetime of Z_D and impact on the decay width of W boson by the hidden sector via $h \rightarrow Z_D Z_D$

The decay length of Z_D ($c\tau_{ZD}$) is fully described by the scan over the ϵ - m_{ZD} plane and inversely proportional to the 2^{nd} power of ϵ , while a smaller m_{ZD} decays to a fewer number of particles and hence has a narrower decay width and longer $c\tau_{ZD}$ as seen in Fig. 4 (top panel). It is noted that the decay width of W boson (Γ_W) is found to change slightly by ~2% in the scan over the ϵ - m_{ZD} plane where it is maximal for the highest m_{ZD} and largest ϵ , and *vice versa*, see Fig. 4 (bottom panel).

Figure 4: MC simulation of $c\tau_{ZD}$ (top) and Γ_W (bottom) as scanned over the ϵ - m_{ZD} plane for the decay $h \rightarrow Z_D Z_D$.

Conclusion

- (1) The LHC is found to be more sensitive to the two exotic Higgs decays $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu$ and $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ (irrespective of the mass acquired by Z_D and h_D , respectively, and of the integrated luminosity) than $h \rightarrow ZZ_D \rightarrow 2\mu^+ 2\mu^-$ through which the LHC is sensitive to certain regions of mass acquired by Z_D based on the integrated luminosity. New constraints on KM and HM parameters are obtained for $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu$ as down to $\kappa = 3.5 \times 10^{-4}$ in Run 2, 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in Run 2, 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in Run 2, 1.5×10^{-4} in Run 2, 1.5×10^{-4} in Run 2, 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in HL-LHC. As for 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in Run 2, 1.5×10^{-4} in Run 2, 1.5×10^{-4} in Run 3, and 1.5×10^{-4} in Run 3, and 1
- (2) The LHC is found to be sensitive to the production of prompt or long-lived Z_D 's ($10^{-10}-7500$ mm depending on ϵ and m_{ZD}) via the decay mode $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$, while it is sensitive only to the production of prompt Z_D 's ($10^{-10}-10^{-8}$ mm) and prompt D_D 's ($10^{-15}-10^{-10}$ mm) via the decay modes $D_D \rightarrow 2\mu^+ 2\mu$ and $D_D \rightarrow 4D_D \rightarrow 4D_$

References

- 1. D. Curtin *et al.*, Exotic decays of the 125 GeV Higgs boson, *Phys. Rev. D* **90** (2014) 075004 [arXiv:1312.4992].
- M. Cepeda *et al.*, Report from Working Group 2: Higgs physics at the HL-LHC and HE-LHC, <u>CERN Yellow Reports: Monographs, CERN-2019-007 (CERN, Geneva, 2019)</u> [arXiv:1902.00134].
- 3. T. Elkafrawy, M. Hohlmann, T. Kamon, P. Padley, H. Kim, M. Rahmani, S. Dildick, Illuminating long-lived dark vector bosons via exotic Higgs decays at $\sqrt{s} = 13$ TeV, <u>PoS</u> 397, 224 (2021) [<u>arXiv:2111.03960v2</u>].

Acknowledgements

All institutions wish to thank the Office of Science (HEP) at DOE for its support of this work through the grants, DE-SC0013794 and DE-SC0010103.