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Introduction

• A Fermionic dark matter model with four muons final state is considered [1, 2]

• Signal events in this model have a topology in which the final state muons come from

off-shell parent particles

• Defining a signal region in this analysis requires forming correct di-muons, i.e., paring muons

that come from the same parent particle
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Figure 1: Feynman diagram for the fermionic dark matter model, referred to as the fD model. The

dark Z boson (ZD ) provides a vector portal to the dark sector through kinetic mixing. Dark

Fermions, fD1
’s, then decay to di-muons through off-shell ZD particles and another stable dark

fermion, fD2
, that escapes detection.
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Introduction

• To pair the muons into di-muons coming from same kind of parent particles, one would

reconstruct the invariant mass for all possible permutations

• Out of all combinations of muons to form di-muons, the arrangement with closest invariant

mass is selected

• This method is not applicable to our case, because the invariant dimuon masses, products of

off-shell ZD ’s, cover a whole range of values

• That means one could not rely on requiring two masses to be the same to assign muons

correctly to dimuons

• Alternatively, several Machine Learning (ML) algorithms are employed to achieve this goal

• The Reconstructed (Reco) data is labeled through matching with Generated (Gen) level

muons

• Having the reco muons labeled enables us to use supervised ML algorithms to solve this

problem

• Observables associated with the di-muons are studied based on the network predictions

• Signal region for the analysis is defined and the shape of the signal determined
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Data Generation and Processing

• Event data are generated using MadGraph5 aMC@NLO 2 6 5 [3]

• Hadronization and showering are simulated using Pythia8.230 [4]

• Event reconstruction is performed under CMSSW 10 2 18 [5]

• The Monte-Carlo (MC) samples consist of a scan over the ZD mass

(125 < mZD
< 200 GeV), as well a scan over fD1

mass (5 < mfD1
< 55 GeV), for each

given ZD mass. The fD2
mass for the time being is kept at 2 GeV across all samples

• In total 80 samples are produced, each containing 104 events

• For the purpose of maximizing the number of events to be fed to the netwrork, the selection

is kept limited to requiring a pseudo-rapidity of | η |< 2.4 for each of the muons

• About 4000 events per sample survive selection after cuts are applied
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Matching and Labeling

• Data are preprocessed by applying cuts to remove events with failed reconstruction and

charge misidentification of final-state muons

• Algorithm is developed to match the reco muons to their gen muon counterparts as a means

to label the reco muons with their parent particles:

• The matching algorithm proceeds as follows:

1. Angular separation (∆R) between the reconstructed gen muons and all 4 reco muons

is calculated

2. First gen muon is sampled randomly and matched with the reco muon with the

smallest ∆R

3. The other same-charge muon is paired with the remaining reco muon of same charge

4. One oppositely charged gen muon is selected and matched via the minimum ∆R with

the 2 remaining reco muons

5. Remaining reco muon is paired with gen muon

• After this matching procedure, the permutation (order of muons) is defined as the correct

permutation, and assigned a label 1
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Matching and Labeling

• Requiring that each di-muon comprises 2

oppositely charged muons, we define 2

wrong permutations for each event

• Both incorrectly generated permutations

are labeled 0

• To each permutation (one correct and two

wrong), we associate the event features

and feed them to the network

Correct permutation 

ZD1  ZD2 

Incorrect permutation 

1 2 3 4 

Positive Negative 

ZD1 ZD2 

3 1 2 4 

Incorrect permutation 

Positive muons 
swapped to 
different parent 
particles 

ZD1 ZD2 

1 4 3 2 

Negative muons 
swapped to 
different parent 
particles 

Figure 2: The correct permutation and the other 2 allowed (but

incorrect) permutations.
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Matched ∆R
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Figure 3: The ∆R between the matched reco muons to gen muons based on the developed

algorithm. Most matches exhibit very low ∆R (good match). There are also events were the

matches are not near perfect (∆R > 0.005; bad match). These bad events are cut.
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Matched ∆R
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Figure 4: The ∆R between the matched reco muons and gen muons after that events with

∆R > 0.005 are cut out. These events can be trusted to give us the correct parent particles for

the reco muons.
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Deep Neural Networks

• Fully connected, deep, feed-Forward Neural Networks of various topologies created using

Keras [6] with a Tensorflow backend

• Data was partitioned and randomly shuffled into a 50/20/30 train/validation/test split

• Hyperparameters were manually tuned

• Final architecture selected had 9 hidden layers:

.	

.	

.	

Input Layer 
18 nodes 

.	

.	

.	

Hidden Layers 

64 
nodes 

.	

.	

.	

128 
nodes 

.	

.	

.	

256 
nodes 

512 
nodes 

1024 
nodes 

.	

.	

.	

.	

.	

.	

512 
nodes 256 

nodes 

.	

.	

.	

.	

.	

.	

128 
nodes 

64 
nodes 

Output Layer 
2 nodes 

.	

.	

.	

.	

.	

.	

Figure 5: Final neural network architecture selected.
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Final Neural Network Architecture Selected and Result

• After many iterations of hyperparameter tuning, the best classification accuracy

was achieved with:

• Features scaled to be in [0, 1]

• Batch size: 32

• Binary Cross-entropy loss function

• Adagrad [7] (Adaptive gradient algorithm) with initial learning rate

α = 10−3 (with α reduction when validation loss plateaued for more than

10 epochs)

• 9 hidden layers with 64-1024 nodes

• Elastic net regularization (L1 penalty: 10−2, L2 penalty = 10−4)

• PReLU activation function

• 30% Dropout

• He [8] normal distribution of node weights

• Biases initialized to 0

• 67.2% test accuracy
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Neural Network Results
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Figure 6: Loss and accuracy as a function of epoch.
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Neural Network Accuracies
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Figure 7: Accuracy of correct predictions for the neural network trained on MC simulated samples

with mZD
= 200 GeV and mfD1

= 30 GeV. Note that the performance is independent of mZD
and

mfD1
.
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XGBoost

• In an attempt to improve the accuracy of the

results, we turn to boosting methods; gradiant

boosting in particular

• Previously gradient boosting algorithms only

focused on improving impurity

• eXtreme Gradient Boosting (XGBoost)

applies a variety of regularization techniques

to avoid over-fitting [9]

• Bayesian hyperparameter tuning did not show

significant improvement in the scores of

XGBoost compared to default hyperparameters

• Default hyperparameters are used for XGBoost

here: γ = 0, η = 0.3, max depth = 6, ...
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XGBoost Score scans
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Figure 8: XGBoost performance with the network trained with mZD
= 200, mfD1

= 30 GeV.
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Di-muon Invariant Mass
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Figure 9: 2D invariant mass distributions for correctly and incorrectly paired di-muons.
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Di-muon Invariant Mass
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Figure 10: 1D invariant mass distributions for correctly and incorrectly paired di-muons.
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XGBoost Accuracy
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Figure 11: The Network is trained on the MC sample with the highest masses, i.e.

mZD
= 200,mfD1

= 55 GeV, then the achieved model is saved and tested on the rest of the

samples.
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ROC Curves
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Figure 12: Accuracy of correct predictions for the neural network trained on MC simulated data

with mZD
= 200 GeV and mfD1

= 30 GeV.
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Summary and Conclusions

• MC samples generated for a dark fermionic model

• Simulated events used to form di-muons that share the same parent particle for each event

• Supervised ML algorithms, such as XGBoost and deep, feed-forward, fully connected neural

networks were examined

• XGBoost shows the highest classification accuracy at ∼ 95%

• Neural networks with hyperparameter tuning is the second best performing network with an

accuracy of ∼ 67%

• These models were tested on samples with different masses to ensure the model is not over

fitting on a particular mass

• A model-independent behavior (across samples with difference masses) is observed for both

network scores
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An Introduction to Neural Networks

• Artificial Neural Network (ANN) is a collection of mathematical functions (neurons) that

receive N inputs

• Neurons modeled on the neuron of a human brain

• Take input “signals” along with weights and biases, pass them through an activation

function

• Input data called features; in our case, kinematic variables and higher-level, computed

observables (e.g., invariant mass)

• Activation function: The mathematical function of the neuron; e.g.,

• Parametric Rectified Linear Unit (PReLU): f (x) =

{
x, x > 0

αx, x ≤ 0

• Data passes through the network (feed-forward), and at the end, the loss function value is

computed

• Loss function: the function you are trying to minimize (training a neural network is just one

big optimization problem); e.g.,

• Binary cross-entropy (log-loss):

L(y , ŷ) = −N−1
N∑
i=1

yi · log ŷi + (1− yi ) log(1− ŷi )

• The data is back-propagated through the network, and the data are fed forward for another

pass

• After each pass, the weights and biases input to the neurons are tuned (this is the learning

part)
M. Rahmani & S. Butalla – “ML to form Dimuon Pairs” – Jul. 14, 2021 22
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An Introduction to Neural Networks

• Optimizer: the algorithm used for optimizing the loss function, e.g., Adagrad:

ws+1,i = ws+1,i −
α√

Ωs,ii + ε
∇L(θ)

where w are the weights, α is the learning rate, Ω is a diagonal matrix with entries

representing the summed, squared gradients, and ε used to prevent division by zero

• Neural network is run for a predetermined number of epochs (iterations)

• Many trainable parameters (all of the weights, biases)

• Many hyperparameters: learning rate α, number of nodes/hidden layers, regularization

methods to reduce overfitting (L1, L2), dropout, etc.

• Number of nodes in output layer represent the categories (categorization problem) or

coefficients (regression problem)

• Generally, data is split into train/validation/test datasets so network performance can be

evaluated after training (the validation/test sets are data the network hasn’t “seen”)
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An Introduction to Neural Networks — Preventing Overfitting

• Overfitting occurs when the model “learns” the data too well

• Can use regularization techniques, such as the L1 and L2 vector norms, which penalize

(constrains) weights that explode, helping network stability

• Additional terms representing the norm of the weights added to the loss function, i.e.,

L̂ = L(y, ŷ) + λ||w||p

• Norm:

||w||p =

( N∑
i

|wi |p
)1/p

,

where p = 1, 2, · · · ,∞

• Dropout randomly switches a fraction of the nodes in a layer to help “shift” the learning

responsibility to other nodes

M. Rahmani & S. Butalla – “ML to form Dimuon Pairs” – Jul. 14, 2021 24



W
or

k
in

pr
og

re
ss

An Introduction to XGBoost

• Decision Tree: a predictive model to go from observations about an item (represented in

the branches) to conclusions about the item’s target value (represented in the leaves).

Classification trees is our interest.

• A single tree work great with the data used to create them, but they are not flexible when it

comes to classifying new data.

• One decision tree is prone to over-fitting.

• To reduce the risk of overfitting, models that combine many decision trees are preferred.

• Gradient Boosting: Combining a learning algorithm in series to achieve a strong learner

from many sequentially connected weak learners. At each iteration of the gradient boosting

procedure, we train a base estimator (single tree) to predict the gradient descent step.

Saving these base estimators in memory is what enables us to output predictions for any

future sample.

• Regularization: Minimum loss reduction required to make a further partition on a leaf node

of the tree. The larger gamma is, the more conservative the algorithm will be.

• eXtreme Gradient Boosting: Previously gradient boosting models only focused on

improving impurity (a measure of how often a randomly chosen element from the set would

be incorrectly labeled if it was randomly labeled according to the distribution of labels in the

subset.). “XGBoost” applies a variety of regularization techniques to avoid over-fitting.

M. Rahmani & S. Butalla – “ML to form Dimuon Pairs” – Jul. 14, 2021 25



W
or

k
in

pr
og

re
ss

Data frame

Figure 13: The data frame structure. All features do a 3 way permutations.
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Feynman Diagrams

Correct permutation

Wrong permutation - scenario one Wrong permutation - scenario two
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XGBoost Classification Report

Table 1: Classification report

Training classification precision recall f1- score support

0 1.00 1.00 1.00 4785

1 1.00 1.00 1.00 2412

accuracy 1.00 7197

macro ave 1.00 1.00 1.00 7197

weighted ave 1.00 1.00 1.00 7197

Test classification precision recall f1- score support

0 0.99 0.98 0.99 16

1 0.96 0.98 0.97 787

accuracy 0.98 2400

macro ave 0.98 0.98 0.98 2400

weighted ave 0.98 0.98 0.98 2400
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XGBoost Performance i

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

No Skill
Logistic

Figure 14: XGBoost Receiver operating characteristic, ROC plot.No Skill: ROC AUC=0.500,

Logistic: ROC AUC=0.999
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XGBoost Hyper Parameters i

• η [default=0.3, alias: learning rate]: Step size shrinkage used in

update to prevents over-fitting. After each boosting step, we can

directly get the weights of new features, and eta shrinks the feature

weights to make the boosting process more conservative. Range:

[0,1]

• γ [default=0, alias: min split loss]: Minimum loss reduction

required to make a further partition on a leaf node of the tree. The

larger gamma is, the more conservative the algorithm will be. range:

[0,∞]
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XGBoost Hyper Parameters ii

• max depth [default=6]: Maximum depth of a tree. Increasing this

value will make the model more complex and more likely to overfit.

0 is only accepted in loss guided growing policy when tree method is

set as hist or gpu hist and it indicates no limit on depth. Beware

that XGBoost aggressively consumes memory when training a deep

tree. Range: [0,∞] (0 is only accepted in loss guided growing policy

when tree method is set as hist or gpu hist)

• min child weight [default=1]: Minimum sum of instance weight

(hessian) needed in a child. If the tree partition step results in a leaf

node with the sum of instance weight less than min child weight,

then the building process will give up further partitioning. In linear

regression task, this simply corresponds to minimum number of

instances needed to be in each node. The larger min child weight is,

the more conservative the algorithm will be. Range: [0,∞]
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XGBoost Hyper Parameters iii

• max delta step [default=0]: Maximum delta step we allow each

leaf output to be. If the value is set to 0, it means there is no

constraint. If it is set to a positive value, it can help making the

update step more conservative. Usually this parameter is not

needed, but it might help in logistic regression when class is

extremely imbalanced. Set it to value of 1-10 might help control the

update. Range: [0,∞]

• subsample [default=1]: Subsample ratio of the training instances.

Setting it to 0.5 means that XGBoost would randomly sample half

of the training data prior to growing trees. and this will prevent

overfitting. Subsampling will occur once in every boosting iteration.

Range: (0,1]

• sampling method [default= uniform]: The method to use to

sample the training instances. uniform: each training instance has

an equal probability of being selected. Typically set subsample ¿=

0.5 for good results.

M. Rahmani & S. Butalla – “ML to form Dimuon Pairs” – Jul. 14, 2021 32



W
or

k
in

pr
og

re
ss

XGBoost Hyper Parameters iv

• gradient based: the selection probability for each training instance is

proportional to the regularized absolute value of gradients subsample

may be set to as low as 0.1 without loss of model accuracy. Note

that this sampling method is only supported when tree method is set

to gpu hist; other tree methods only support uniform sampling.

• colsample bytree, colsample bylevel, colsample bynode
[default=1]: This is a family of parameters for subsampling of

columns. All colsample by* parameters have a range of (0, 1], the

default value of 1, and specify the fraction of columns to be

subsampled.

• colsample bytree is the subsample ratio of columns when

constructing each tree. Subsampling occurs once for every tree

constructed.

• colsample bylevel is the subsample ratio of columns for each level.

Subsampling occurs once for every new depth level reached in a tree.

Columns are subsampled from the set of columns chosen for the

current tree.
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• colsample bynode is the subsample ratio of columns for each node

(split). Subsampling occurs once every time a new split is evaluated.

Columns are subsampled from the set of columns chosen for the

current level.

• colsample by* parameters work cumulatively. For instance, the

combination ’colsample bytree’:0.5, ’colsample bylevel’:0.5,

’colsample bynode’:0.5 with 64 features will leave 8 features to

choose from at each split.

• On Python interface, when using hist, gpu hist or exact tree method,

one can set the feature weights for DMatrix to define the probability

of each feature being selected when using column sampling. There’s

a similar parameter for fit method in sklearn interface.

• λ [default=1, alias: reg λ]: L2 regularization term on weights.

Increasing this value will make model more conservative.

• α [default=0, alias: reg α]: L1 regularization term on weights.

Increasing this value will make model more conservative.

M. Rahmani & S. Butalla – “ML to form Dimuon Pairs” – Jul. 14, 2021 34


