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The Dark Matter Problem 

•The Standard Model of particle physics (SM) is a mathematically tight theory that describes fundamental 
physics and provides high-precision predictions consistent with decades of experimental studies.
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• Model-dependent searches

• EFT model-independent searches 

• Simplified model-independent searches [1,2,3]   



Introduction 
The Dark Sector - Continued  

•Dark Sector Models: if the DM does not seemingly interact with the SM sector, the implication is that it is 
charged under a dark symmetry group [4,5]
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1
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B′￼
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•  is the SM electromagnetic field tensor 


•  The field tensor in the dark sector 


•  is the kinetic mixing parameter 

Bμν

B′￼
μν

ϵ
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Figure1: Schematic example of the pp interaction that 
produces a pair of new bosons of which each decays 
into a muon pair. The grey circle indicate the dark sector 
interactions. The X particle is to signify any excess 
processes other than the four lepton final state.  
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Model-Independent Search 
The 2018 Analysis 
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We have a CADI line with AN and draft paper based on 
Run II 2018 data:

• CADI: HIG-21-004
• Pre-approval talk: Feb 16 , 2021
• Unblinded results: Apr 28 , 2021
• Twiki: HIG21004Run2

https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-21-004
https://indico.cern.ch/event/996937/
https://twiki.cern.ch/twiki/pub/CMS/HIG21004Run2/AAto4mu_Post_Unblinding_Summary_v5.pdf
https://twiki.cern.ch/twiki/bin/view/CMS/HIG21004Run2


Bench-Mark Models
The Dark Scalar Model 

• In this model, the  particle is produced via kinetic 
mixing mechanism between the SM  and the dark 
boson  ( gauge boson of a new  symmetry 
group.)


• The mixing parameter: 


ZD
Z

ZD U(1)D

ϵ

pp → ZD → sDsD → μ+μ−μ+μ−
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Figure2:  decays into a pair of scalar dark matter 
particles which then each subsequently decay into two 

oppositely charged muons.  

ZD



Bench-Mark Models
The Dark Scalar Model 

• In this model, the  particle is produced via kinetic 
mixing mechanism between the SM  and the dark 
boson  ( gauge boson of a new  symmetry 
group.)


• The mixing parameter: 


• The dark scalar , a complex scalar field, is 
assumed to be not self-conjugate


• For the purposes of simplicity the branching fraction 
 of  to muons is considered to be 100% [8, 9].


•Prompt signatures only


ZD
Z

ZD U(1)D

ϵ

sD

ℬ sD

pp → ZD → sDsD → μ+μ−μ+μ−
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Kinematics of hard process simulation: App. H

Other bench-mark models in this search: App. A



Samples 
Monte-Carlo Simulation & Data
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Simulation Process Description

Model Implementation  Feynrules 

Hard Scattering Simulation amc@nlo v2.6.5 

Parton showering PYTHIA 8

Hadronization, detector response, & reconstruction  CMSSW 10 2 X 

MC Simulation
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Dataset Labels Number of Events
/DoubleMuon/Run2018A-17Sep2018-v2/MINIAOD 75 499 908

/DoubleMuon/Run2018B-17Sep2018-v1/MINIAOD 35 057 758

/DoubleMuon/Run2018C-17Sep2018-v1/MINIAOD 34 565 869

/DoubleMuon/Run2018D-PromptReco-v2/MINIAOD 169 225 355

Total 314 348 890

2018 Data

Simulation Process Description 

Model Implementation  Feynrules 

Hard Scattering Simulation amc@nlo v2.6.5 

Parton showering PYTHIA 8

Hadronization, detector response, & reconstruction  CMSSW 10 2 X 

MC Simulation



Analysis 
Trigger and Muon Selection  
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Trigger Paths 
HLT_DoubleL2Mu23NoVtx_2Cha 


HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx,

HLT_TripleMu_12_10_5 


For more on triggers see App. D
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Trigger Paths 
HLT_DoubleL2Mu23NoVtx_2Cha 


HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx,

HLT_TripleMu_12_10_5 


Muon selection 
slimmedMuons in MiniAOD 


PF Loose muon (>=3) + standalone-only (SA) muon (>=1)

Two muons: pT >24 GeV, |eta| < 2

Four muons: pT >8 GeV, |eta| < 2.4

For more on triggers: App. D



Analysis 
High-Level Selection 
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Selection Description 

Pixel Hit  Valid pixel hit for at least one muon in the muon pair: Lxy < 16 cm, LZ < 51.6 cm  (See App. E) 

Dimuon Vertex Fit dimuon vertex of each muon pair using KalmanVertexFitter, Pμμ > P(Lxy, f( ΔR), NSA−μ) (See App. E)


Mass Window  Two signal dimuon required to have consistent invariant mass (See App. E)

Muon pairing algorithm : App. I



Model-Indepence Performance 
Generator v.s. Reco Efficiency 

•Model independent ratio: 


•  : generator level acceptance 


•4 gen-muons  and  selection + fiducial cuts


• : full analysis efficiency 


•4 reco-muons  and  selection + fiducial 
cuts+ full selection 

ϵFull /αGen

αGen

pT η

ϵFull

pT η
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Generator v.s. Reco Efficiency 

•Model independent ratio: 


•  : generator level acceptance 


•4 gen-muons  and  selection + fiducial cuts


• : full analysis efficiency 


•4 reco-muons  and  selection + fiducial 
cuts+ full selection 


•Constant  indicates that the model 
performance is independent of its parameters 


•Average  = 0.418, is consistent with other 
benchmark models in the analysis 
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Background Estimation
Below Upsilon ( ) Resonances (0.25-9 GeV)Υ

•Dominated by QCD multi-jet processes, especially 
contributions from bb
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•Double semi-leptonic decay or decay via resonances 
( ) 

bb

η, ω, ϕ, J/ψ(1S), ψ(2S)
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•Data driven (2018 DoubleMuon): because, MC for QCD 
processes are limited
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Background Estimation
Below Upsilon ( ) Resonances (0.25-9 GeV)Υ

•Dominated by QCD multi-jet processes, especially 
contributions from 


•Double semi-leptonic decay or decay via resonances 
( ) 


•Data driven (2018 DoubleMuon): because, MC for QCD 
processes are limited


•Construct 2D background templates, based on 1D MC 
distributions and fitting them -> . (See App. B) 


•Estimate the number of background events in the signal region 

bb

η, ω, ϕ, J/ψ(1S), ψ(2S)

f(mμμ1
) ⊗ f(mμμ2

)
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Background Estimation
Below Upsilon ( ) Resonances (0.25-9 GeV)Υ
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Figure5: 2D QCD background  template + data at the CR 

•2D template integral SR/CR = 0.043/0.969 
•2-dimu events at CR: 98 (SR remain blinded)
•Estimated BKG events at SR: 4.34 +/- 0.44 (stat.) 

Below  resonance J/ψ

mμμ2
CR

CR

SR Definition SR and CR: App. E

mμμ1



•2D template integral SR/CR = 0.035/0.965 
•2-dimu events at CR: 66 (SR remain blinded)
•Estimated BKG events at SR: 6.16 +/- 0.76 (stat.) 

Background Estimation
Below Upsilon ( ) Resonances (0.25-9 GeV)Υ
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Figure6: 2D QCD background  template + data at the CR 
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Figure5: 2D QCD background  template + data at the CR 

•2D template integral SR/CR = 0.043/0.969 
•2-dimu events at CR: 98 (SR remain blinded)
•Estimated BKG events at SR: 4.34 +/- 0.44 (stat.) 

Below  resonance J/ψ Above  resonance J/ψ

mμμ2
 Definition SR and CR: App. E

CR

CR

SR

mμμ1



Background Estimation
Above Upsilon ( ) Resonances (11-60 GeV)Υ

•QED radiated high-energy photons produces muon 
pairs, each muon is then paired with Drell-Yan (DY) 
single muons which mimics our di-muon signal 


•Reject the events with QED background 
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Figure7: The Feynman diagram for QED radiation in DY 
process. The pairing of the muon decaying in the DY with 
muon decaying from the QED radiation mimics our signal



Background Estimation
Above Upsilon ( ) Resonances (11-60 GeV)Υ

•QED radiated high-energy photons produces muon 
pairs, each muon is then paired with Drell-Yan (DY) 
single muons which mimics our di-muon signal 


•Reject the events with QED background 


•Alternative pairing: pair the QED radiated muon with 
the DY muon 


•Reject the event if:


•Alternative pairing trailing mass < 3 GeV 


•Alternative pairing trailing  < 0.2 ΔR
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Figure7: The Feynman diagram for QED radiation in DY 
process. The pairing of the muon decaying in the DY with 
muon decaying from the QED radiation mimics our signal



Background Estimation
Above Upsilon ( ) Resonances (11-60 GeV) - Control Region Υ
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Background Estimation
Above Upsilon ( ) Resonances (11-60 GeV) - Control RegionΥ
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Figure8: MC simulation compared with the data in control region for 
muon pair 1. 
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Figure9: MC simulation compared with the data in control region for 
muon pair 2. 
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Figure8: MC simulation compared with the data in control region for 
muon pair 1. 
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Figure9: MC simulation compared with the data in control region for 
muon pair 2. 
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Good agreement between data and MC in  control region 
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mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



15 20 25 30 35 40 45 50 55 60
 [GeV]1µµm

0

1

2

3

4

5

6

7

8

9

Ev
en

ts
/3

.5
G

eV

 (13 TeV)-1                                             59.7fbPreliminary CMS
DYToLL (0J) DYToLL (1J)

DYToLL (2J) qqToZZTo4L

TTJetsToLL ggHToZZTo4L

ggToZZTo4mu MC Error

Fig10: MC simulation in signal region for muon pair 1. 

Background Estimation
Above Upsilon ( ) Resonances (11-60 GeV) - Signal RegionΥ

39 Mehdi Rahmani, GMM, Feb 28, 2022

Signal Region 

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



15 20 25 30 35 40 45 50 55 60
 [GeV]1µµm

0

1

2

3

4

5

6

7

8

9

Ev
en

ts
/3

.5
G

eV

 (13 TeV)-1                                             59.7fbPreliminary CMS
DYToLL (0J) DYToLL (1J)

DYToLL (2J) qqToZZTo4L

TTJetsToLL ggHToZZTo4L

ggToZZTo4mu MC Error

Fig10: MC simulation in signal region for muon pair 1. 

Background Estimation
Above Upsilon ( ) Resonances (11-60 GeV) - Signal RegionΥ

40 Mehdi Rahmani, GMM, Feb 28, 2022

Signal Region 

15 20 25 30 35 40 45 50 55 60
 [GeV]2µµm

0

1

2

3

4

5

6

7

8

9

Ev
en

ts
/3

.5
G

eV

 (13 TeV)-1                                             59.7fbPreliminary CMS
DYToLL (0J) DYToLL (1J)

DYToLL (2J) qqToZZTo4L

TTJetsToLL ggHToZZTo4L

ggToZZTo4mu MC Error
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Estimated number of background events in the SR 

SR : 12.28 ± 2.01

Signal Region 
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Fig11: MC simulation in signal region for muon pair 2. 

Signal Region 

Smooth background shape in the SR is obtained via

adaptive Kernel Density Estimation (KDE). See App. C

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



Expected Limits 
Expected Limit on Kinetic Mixing parameter 

•Close to zero background analysis: expected 95% CL 
upper limit is ~3 events at each mass point


• 


•  : 95% CL upper limit on the number of events


•  ,  

σ(pp → ZD)ℬ(ZD → sDsD)ℬ2(sD → μ+μ−) × αgen ≤
Nμμ

L × r

Nμμ

ℒ = 59.7 fb−1 r = SFϵFull
× ϵMC

Full /αGen
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Figure12A: 95% upper limit on expected number of events

HLT SF calculation: App.F



Expected Limits 
Expected Limit on Kinetic Mixing parameter 

•Close to zero background analysis: expected 95% CL 
upper limit is ~3 events at each mass point


• 


•  : 95% CL upper limit on the number of events


•  ,  


•By translating the production cross-section to , we set 
95% CL limit on 


σ(pp → ZD)ℬ(ZD → sDsD)ℬ2(sD → μ+μ−) × αgen ≤
Nμμ

L × r

Nμμ

ℒ = 59.7 fb−1 r = SFϵFull
× ϵMC

Full /αGen

ϵ2

ϵ2ℬ(ZD → sDsD)ℬ2(sD → μ+μ−)
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HLT SF calculation: App.F



Expected Limits 
Expected Limit on Kinetic Mixing parameter 

•Close to zero background analysis: expected 95% CL upper 
limit is ~3 events at each mass point


• 


•  : 95% CL upper limit on the number of events


•  ,  


•By translating the production cross-section to , we set 
95% CL limit on 





•The limit curves exhibit a structure with an increase and a dip 
as the  mass approaches the kinematic limit of .

σ(pp → ZD)ℬ(ZD → sDsD)ℬ2(sD → μ+μ−) × αgen ≤
Nμμ

L × r

Nμμ

ℒ = 59.7 fb−1 r = SFϵFull
× ϵMC

Full /αGen

ϵ2

ϵ2ℬ(ZD → sDsD)ℬ2(sD → μ+μ−)

sD mZD
/2
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HLT SF calculation: App.F
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Figure13: 2D QCD background at SR

Unblinding The Signal Region 
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•Estimated Background events at SR:

• Observed:  events 
4.34 ± 0.44(stat.) ± 0.18(sys.)

4

Below  resonance J/ψ
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Figure13: 2D QCD background at SR
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Figure14: 2D QCD background at SR

Unblinding The Signal Region 
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•Estimated Background events at SR:

• Observed:  events 
4.34 ± 0.44(stat.) ± 0.18(sys.)

4

Below  resonance J/ψ Above  resonance J/ψ

•Estimated Background events at SR:

• Observed:  events 
6.16 ± 0.76(stat.) ± 0.09(sys.)

6



Unblinding The Signal Region 
Above Upsilon ( ) Background Υ
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Figure15: MC simulation compared with observed data at SR
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Figure16: MC simulation compared with observed data at SR

Estimated number of background events in the SR 




Observed: 20 events
SR : 12.28 ± 2.01

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



Unblinding The Signal Region 
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Figure15: MC simulation compared with observed data at SR
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Figure16: MC simulation compared with observed data at SR

Estimated number of background events in the SR 




Observed: 20 events
SR : 12.28 ± 2.01

consistent with predicted background events, 

pulls within  (only statistical errors considered) 
2σ

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



Unblinding the Signal Region 
Observed Limits
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Figure17: Figure13: The observed 95% CL upper limits function of the dark 
scalar mass  and the dark vector boson mass   msD
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Unblinding the Signal Region 
2018 Conclusion
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•In 20-25 GeV region we observe 3 events


•The expected number of events in the said region is 
~0.31


•Poisson probability for 0.31 fluctuating to 3 is 0.00364

Figure18: Unblinded Signal Region above  resonancesΥ
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Unblinding the Signal Region 
2018 Conclusion
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•In 20-25 GeV region we observe 3 events


•The expected number of events in the said region is 
~0.31


•Poisson probability for 0.31 fluctuating to 3 is 0.00364


•This could mean the background may not have been 
well modeled in this region


•This observation lead our research to explore the 
addition of 2017 CMS data to the our analysis  

Figure18: Unblinded Signal Region above  resonancesΥBrazilian plots: App.G
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 Definition SR and CR: App. E
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2017 Analysis 
Tigger Paths and Selections 

52 Mehdi Rahmani, GMM, Feb 28, 2022

Trigger Paths 
HLT_Mu23_Mu12 (HLT_DoubleL2Mu23NoVtx_2Cha in 2018)*


HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx

HLT_TripleMu_12_10_5 


Muon selection 
slimmedMuons in MiniAOD 


4 PF Loose muon

Two muons: pT >13 GeV, |eta| < 2

Four muons: pT >8 GeV, |eta| < 2.4

Dataset Labels Number of Events
/DoubleMuon/Run2017B-31Mar2018-v1/MINIAOD  14 501 767

/DoubleMuon/Run2017C-31Mar2018-v1/MINIAOD  49 636 525 
/DoubleMuon/Run2017D-31Mar2018-v1/MINIAOD  23 075 733 
/DoubleMuon/Run2017E-31Mar2018-v1/MINIAOD 51 589 091 

/DoubleMuon/Run2017F-31Mar2018-v1/MINIAOD  79 756 560
Total 218 559 676 


2017 Data

Prompt Analysis 

• *Major contribution (70%-90%) to 
overall trigger efficiency, 
important for very boosted signals 
(low mass large )  

• Only available for 2018, main 
reason we chose not to include 
2017 data because no replaceable 
trigger to use in 2017  

cτ



2017 Analysis 
Model-Indepandance Performance 
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Figure19: Total selection efficiency over generator level selection acceptance, 
 as a function of the  mass for various   masses in the vector portal 
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2017



2017 Analysis 
Background: Below  ResonancesΥ
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Figure20: 2D QCD background  template + data at the CR Figure21: 2D QCD background  template + data at the CR

•2D template integral SR/CR = 0.087/0.918 
•2-dimu events at CR: 2 (SR remain blinded)
•Estimated BKG events at SR: 0.19 +/- 0.13 (stat.) 

•2D template integral SR/CR = 0.044/0.964 
•2-dimu events at CR: 49 (SR remain blinded)
•Estimated BKG events at SR: 2.26 +/- 0.32 (stat.) 

Below  resonance J/ψ Above  resonance J/ψ

2017 2017

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



Figure22: 2D KDE background template for above  
resonance masses  

Υ

2017 Analysis
Background: Above  ResonancesΥ
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•For 2017 analysis we used QED MC simulated samples in CR for  
and  similar to the 2018 analysis 


•Used Kernel Density Estimation (KDE) to fit the distributions 

μμ1
μμ2

•2D template integral SR/CR = 0.082/0.918 
•2-dimu events at CR: 212 (SR remain blinded)
•Estimated BKG events at SR: 18.97 +/- 1.3 (stat.) 

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



Figure22: 2D KDE background template for above  
resonance masses  

Υ

2017 Analysis
Background: Above  ResonancesΥ
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•For 2017 analysis we used QED MC simulated samples in CR for  
and  similar to the 2018 analysis 


•Used Kernel Density Estimation (KDE) to fit the distributions 


•Constructed 2D KDE templates 


•The signal region in the corridor is still blinded

μμ1
μμ2

•2D template integral SR/CR = 0.082/0.918 
•2-dimu events at CR: 212 (SR remain blinded)
•Estimated BKG events at SR: 18.97 +/- 1.3 (stat.) 

mμμ2 CR

CR

SR

 Definition SR and CR: App. E

mμμ1



2017 Analysis
2017 Summary 

•The expected limit is to be set after scale factor 
calculations, such as: HLT, NNLO, and reconstruction scale 
factors  


•The results to be combined with 2018 and 2016 results 
using the Higgs combine tool

57 Mehdi Rahmani, GMM, Feb 28, 2022

Figure23: Expected model independent 95% CL upper limit on 
the number of events 



2017 Analysis
2017 Summary 

•The expected limit is to be set after scale factor 
calculations, such as: HLT, NNLO, and reconstruction scale 
factors  


•The results to be combined with 2018 and 2016 results 
using the Higgs combine tool 


•Unblind 2017 analysis and produce final limit


•The analysis remains approximately near zero background 
analysis 

58 Mehdi Rahmani, GMM, Feb 28, 2022

Figure23: Expected model independent 95% CL upper limit on 
the number of events 



•A model independent analysis for  is represented 


•A vector-portal model is introduced as a benchmark dark matter model:  


•Model independent upper limits on kinetic mixing parameter, cross-section branching ratio, and acceptance is set 


•The 2018 data from CMS is analyzed 


•We are adding 2017 data to the analysis to improve the background modeling   

pp → 2a → 4μ

pp → ZD → sDsD → 4μ

59 Mehdi Rahmani, GMM, Feb 28, 2022

Summary  
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Appendix A
Benchmark Models 
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Dark SUSY NMSSM ALP 



Appendix B 
Below  Resonance 1D Mass Templates Υ
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mμμ1

mμμ2

mμμ1
mμμ2

From pre-approval talk given by Wei Shi



Appendix C
Kernel Density Estimation Above  Resonance Υ
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Appendix D
Triggers 

•HLT_DoubleL2Mu23NoVtx_2Cha  

•Major contribution (70%-90%) to overall trigger 
efficiency, 
important for very boosted signals (low mass large 
cTau) 


•Only available for 2018


•HLT_Mu18_Mu9_SS, HLT_TrkMu12, HLT_TripleMu_12_10_5  

•Lower  improves trigger efficiency 


•2017 Analysis:

•HLT_Mu23_Mu12 replaced 
HLT_DoubleL2Mu23NoVtx_2Cha 

pT
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Trigger Paths 
HLT_DoubleL2Mu23NoVtx_2Cha 


HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx,

HLT_TripleMu_12_10_5 


2018

Trigger Paths 
HLT_Mu23_Mu12 (HLT_DoubleL2Mu23NoVtx_2Cha in 2018)


HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx

HLT_TripleMu_12_10_5 


2017
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Triggers 
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From pre-approval talk given by Wei Shi

•HLT_DoubleL2Mu23NoVtx_2Cha  

•Major contribution (70%-90%) to overall trigger 
efficiency, 
important for very boosted signals (low mass large 
cTau) 


•Only available for 2018


•HLT_Mu18_Mu9_SS, HLT_TrkMu12, HLT_TripleMu_12_10_5  

•Lower  improves trigger efficiency 


•2017 Analysis:

•HLT_Mu23_Mu12 replaced 
HLT_DoubleL2Mu23NoVtx_2Cha 

pT



Appendix E
Pixel Hit 
•Pixel detector went through and upgrade in 2016


•We require a valid pixel hit in phase-1 detector for at least one muon of each pair 


•4 barrel layers  up 16 cm, and 3 forward layers  up to 51.6 cmLxy |Lz |
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Left: comparative layout of the pixel 
detector between the layers and disks, 
before and after the upgrade of pixel 
detectors. 

Right: Transverse-oblique view comparing 
the pixel barrel layers in the upgraded 
detector versus pre-upgrade 


2008-16

Since 2017

2008-16

Since 2017



Appendix E
Dimuon Vertex 

•dimuon vertex fit probability from KalmanVertexFitter














Pμμ > P(Lxy, f ΔR, NSA−μ)

P(Lxy, f ΔR, NSA−μ) = P0 × (1 − NSAμ) × exp[ − (
Lxy

R0
)2 × f( ΔR)]

f(ΔR) = p0 + p1 × ΔR + p2 × (ΔR)2 + p3 × (ΔR)3 + p4 × (ΔR)4

p0 = 0.2, R0 = 10cm, p0 = 8.54, p1 = − 50.46, p2 = 109.83, p3 = − 92.74, p4 = 36.84
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Appendix E
Defining Control and Signal Regions 
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CR

CR

SR

•Since the moun pairs are produced from supposedly the same bosons with 
consistent masses, the invariant mass of muon pairs should be consistent as 
well


•Conventional way of defining a mass consistency window:


•The width of the SR window is adjusted by the di-muon mass 
reconstruction resolution eg., a Gaussian fit to the di-muon mass and the 
standard deviation  would result in ~99% signal efficiency  

•This method does not work for higher masses (  GeV)

•Higher mass: radiative non-gaussian tails 


•Instead we define the window width by the efficiencies that we desire 


3σ
≳ 10

m1 − m2 = f(
m1 + m2

2
)

mμμ1

mμμ2

For more on mass window cut see App. E



Appendix E
Mass window 

•Choose desired efficiency: calculate the signal 
significance 


•Significance drops at higher masses 


•We chose 90% signal efficiency 


•Window size is determined based on desired 90% 
efficiency 


(s/ S + B)

f(
m1 + m2

2
)
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Appendix F
HLT Scale Factor 2018

•Using orthogonal triggers on SingleMuon control 
dataset and MC simulated events. 


•The efficiency of the signal triggers is determined on 
events passing a set of selection criteria optimized to 
select WZTo3LNu and ZZTo4l events.


•This is done both on the data and on the MC simulated 
events. Then the signal HLT efficiency is calculated on 
the surviving events. 


•The cut-flow table of this process is shown on the right. 


•The efficiency of the signal HLT on both MC samples is 
~0.99, while the efficiency of data is 0.986. 


•This results in a trigger scale factor of SF = 0.986/0.99 
= 99.6% ± 0.6% (stat.) 
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Appendix F
HLT Scale Factor 2017

•For 2017 we separate the run eras and emulate the 
triggers 


•The cross-section weighted total MC is calculated


•For each run: 


• 


• 


•The lumi weighted total SF:


• 


•That results in an overall SF = 0.972 

Total MCeff =
σWZ × WZ#events + σZZ × ZZ#events

σWZ + σZZ

SF =
dataeff

total MCeff

Total SF =
(4.79 × 0.908) + (23.19 × 0.996) + (13.53 × 0.956)

41.5
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Lumi fb-1 WZ eff ZZ eff Total MC eff Data eff SF

Run B 4.79 0.902 0.912 0.904 0.821 0.908

Run C-E 23.19 0.95 0.96 0.955 0.95 0.994

Run F 13.53 0.996 0.995 0.996 0.953 0.956



Appendix G
Brazilian Plot - Post Fit Observed Limits -2018
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Appendix G
Brazilian Plot - Post Fit Observed Limits -2018
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Appendix G
Brazilian Plot - Post Fit Observed Limits -2018
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Appendix G
Brazilian Plot - Post Fit Observed Limits -2018
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Appendix G
Brazilian Plot - Post Fit Observed Limits -2018
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Appendix H
Kinematics of the Model - Hard Process Simulation 
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A scan of production cross-section for varying mass of ZD 
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Kinematics of the Model - Hard Process Simulation 
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Muon Pairing  Algorithm 
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