

Construction and Performance of a Large Area GEM Detector with Low Mass and Zigzag-strip Readout for the EIC

<u>Merrick Lavinsky</u>, Jared Hadley, Aiwu Zhang*, and Marcus Hohlmann Florida Institute of Technology * now at Leidos, Inc.

The Future Electron Ion Collider

- Proposed to be built at BNL in NY using infrastructure from RHIC
- Collide electron beam with variety of heavy ion beams
 U, Pb, Protons, etc..
- Break the QCD barrier!
 - quark-gluon position and spin distribution within the nucleus
 - Understand how the nuclear force/properties of nuclear matter emerge from quark-gluon interactions

"Understand the GLUE that binds us all"

2

FLORIDA'S STEM UNIVERSIT

GEM Detector Presence at the EIC

So far, all proposed EIC detector designs exhibit the use of large planar GEM detectors for tracking in the forward or backward regions.

What Advantages Does Our Design Have?

- Ideal EIC tracking detectors have low scattering material to optimize tracking
- Drift and readout PCB's replaced with foils
 - Radiation length reduced from 4% to 0.59% (6.7 times less!)

Modified GEM readout foil

What Advantages Does Our Design Have?

- The spatial resolution of a tracker can be optimized with strip geometry
- This readout uses small and large zigzag readout strips
 - Better spatial resolution than normal straight strips due to strip overlap
 - 66% less channels for the readout!

Left: Microscopic view of the zigzag strips of sector 2 (left) next to the straight strips in sector 1 (right) [3]

Right: Modified GEM stack only needs 9 readout cards

Design of External Frames

GEM foils need a working gas to operate \circ 70%Ar : 30%CO₂

- Carbon fiber (CF) frame with Al-Kapton windows
- Narrow rib in frame to fortify window and frame
- Voltage applied to AI side of drift window to counteract electrostatic force of drift foil
- Al removed in top frame window edges to insulate from CF Frame
- Electrical HV connections to GEM foils

• Drift/GEMs/Readout spacing of 3/2/2/2 mm

Bottom CF Frame

Bottom CF frame with pullout posts attached

- Drift/GEMs/Readout spacing of 3/2/2/2 mm
- Pullout posts attached to bottom CF frame

Modified GEM stack in the assembly process

- Drift/GEMs/Readout spacing of 3/2/2/2 mm
- Pullout posts attached to bottom CF frame
- GEM stack is assembled as follows:
 - a. Foil placed on stack and stretched with tape
 - b. Spacer added
 - c. Foil tested for shorts
- Tighten GEM stack screws and cut tape
- Pullouts tighten entire stack

- Drift/GEMs/Readout spacing of 3/2/2/2 mm
- Pullout posts attached to bottom CF frame
- GEM stack is assembled as follows:
 - a. Foil placed on stack and stretched with tape
 - b. Spacer added
 - c. Foil tested for shorts
- Tighten GEM stack screws and cut tape
- Pullouts tighten entire stack
- Add gas tight frame (green), attach top CF frame
- Modified GEM is now complete

Modified GEM stack in the assembly process

Quality Control Testing

- Power is distributed to GEM foils via HV divider
 Ensure the HV divider is behaving in a linear, ohmic manner
- HV is induced on conductive CF frame !

IV Curves for the GEM stack, Window, and CF Frame

 Need to power window with HV to suppress discharges

G3B G3T G2B G2T G1B G1T Drift HV in Ground lol lol Top: HV divider on M5 GEM detector Left: HV divider with power to top window and top frame for modified GEM HV in Top Frame Top Window

Beam Test Detector Setup at FermiLab

- FNAL Test Beam Facility (FTBF)

 120 GeV Protons (10s pulse / Minute)
- Install detector in beam, between 2 sets of calibrated GEM trackers

FermiLab National Laboratory

mlavinsky2016@my.fit.edu

FLORIDA'S STEM UNIVERSITY

Tracker Hit Characteristics

Charge Ratio of X and Y hits on trackers

25 **20**È

15

10₿

- Strip Multiplicity of hits
- Beam Spots

Strip Multiplicity Results in Different Strip Geometries

Strip Pitch: 1.37 320 < R < 985 mm

Strip Pitch: 4.14 mRad 200 < R < 320 mm

Strip Multiplicity Distribution of Small ZigZag Strip Sector

Strip Multiplicity

FLORIDA FLORIDA'S STEM UNIVERSITY

mlavinsky2016@my.fit.edu

High Voltage Scan Results - Large Detector

Increased voltage supplied to the GEM detector leads to increased gain, which leads to more electrons being produced.

- 1. Wider signal pulses
- 2. More charge induced on the readout

Alignment of the Tracker GEMs

- Need trackers aligned to accurately reconstruct tracks[®]
- 3 main alignment steps
 - $\circ \quad \text{Shift in X and Y}$
 - \circ Shift and rotate at the same time
 - Individually rotate each tracker
- Each iteration shifts trackers by 10% of mean residual
- Trackers mean residuals aligned to within \approx 35 μ m

Aligning the Trackers with the LAGD

- Need to determine X,Y offsets to align trackers with the active sector on the LAGD
- LAGD only measures azimuthal angle
- Covert tracker XY coordinates to polar coordinates
- The tracker beam spot is shifted throughout the active sector and tracks are reconstructed
 - Ideal Y offset minimizes LAGD residual mean Ο
 - Ideal X offset minimizes LAGD residual standard deviation Ο

Difference in Tracker and LAGD Angular Distributions at 0.0 0.005 0.05 -0.005-0.01-0.05 -0.015 10 15 Y offset [mm] Ideal X and Y offsets Ideal Y offset [mn 12 12 12 (29.1322, 11.1321)20 deal X offset (mm

18

LAGD Mean Residual per Y offset at X = 30

AGD Re

Conclusions and Future Outlook

- Designed, assembled, and successfully took data with a low-mass, large-area GEM detector!
- Hit characterization, HV scans, and tracker alignment completed
- In progress:
 - Resolution studies of different strip regions
 - Mitigate leakage current to outer frame
 - gain curves

Jared kneeling beside modified GEM after first successful complete assembly

Questions?

20

mlavinsky2016@my.fit.edu

References

- 1. https://wiki.bnl.gov/EPIC/index.php?curid=154
- 2. https://wiki.bnl.gov/EPIC/index.php?curid=11
- 3. https://arxiv.org/pdf/1711.05333.pdf
- 4. <u>https://cms.cern/content/homeland-security</u>
- 5. https://link.springer.com/article/10.1007/s41605-020-00166-0
- 6. Sauli, F. (2020). Micro-Patterned Gaseous Detectors.
- 7. https://www.flickr.com/photos/brookhavenlab/albums/72157714316624996
- 8. https://atlas.cern/updates/news/scientific-potential-high-luminosity-lhc

Backup Slides

How GEM Detectors Work

<u>Gas Electron Multiplier foils</u> amplify the signal within gaseous radiation detectors

Left: Close up of GEM foil [5]. Right: Electric field pinching in GEM foil pores [5]

- 1. Radiation particle enters detector
- 2. Ionizes gas, releasing electrons
- 3. Electrons forced towards readout and through GEM foils via electric fields
- 4. Readout signal induced on strips by electron showers

Exploded View [6] and Side Profile [] of assembled GEM stack

- Foils tested for Shorts
- GEM stack is assembled:
 - Foil placed on stack and stretched with tape
 - Spacer added
 - Foil tested for shorts
 - Repeat for all foils
- Tighten stack screws and cut tape
- GEM stack placed in bottom frame and connected to pullouts for last stretch

• Planarity is Important for Uniform Gain

- Electrically test and add gas tight frame to seal top and bottom frames
- Screw on top frame and assembly is finished!

How Adonis Analyzes the Data

Trackers

mlavinsky2016@my.fit.edu