Vector-Portal Search for Long Lived Dark Matter Particles

APS April Meeting 2020

mrahmani2015@my.fit.edu

<u>Mehdi Rahmani</u>¹ & Marcus Hohlmann¹ & W. Shi² & S. Dildick³ & T. Kamon³ & P. Padley² & A. Safonov³ & T. Ekafrawy¹, H. Kim³ and A. Castaneda⁴

April 19, 2020

¹Florida Institute of Technology

²Rice University

³Texas A&M

⁴University of Sarno

Introduction i

- The Standard Model of particle physics (SM) is a mathematically tight theory that describes fundamental physics and provides high-precision predictions consistent with decades of experimental studies.
- There are several important shortcomings that are of primary interest for current research in the field. Related to the research reported here is the fact that the SM offers no explanation for the existence of dark matter, for which there is abundant astronomical evidence [1], [2], [3].
- Experimentally, dark matter has not yet been observed, and there is not yet any evidence for non-gravitational interactions between dark matter and Standard Model particles.
- Since dark matter particles themselves do not produce signals in the Large Hardon Collider (LHC) detectors, one way to observe them is when they can decay into SM particles or first into DM matter particles and then into SM particles such as muons, through a spin 1 mediator [4], e.g. a dark Z-like boson Z_D , which can interact with the Standard Model sector as well as the dark matter sector[5][6].

CMS

Introduction ii

- - Dark matter particles may have lifetimes that produce secondary decay vertices in collider experiments that are substantially displaced from the primary interaction vertex. We refer to these signatures as Long Lived Particles or LLPs. We have prepared a models, involving dark dark fermions $(pp \rightarrow Z_D \rightarrow \overline{f_{D_1}} f_{D_1} \rightarrow \overline{f_{D_2}} f_{D_2} \mu^+ \mu^-)$ shown in **figure 1**, as reference model for a search for long-lived dark matter particles with the Compact Muon Solenoid (CMS) detector at the LHC.
 - The Z_D could be produced **directly from proton-proton collisions** or through kinetic mixing with SM $U(1)_Y$ group. Both cases are studied here. I will refer to the former model as Direct production, and to latter as the Kinetic mixing production.
 - This study will investigate parameterization of the vertices, the Monte Carlo production of events, and feasibility study of a Z_D search at the LHC in events with 4 muons, using the MadGraph framework.
 - The maximal lifetime for various couplings of the Z_D to the SM and DM particles are calculated and then implemented in *Madgraph* for calculating the cross section.
 - This study is motivated by the paper "A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV"[7] published in 2019. FI ORIDA TECH

Introduction

Figure 1: Z_D decays into pair of fermionic dark matter.

The interaction Lagrangian for $qq \rightarrow Z_D$ is taken to have a vectoral part and an axial part, like Z boson couplings in SM Lagrangian:

$$\mathcal{L}_{SM} = \overline{q} \gamma^{\mu} (g_f^V + g_f^A \gamma^5) q Z_{D_{\mu}}$$
(1)

The couplings of Z_D to dark Dirac fermions, $Z_D \rightarrow \overline{f_{D_1}} f_{D_1}$, could be written in the similar way:

$$\mathcal{L}_{DM} = \overline{f_{D_1}} \gamma^{\mu} (g_f {}_D^V + g_f {}_D^A \gamma^5) f_{D_1} Z_{D_{\mu}}$$
⁽²⁾

CMS

When there are no decays or production channels, the minimal width (the maximal lifetime) of the Z_D particle is fixed by the choices of g_q and g_{f_d} . Γ^V_{min} signifies vector width and Γ^A_{min} signifies axial width of the Z_D boson. [8], [9], [10]:

$$egin{aligned} \Gamma^V_{min} &= rac{g_{f_d}^2 M_{Z_D}}{12\pi} igg(1 + rac{2M_{f_D}^2}{M_{Z_D}^2} igg) eta_{DM} heta(M_{Z_D} - 2M_{f_D}) + \ &\sum_{q} rac{3g_q^2 M_{Z_D}}{12\pi} igg(1 + rac{2m_q^2}{M_{Z_D}^2} igg) eta_q heta(M_{Z_D} - 2m_q) \end{aligned}$$

$$\Gamma_{min}^{A} = \frac{g_{f_{d}}^{2}M_{Z_{D}}}{12\pi}\beta_{DM}^{3}\theta(M_{Z_{D}} - 2M_{f_{D}}) + \sum_{q} \frac{3g_{q}^{2}M_{Z_{D}}}{12\pi}\beta_{q}^{3}\theta(M_{Z_{D}} - 2m_{q})$$
(3)

Lifetime vs. cross-section for various couplings

Figure 2: The behavior of the Z_D lifetime vs. Z_D production cross-section (calculated by *MadGraph*), which has a dependency on couplings g_q , based on equation 3. The **LLP** region of interest is highlighted in green.

Mehdi Rahmani – "APS April Meeting" – April. 19, 2020

CMS

CMS

- Extra $U(1)_D$ dark group in addition to the SM gauge group.
- The only coupling of this new gauge sector to the SM is through kinetic mixing, where the non-physical new X_{μ} boson mixes with the hypercharge gauge boson, B_{μ} . Nonphysical fields of this model and their definitions are given in **App. i.** [11]

$$SU(2)_L \otimes SU(3)_L \otimes U(1)_Y \otimes U(1)_D$$
 (4)

$$\mathcal{L}_{int} = -\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu} + \frac{\epsilon}{2}\hat{X}_{\mu\nu}\hat{B}^{\mu\nu}$$
(5)

Where ϵ is the mixing parameter.

Group	Gauge boson	Coupling constant	Charge
$U1_Y$	В	g_1	Y
$U1_D$	Х	e (Electric charge)	Q_X
SU2	Wi	<i>g</i> _w	
SU3	G	<i>gs</i>	

CMS

Couplings to SM fermions are given in the equations 6 and 7[12].

$$\Psi\overline{\Psi}Z:\frac{ig}{c_{W}}[c_{\alpha}(1-s_{W}t_{\alpha}\eta)]\bigg[T_{L}^{3}-\frac{(1-t_{\alpha}\eta/s_{W})}{(1-s_{W}t_{\alpha}\eta)}s_{W}^{2}Q\bigg]$$
(6)

$$\Psi\overline{\Psi}Z_D: \frac{-ig}{c_W}[c_\alpha(t_\alpha+\eta s_W)]\bigg[T_L^3-\frac{(t_\alpha+\eta/s_W)}{(t_\alpha+\eta s_W)}s_W^2Q\bigg]$$
(7)

Where $Q = T_L^3 + Q_Y$ and $t_\alpha = \frac{s_\alpha}{c_\alpha}$. Other parameters and their definition are given in the **Appendix ii and iii**.

Couplings to DM fermions are taken again in analogy with SM Z:

$$\overline{f_{D1}}f_{D1}Z_D:\gamma^{\mu}(g_f{}_{D_1}^V+g_f{}_{D_1}^A\gamma^5)$$
(8)

$$\overline{f_{D1}} f_{D2} Z_D : \gamma^{\mu} (g_f {}_{D_2}^V + g_f {}_{D_2}^A \gamma^5)$$
(9)

Mehdi Rahmani - "APS April Meeting" - April. 19, 2020

9

Z_D width for Kinetic mixing production

$$\Gamma(Z_D \to \overline{f}f) = \frac{1}{24\pi m_{Z_D}} \sqrt{1 - \frac{4m_f^2}{m_{Z_D}^2}} (m_{Z_D}^2 (g_L^2 + g_R^2) - m_f^2 (-6g_L g_R + g_L^2 + g_R^2))$$
(10)

Where g_L and g_R are derived from the following equation:[12]

$$g_{Z_D f \bar{f}} = \frac{g}{\cos \theta} (-\sin \alpha (t^3 \cos \theta^3 - Y \sin \theta^2 + \eta \cos \alpha \sin \theta Y))$$
(11)

Equation 11 gives us g_L by using $T^3 = 1/2$ & Y = 1/3 and the same equation gives us g_R by using $T^3 = 0$ & Y = 4/3 for **up-like** quarks. Using the values tabulated in table 1 in **Appendix i** for **down-like** quarks, we can find couplings for **down-like** quarks. $\underline{\alpha}$ is the mixing angle in weak sector and is defined in equation 15 and $\underline{\theta}$

is the Weinberg angle.

FLORIDA TECH

Lifetime vs. mixing parameter for various masses

Figure 3: The behavior of the lifetime, $c\tau$ vs. the kinetic mixing parameter, ϵ , for various masses of Z_D . Here $c\tau$ is derived from the inverse of Γ in eq. 10.

FLORIDA TECH

Lifetime vs. cross-section for various couplings

Work in progres

Figure 4: The behavior of the Z_D lifetime vs. the Z_D production cross-section, which has a dependency on mixing parameter ϵ based on equation 10. The **LLP** region of interest is highlighted in green.

Mehdi Rahmani – "APS April Meeting" – April. 19, 2020

CMS

Partial widths and branching ratio for a ref. data point i

Z _D DECAYS				
BR%	Particle#1	Particle#2	Partial width GeV	
66.47	f_{D_1}	f _{D2}	2.23×10^2	
33.53	f_{D_1}	f_{D_1}	$1.13 imes 10^2$	
3.32×10^{-9}	и	ū	$1.12 imes 10^{-8}$	
3.32×10^{-9}	с	Ē	$1.12 imes 10^{-8}$	
2.93×10^{-9}	e ⁻	e ⁺	$9.86 imes10^{-9}$	
2.93×10^{-9}	μ^{-}	μ^+	$9.86 imes10^{-9}$	
2.93×10^{-9}	τ^{-}	$ au^+$	$9.85 imes10^{-9}$	
9.77×10^{-10}	d	ā	3.29×10^{-9}	
9.77×10^{-10}	5	5	3.29×10^{-9}	
$9.66 imes 10^{-10}$	b	Ē	3.25×10^{-9}	
$5.86 imes 10^{-10}$	$\nu_{ au}$	$\overline{\nu_{ au}}$	$1.97 imes10^{-9}$	
$5.86 imes10^{-10}$	$ u_{\mu}$	$\overline{ u_{\mu}}$	$1.97 imes10^{-9}$	
$5.86 imes 10^{-10}$	νe	$\overline{\nu_e}$	$1.97 imes 10^{-9}$	
Total BR	= 100%	Total width	$n = 3.36 imes 10^2 \text{ GeV}$	

Table 1: Z_D branching ratios and partial widths. Sample parameters listed in tables 7 FLORIDATECH 8 in App. iv and v. Values calculated by Madgraph/MadWidth. Mehdi Rahmani – "APS April Meeting" – April. 19, 2020 13

Partial widths and branching ratio for a ref. data point ii

f _{D1} DECAYS				
BR%	Particle#1	Particle#2	Particle#3	Partial width GeV
17.23	f_{D_2}	и	ū	2.91×10^{-13}
16.64	f_{D2}	С	Ē	2.81×10^{-13}
15.17	f_{D2}	e	e ⁺	2.56×10^{-13}
15.04	f_{D_2}	μ^{-}	μ^+	2.54×10^{-13}
14.28	f_{D2}	τ^{-}	$ au^+$	2.41×10^{-13}
5.08	f_{D2}	d	ā	8.58×10^{-14}
5.04	f_{D_2}	5	5	8.52×10^{-14}
3.02	f_{D2}	ν_e	$\overline{\nu_e}$	5.10×10^{-14}
3.02	f_{D2}	$ u_{\mu}$	$\overline{ u_{\mu}}$	5.10×10^{-14}
3.02	f_{D_2}	$\nu_{ au}$	$\overline{ u_{ au}}$	5.10×10^{-14}
2.47	f _{D2}	Ь	Ē	4.17×10^{-14}
Total BR = 100%			Total width	$n = 1.69 imes 10^{-12} \text{ GeV}$

Table 2: f_{D_1} branching ratios and partial widths. Sample parameters listed in tables 7 and 8 in App. iv and v. Values calculated by *Madgraph/MadWidth*.

• For calculating the sensitivity we deduce for the expected number of events, N:

$$N = \sigma_{Z_D} \times BR \times \mathcal{L} \tag{12}$$

Where σ_{Z_D} is the **production** cross section, BR is the total branching ratio for $pp \rightarrow Z_D \rightarrow f_{D_1} f_{D_1} \rightarrow f_{D_2} f_{D_2} \mu^+ \mu^-$, N is number of signal events, and \mathcal{L} is the intergrated luminosity.

• To produce at least 10 signal events, Considering the luminosities for *Run*2, *Run*3 and *Run*4 at the LHC, we would need cross-section (σ) × branching ratios (BR) tabulated in the table below:

Run#	year	$\mathcal{L}(fb^{-1})$	$\sigma imes \textit{BR fb}$
2	$\sim 2016-2018$	~ 137	7.32×10^{-2}
3	$\sim 2021-2024$	~ 300	3.33×10^{-2}
4	$\sim 2027-2030$	~ 3000	3.33×10^{-3}

Table 3: cross section \times branching ratio feasibility of our model for various runs

Calculating sensitivity for a reference data point ii

Figure 5: The Run2 region of feasibility is to the right of the red line, the Run3 region of feasibility is to the right of the green, and The Run4 region of feasibility is to the right of the blue based on the values in table 3.

FLÖRIDA TECH

Mehdi Rahmani – "APS April Meeting" – April. 19, 2020

16

• The production cross section for this reference sample (tables 7 and 8, $M_{Z_D} = 100 \, GeV$, $M_{f_{D_1}} = 25 \, GeV$) is calculated by *Madgraph*:

$$\sigma_{Z_D} = 6.88 \times 10^3 \pm 34 \ fb \tag{13}$$

• The total branching ratio (BR) based on tables 1 and 2 is:

$$\underbrace{\underbrace{0.33}_{Z_D \to f_{D_1} f_{D_1}} \times \underbrace{(0.15)^2}_{f_{D_1} \to f_{D_2} \mu^+ \mu^-} \cong 0.01$$

 $\bullet\,$ Given the above values, the total branching \times production cross section is:

$$\sigma_{Z_D} \times BR = 68.8 \ fb \tag{14}$$

which might be within the sensitivity of LHC in Run2 and Run3.

FLORIDA TECH

Mehdi Rahmani – "APS April Meeting" – April. 19, 2020

17

- We have implemented a model to observe a dark Z boson, with dark fermionic products, which can subsequently decay into standard model fermions.
- Two channels of production for the dark Z is studied and the Long Lived scenarios are studied.
- We have established that the observation of the LLPs within the sensitivity of the LHC might be possible.
- Next steps are simulation for various data points, and data analysis with CMS Run2 and Run3 data.

- Tom Siegfried. Hidden space dimensions may permit parallel universes, explain cosmic mysteries. *The Dallas Morning News*, 5, 1999.
- [2] Virginia Trimble. Existence and nature of dark matter in the universe. Annual review of astronomy and astrophysics, 25(1):425–472, 1987.
- [3] Vera C Rubin. A brief history of dark matter. *The dark universe: matter, energy and gravity,* pages 1–13, 2004.
- [4] Bob Holdom. Two u (1)'s and epsilon charge shifts. *Phys. Lett.*, *B*, 166(2):196–198, 1986.
- [5] Lawrence Lee, Christian Ohm, Abner Soffer, and Tien-Tien Yu. Collider searches for long-lived particles beyond the standard model. arXiv preprint arXiv:1810.12602, 2018.

References ii

- [6] Chiara Arina and Maria Eugenia Cabrera. Multi-lepton signatures at lhc from sneutrino dark matter. *Journal of High Energy Physics*, 2014(4):100, 2014.
- [7] Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, Thomas Bergauer, Johannes Brandstetter, Marko Dragicevic, Janos Erö, A Escalante Del Valle, et al. A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 tev. *Physics Letters B*, 796:131–154, 2019.
- [8] Daniel Abercrombie, Nural Akchurin, Ece Akilli, Juan Alcaraz Maestre, Brandon Allen, Barbara Alvarez Gonzalez, Jeremy Andrea, Alexandre Arbey, Georges Azuelos, Patrizia Azzi, et al. Dark matter benchmark models for early lhc run-2 searches: report of the atlas/cms dark matter forum. *Physics of the Dark Universe*, page 100371, 2019.

References iii

- [9] Matthew R Buckley, David Feld, and Dorival Goncalves. Scalar simplified models for dark matter. *Physical Review D*, 91(1):015017, 2015.
- [10] Philip Harris, Valentin V Khoze, Michael Spannowsky, and Ciaran Williams. Constraining dark sectors at colliders: beyond the effective theory approach. *Physical Review D*, 91(5):055009, 2015.
- [11] JD Wells. How to find a hidden world at the large hadron collider,(2008). arXiv preprint arXiv:0803.1243.
- [12] David Curtin, Rouven Essig, Stefania Gori, and Jessie Shelton.
 Illuminating dark photons with high-energy colliders. *Journal of High Energy Physics*, 2015(2):157, 2015.
- [13] Johan Alwall, Claude Duhr, Benjamin Fuks, Olivier Mattelaer, Deniz Gizem Öztürk, and Chia-Hsien Shen. Computing decay rates for new physics theories with feynrules and madgraph 5_amc@ nlo. *Computer Physics Communications*, 197:312–323, 2015.

Appendix i

Fields	Definition
B _d	$B_{d_\mu} ightarrow s_{ m w} A_\mu - s_{ m w} c_lpha Z_\mu + s_{ m w} s_lpha Z_{d_\mu}$
X _d	$X_{d_{\mu}} ightarrow s_{lpha} Z_{\mu} + c_{lpha} Z_{d_{\mu}}$
Wi	$W_{i_{\mu,1}} ightarrow rac{W_{\mu}+W_{\mu}^{\dagger}}{\sqrt{2}}, \ W_{i_{\mu,2}} ightarrow rac{-i(W_{\mu}+W_{\mu}^{\dagger})}{\sqrt{2}}, \ W_{i_{\mu,3}} ightarrow s_w A_{\mu} + c_{\alpha}c_w Z_{\mu} - c_w s_{\alpha} Z_{d_{\mu}}$
В	$B_{\mu} ightarrow B_{d\mu} + \eta X_{d\mu}$
Х	$X_{\mu} o \eta \epsilon X_{d_{\mu}}$

Table 4: Non-physical fields and their definition for kinetic mixing model.

Appendix ii

Parameters	Definition	Description
η		$U(1)_X$ - $U(1)_Y$ mixing parameter (external)
Cw	$\frac{M_W}{M_Z}$	cos of the Weinberg angle
Sw	$\sqrt{1-c_w^2}$	sin of the Weinberg angle
C_{lpha}	$cos(\alpha)$	cos of mixing angle in weak sector
s_{α}	sin(lpha)	sin of mixing angle in the weak sector
ϵ	$rac{-1+\sqrt{1+4\eta^2}}{2\eta}$	kinetic mixing parameter

Table 5: Parameters of the kinetic mixing model.

$$\alpha = -\frac{1}{2} Arc Tan \left[\frac{2s_w \eta}{1 - \Delta Z - s_w^2 \eta^2} \right]$$
(15)
$$\Delta Z = \frac{M_X^2}{M_{Z_0}^2}$$
(16)

Where M_X is X mass before mixing and M_{Z_0} is Z mass before mixing. ΔZ is referred to as the "Ratio of scales."

T³ Lepton Υ 1/2-1 ν_e -1/2 -1 e_L -2 0 e_R **T**³ Υ Quark 1/31/2UL 1/3-1/2d 4/3 0 U_R d_R 0 -2/3

Table 6: Weak iso-spin and hypercharge values.

• The various parameters for a reference data point are tabulated in the following tables.

FLORIDA TECH

• The partital widths and branching ratios are calculated using *Madwidth* tool within *Madgraph*. [13]

Coupling vertex	Vectoral coupling	Axial coupling	Comments
$Z_D - f_{D1} - f_{D1}$	-4.85	2.85	Overwritten by Mad-Width
$Z_D - f_{D1} - f_{D2}$	2.85	4.85	and fixed for different mass points
η	10 ⁻⁴		Chosen by the user

Table 7: Coupling constants calculated by Madgraph for ref. sample.

Parameters	Value GeV	comments
M_{Z_D}	100	Chosen by the user
$M_{f_{D_1}}$	25	Chosen by the user
M _{fD2}	2	Chosen by the user
Γ_{Z_D}	$3.36 imes10^2$	Calculated by Madgraph
$\Gamma_{f_{D_1}}$	$1.69 imes10^{-12}$	Calculated by Madgraph
$\Gamma_{f_{D_2}}$	0.	Calculated by Madgraph

Table 8: Parameters calculated by *Madgraph* for ref. sample.

