

APS April Meeting 2021

Study of Higgs and Vector Portals to Dark Matter

<u>**Tamer Elkafrawy**^{1,*}</u>, Marcus Hohlmann¹, Wei Shi², Paul Padley², Teruki Kamon³, Sven Dildick², Mehdi Rahmani¹, and Hyunyong Kim³

> ¹Florida Institute of Technology ²Rice University ³Texas A&M University

*Email: telkafrawy@fit.edu tamer.elkafrawy@cern.ch

April 17, 2021

Introduction

Exotic Higgs Decays with Z-Z_D + h-h_D Mixing

Objective:

The goal of this work is to search for a longlived dark vector boson (on-shell) Z_D via the exotic Higgs decay $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$. We are interested in the final state of two dimuons, displaced by 1–7500 mm.

The two exotic decays, $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ (shown) and $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ (not shown), are induced and about equally possible if Higgs mixing (HM) dominates.

Feynman diagram for Higgs boson decay via Higgs mixing mechanism [Ref. 2]

Exotic Higgs Decays with Z-Z_D + h-h_D Mixing

Vector Portal: Dark boson with broken U(1)' group mixes through hypercharge portal with photon and Z boson.

Lagrangian with relevant gauge terms indicated

Kinetic mixing parameter

$$\mathcal{L} \subset -\frac{1}{4} \hat{B}_{\mu\nu} \, \hat{B}^{\mu\nu} - \frac{1}{4} \hat{Z}_{D\mu\nu} \, \hat{Z}_D^{\mu\nu} + \frac{1}{2} \frac{\epsilon}{\cos \theta} \hat{Z}_{D\mu\nu} \, \hat{B}^{\mu\nu} + \frac{1}{2} m_{D,0}^2 \, \hat{Z}_D^\mu \, \hat{Z}_{D\mu}$$

Higgs Portal: U(1)' is broken by Higgs mechanism where the dark Higgs mixes with the SM Higgs.

Renormalizable potential for SM and dark Higgs fields

Higgs mixing parameter

 $V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$

H = SM Higgs real scalar doublet S = dark Higgs real scalar singlet

Exotic Higgs Decays with Z-Z_D + h-h_D Mixing

The current samples are generated by applying Monte Carlo (MC) simulation using the framework of MadGraph5_aMC@NLO v2.7.0.

Keys of acronyms used in this presentation:

Standard-Model (SM) Higgs boson = h Dark Higgs boson = h_D Dark boson = Z_D Kinetic mixing = KM Higgs mixing = HM Dominant = ON Negligible = OFF Long-Lived Particle = LLP

Scan over Higgs mixing parameter k

Is the LHC sensitive to measure Z_D for any expected strength of HM?

How many produced events are expected at the LHC in Run 2 as impacted by HM strength?

Which branching fraction impacts the cross section the most as HM strength varies?

By what factor will the decay width of SM Higgs increase if it decays to $Z_D Z_D$?

How can the SM Higgs lifetime change for different strengths of HM?

B19.00006 – Tamer Elkafrawy – APS April Meeting – April 17, 2021

How is the cross section related to the Z_D lifetime in the scan over expected HM strengths?

Scan over kinetic mixing parameter ϵ

How sensitive is the LHC to measure $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ if the KM is OFF? In other words, can KM handle the decay if HM is OFF?

How many produced events are expected at the LHC in Run 2 for $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ if HM is OFF?

What causes the total cross section to be highly impacted by KM if HM is OFF?

How long can SM Higgs live if it is found to decay to $Z_D Z_D$?

How long can Z_D live if produced at the LHC?

How do the expected lifetime and cross section change with each other if HM is ON?

How do the expected lifetime and cross section change with each other if HM is OFF?

For HM being OFF, although prompt Z_D could have been produced via $h \rightarrow Z_D Z_D$ for $\epsilon \ge 0.06$, the LHC in Run 2 is insensitive to the indirect measurement of Z_D via $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ for $\epsilon \le 0.1$.

 $c\tau_{ZD}$ is inversely proportional to ϵ^2 , while production/total cross section of Z_D is directly proportional to ϵ^4 if HM is OFF, which causes that production/total cross section of Z_D is inversely proportional to $c\tau^2_{ZD}$ if HM is OFF.

 $\sigma(pp \rightarrow h) = 48$ pb for ggF production channel, calculated to N³LO QCD + NLO EW.

The LHC is assumed to be sensitive down to 0.073 fb based on 10 events to be measured for $L_{int} = 137$ fb⁻¹.

Scan over Z_D mass

Is the LHC sensitive to measure **Z**_D with any expected mass?

17

How many produced events are expected in Run 2 of the LHC in a scan over Z_D mass?

How branching fractions change with the Z_D mass?

By what factor will the current decay width of SM Higgs increase if it is found to decay to $Z_D Z_D$?

What is the expected new lifetime of SM Higgs if it is found to decay to Z_DZ_D ?

What is the contribution of the partial decay width of $Z_D \rightarrow \mu^+ \mu^-$ to the total decay width of Z_D ?

How is the Z_D lifetime impacted by its mass?

How is the cross section related to the Z_D lifetime?

Future Perspectives

Perform an inspection of cross section and lifetime of Z_D for the exotic Higgs decay modes: h \rightarrow h_Dh_D \rightarrow 4Z_D \rightarrow 4µ⁺4µ⁻ for dominant HM h \rightarrow ZZ_D \rightarrow 2µ⁺2µ⁻ for dominant KM

Investigate kinematics of the final states of displaced dimuons for fully reconstructed samples for the three exotic Higgs decay modes: $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ for dominant HM $h \rightarrow h_D h_D \rightarrow 4Z_D \rightarrow 4\mu^+ 4\mu^-$ for dominant HM $h \rightarrow Z_D \rightarrow 2\mu^+ 2\mu^-$ for dominant KM

References

For the UFO model used to produce the current samples:

- "Exotic decays of the 125 GeV Higgs boson," David Curtin *et al.*, *Phys. Rev. D* 90, 075004 (2014) (<u>10.1103/PhysRevD.90.075004</u>).
- ²⁾ "Illuminating dark photons with high-energy colliders," David Curtin *et al.*, *Journal of High Energy Physics* **2015**, 157 (2015) (<u>10.1007/JHEP02(2015)157</u>).

For the current project:

- 3) The current presentation of APS April Meeting can be downloaded from: (<u>https://absuploads.aps.org/presentation.cfm?pid=19067</u>).
- "Modeling exotic Higgs decays to vector bosons with displaced dimuons in the final states", <u>Tamer</u> <u>Elkafrawy</u> and Marcus Hohlmann, Searching for long-lived particles at the LHC and beyond: Ninth workshop of the LLP Community, May 25–28, 2021. (upcoming) (<u>https://indico.cern.ch/event/980853/timetable/</u>)
- 5) "Search for the dark boson through exotic Higgs decays," <u>Tamer Elkafrawy</u> and Marcus Hohlmann, LHCP2021 Conference, June 7–12, 2021. (upcoming) (https://indico.cern.ch/event/905399/contributions/4335593/).

Conclusion

(1) For Z_D to be measured via the exotic decay $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$ at the LHC in Run 2, HM has to be dominant ($k \ge 6x10^{-4}$) [See Slide 9], and for Z_D to be long-lived with $c_T \ge 1$ mm, KM must be negligible ($\epsilon < 5x10^{-7}$) [See Slide 15]. However, the smaller KM strength is, the longer-lived Z_D is produced.

(2) Assuming an acceptance of 100%, the LHC in Run 2 is sensitive to measure Z_D with any mass in the range of $1 - \langle 62.5 \text{ GeV} \rangle$ (We did not scan masses of $Z_D < 1 \text{ GeV}$) and with any expected lifetime (i.e., prompt or long-lived) based on the value of kinetic mixing parameter and its mass.

(3) The predicted lifetime of SM Higgs is seen to be slightly impacted by the masses of h_D and Z_D and unchanged with the change of KM and HM strengths.

(4) If Z_D is to be measured indirectly via $h \rightarrow Z_D Z_D \rightarrow 2\mu^+ 2\mu^-$, the lifetime of SM Higgs is predicted to be decreased to about half of the current known predicted value.

(5) Lifetime of Z_D is tuned mainly by the KM strength and slightly by Z_D mass.

(6) The branching fraction $B(h \rightarrow Z_D Z_D)$ is largely impacted by the scan over the entire range of HM parameter and slightly impacted by the scan over m_{ZD} in the vicinity of the threshold of 62.5 GeV, while $B(Z_D \rightarrow \mu^+ \mu^-)$ is unchanged in all scans.

Backup Slides

Scan over h_D mass

Is the LHC sensitive to measure Z_D for any expected mass of h_D ?

How many produced events are expected in Run 2 of the LHC as impacted by h_D mass?

Which branching fraction impacts the cross section the most in the scan over h_D mass?

By what factor will the decay width of SM Higgs increase if it is found to decay to Z_DZ_D ?

How can the SM Higgs lifetime change with the scan over h_D mass?

How do cross section and decay length of Z_D change against each other in the scan over h_D mass?

