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Introduction

e A Fermionic dark matter model with four muons final state is considered [1, 2]
e Signal events in this model have a topology in which the final state muons come from
off-shell parent particles

e Defining a signal region in this analysis requires forming correct di-muons, i.e., paring muons
that come from the same parent particle

Figure 1: Feynman diagram for the fermionic dark matter model, referred to as the fp model. The
dark Z boson (Zp) provides a vector portal to the dark sector through kinetic mixing. Dark
Fermions, fDl's, then decay to di-muons through off-shell Zp particles and another stable dark
fermion, fp,, that escapes detection.
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Introduction

To pair the muons into di-muons coming from same kind of parent particles, one would
reconstruct the invariant mass for all possible permutations

Out of all combinations of muons to form di-muons, the arrangement with closest invariant
mass is selected

This method is not applicable to our case, because the invariant dimuon masses, products of
off-shell Zp's, cover a whole range of values

That means one could not rely on requiring two masses to be the same to assign muons
correctly to dimuons

Alternatively, several Machine Learning (ML) algorithms are employed to achieve this goal

The Reconstructed (Reco) data is labeled through matching with Generated (Gen) level
muons

Having the reco muons labeled enables us to use supervised ML algorithms to solve this
problem

Observables associated with the di-muons are studied based on the network predictions

Signal region for the analysis is defined and the shape of the signal determined
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Data Generation and Processing

Event data are generated using MadGraph5_aMC@NLO_2_6_5 [3]
Hadronization and showering are simulated using Pythia8.230 [4]
Event reconstruction is performed under CMSSW_10_2_18 [5]

The Monte-Carlo (MC) samples consist of a scan over the Zp mass
(125 < mz, < 200 GeV), as well a scan over fp; mass (5 < mep < 55 GeV), for each
given Zp mass. The fp, mass for the time being is kept at 2 GeV across all samples

In total 80 samples are produced, each containing 10* events

For the purpose of maximizing the number of events to be fed to the netwrork, the selection
is kept limited to requiring a pseudo-rapidity of | n |< 2.4 for each of the muons

About 4000 events per sample survive selection after cuts are applied
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Matching and Labeling

e Data are preprocessed by applying cuts to remove events with failed reconstruction and
charge misidentification of final-state muons

e Algorithm is developed to match the reco muons to their gen muon counterparts as a means

to label the reco muons with their parent particles:

e The matching algorithm proceeds as follows:

1.

5.

Angular separation (AR) between the reconstructed gen muons and all 4 reco muons
is calculated

First gen muon is sampled randomly and matched with the reco muon with the
smallest AR

The other same-charge muon is paired with the remaining reco muon of same charge
One oppositely charged gen muon is selected and matched via the minimum AR with
the 2 remaining reco muons

Remaining reco muon is paired with gen muon

e After this matching procedure, the permutation (order of muons) is defined as the correct

permutation, and assigned a label 1
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Matching and Labeling

Correct permutation
Zpy Zp,

Incorrect permutation

Positive Negative

e Requiring that each di-muon comprises 2
oppositely charged muons, we define 2

Z Z .
. R! R2 Positive muons
wrong permutations for each event
0 ° swapped to
different parent

e Both incorrectly generated permutations .
: v e permutati particles
are labeled O

e To each permutation (one correct and two Incorrect permutation

wrong), we associate the event features

ZD1 ZDZ .
and feed them to the network Negatlve muons
different parent
particles

Figure 2: The correct permutation and the other 2 allowed (but
ﬁ incorrect) permutations.
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Matched AR
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Figure 3: The AR between the matched reco muons to gen muons based on the developed
algorithm. Most matches exhibit very low AR (good match). There are also events were the
matches are not near perfect (AR > 0.005; bad match). These bad events are cut.
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Matched AR
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Figure 4: The AR between the matched reco muons and gen muons after that events with
AR > 0.005 are cut out. These events can be trusted to give us the correct parent particles for

the reco muons.
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Deep Neural Networks

e Fully connected, deep, feed-Forward Neural Networks of various topologies created using
Keras [6] with a Tensorflow backend

e Data was partitioned and randomly shuffled into a 50/20/30 train/validation/test split

e Hyperparameters were manually tuned

e Final architecture selected had 9 hidden layers:

Hidden Layers

512
256 nodes O nodes 256

128 nodes O nodes 49g
nodes
64

nodes O O
)

nodes

64
nodes Q O
Input Layer O

18 nodes

Output Layer
2 nodes

O%ﬁbd

DA
TECH Figure 5: Final neural network architecture selected.
M. Rahmani & S. Butalla — “ML to form Dimuon Pairs” — Jul. 14, 2021 9



nal Neural Network Architecture Select nd Result

e After many iterations of hyperparameter tuning, the best classification accuracy
was achieved with:

Features scaled to be in [0, 1]
Batch size: 32
Binary Cross-entropy loss function

Adagrad [7] (Adaptive gradient algorithm) with initial learning rate

a = 1073 (with « reduction when validation loss plateaued for more than
10 epochs)

9 hidden layers with 64-1024 nodes

Elastic net regularization (L1 penalty: 1072, L2 penalty = 10~%)

PReLU activation function

30% Dropout

He [8] normal distribution of node weights

Biases initialized to 0

e 67.2% test accuracy
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Neural Network Results

Accuracy
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Figure 6: Loss and accuracy as a function of epoch.
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Neural Network Accuracies
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Figure 7: Accuracy of correct predictions for the neural network trained on MC simulated samples
with mz, = 200 GeV and mg,, = 30 GeV. Note that the performance is independent of mz, and
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XGBoost

e In an attempt to improve the accuracy of the
results, we turn to boosting methods; gradiant
boosting in particular

e Previously gradient boosting algorithms only
focused on improving impurity

e eXtreme Gradient Boosting (XGBoost)
applies a variety of regularization techniques
to avoid over-fitting [9]

e Bayesian hyperparameter tuning did not show
significant improvement in the scores of
XGBoost compared to default hyperparameters

e Default hyperparameters are used for XGBoost
here: v =0, n = 0.3, max depth = 6, ...

inMassAl<IL

leaf=4.13959565%

=0 1308

selPrid<2 67859101
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XGBoost Score scans

Classification Error
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Figure 8: XGBoost performance with the network trained with mz, = 200, mel = 30 GeV.
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Di-muon Invariant Mass
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Di-muon Invariant Mass
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XGBoost Accuracy
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Figure 11: The Network is trained on the MC sample with the highest masses, i.e.

mz, = 200, mep, = 55 GeV, then the achieved model is saved and tested on the rest of the

samples.
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ROC Curves
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Figure 12: Accuracy of correct predictions for the neural network trained on MC simulated data
with mz, = 200 GeV and me,, = 30 GeV.
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Summary and Conclusions

MC samples generated for a dark fermionic model
Simulated events used to form di-muons that share the same parent particle for each event

Supervised ML algorithms, such as XGBoost and deep, feed-forward, fully connected neural
networks were examined

XGBoost shows the highest classification accuracy at ~ 95%

Neural networks with hyperparameter tuning is the second best performing network with an
accuracy of ~ 67%

These models were tested on samples with different masses to ensure the model is not over
fitting on a particular mass

A model-independent behavior (across samples with difference masses) is observed for both
network scores
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An Introduction to Neural Networks

Artificial Neural Network (ANN) is a collection of mathematical functions (neurons) that
receive N inputs

Neurons modeled on the neuron of a human brain
o Take input “signals” along with weights and biases, pass them through an activation
function
Input data called features; in our case, kinematic variables and higher-level, computed
observables (e.g., invariant mass)

Activation function: The mathematical function of the neuron; e.g.,

0
e Parametric Rectified Linear Unit (PReLU): f(x) = x>
ax, x<0
Data passes through the network (feed-forward), and at the end, the loss function value is

computed
Loss function: the function you are trying to minimize (training a neural network is just one

big optimization problem); e.g.,
e Binary cross-entropy (log-loss):

N
N —1 - N
Ly,7)=—N"">"yi-log 9+ (1 — yi)log(l — %)
i=1
The data is back-propagated through the network, and the data are fed forward for another
pass
After each pass, the weights and biases input to the neurons are tuned (this is the learning

part)
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An Introduction to Neural Networks

Optimizer: the algorithm used for optimizing the loss function, e.g., Adagrad:

[e%
Wst1,i = Ws+t1,i — ﬁww)

where w are the weights, « is the learning rate, Q is a diagonal matrix with entries
representing the summed, squared gradients, and e used to prevent division by zero
Neural network is run for a predetermined number of epochs (iterations)

Many trainable parameters (all of the weights, biases)

Many hyperparameters: learning rate o, number of nodes/hidden layers, regularization
methods to reduce overfitting (L', L?), dropout, etc.

Number of nodes in output layer represent the categories (categorization problem) or
coefficients (regression problem)

Generally, data is split into train/validation/test datasets so network performance can be
evaluated after training (the validation/test sets are data the network hasn't “seen”)
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An Introduction to Neural Networks — Preventing Overfitting

e Overfitting occurs when the model “learns” the data too well

e Can use regularization techniques, such as the L' and L? vector norms, which penalize

(constrains) weights that explode, helping network stability

e Additional terms representing the norm of the weights added to the loss function, i.e.,
L= 1Ly, 9) + Mlwlls
e Norm:

N 1/p
il = (S 1wi?)

i
where p=1,2,--- , 0

e Dropout randomly switches a fraction of the nodes in a layer to help “shift” the learning
responsibility to other nodes
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An Introduction to XGBoost

Decision Tree: a predictive model to go from observations about an item (represented in
the branches) to conclusions about the item’s target value (represented in the leaves).
Classification trees is our interest.

A single tree work great with the data used to create them, but they are not flexible when it
comes to classifying new data.

One decision tree is prone to over-fitting.
To reduce the risk of overfitting, models that combine many decision trees are preferred.

Gradient Boosting: Combining a learning algorithm in series to achieve a strong learner
from many sequentially connected weak learners. At each iteration of the gradient boosting
procedure, we train a base estimator (single tree) to predict the gradient descent step.
Saving these base estimators in memory is what enables us to output predictions for any
future sample.

Regularization: Minimum loss reduction required to make a further partition on a leaf node
of the tree. The larger gamma is, the more conservative the algorithm will be.

eXtreme Gradient Boosting: Previously gradient boosting models only focused on
improving impurity (a measure of how often a randomly chosen element from the set would
be incorrectly labeled if it was randomly labeled according to the distribution of labels in the
subset.). “XGBoost” applies a variety of regularization techniques to avoid over-fitting.
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Data frame
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Figure 13: The data frame structure. All features do a 3 way permutations.

M. Rahmani & S. Butalla — “ML to form Dimuon Pairs” — Jul. 14, 2021 26



Feynman Diagrams
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XGBoost Classification Report

Table 1: Classification report

Training classification | precision | recall | f1- score | support
0 1.00 1.00 | 1.00 4785
1 1.00 1.00 | 1.00 2412
accuracy 1.00 7197
macro ave 1.00 1.00 | 1.00 7197
weighted ave 1.00 1.00 | 1.00 7197
Test classification | precision | recall | fl- score | support
0 0.99 0.98 | 0.99 16
1 0.96 0.98 | 0.97 787
accuracy 0.98 2400
macro ave 0.98 0.98 | 0.98 2400
weighted ave 0.98 0.98 | 0.98 2400
FLORIDA
TECH
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XGBoost Performance i
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Figure 14: XGBoost Receiver operating characteristic, ROC plot.No Skill: ROC AUC=0.500,
Logistic: ROC AUC=0.999
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XGBoost Hyper Parameters i

e 7) [default=0.3, alias: learning_rate]: Step size shrinkage used in
update to prevents over-fitting. After each boosting step, we can
directly get the weights of new features, and eta shrinks the feature

weights to make the boosting process more conservative. Range:
[0.1]

e v [default=0, alias: min_split_loss]: Minimum loss reduction
required to make a further partition on a leaf node of the tree. The

larger gamma is, the more conservative the algorithm will be. range:
[0,00]
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XGBoost Hyper Parameters ii

e max_depth [default=6]: Maximum depth of a tree. Increasing this
value will make the model more complex and more likely to overfit.
0 is only accepted in loss guided growing policy when tree_method is
set as hist or gpu_hist and it indicates no limit on depth. Beware
that XGBoost aggressively consumes memory when training a deep
tree. Range: [0,00] (0 is only accepted in loss guided growing policy
when tree_method is set as hist or gpu_hist)

e min_child_weight [default=1]: Minimum sum of instance weight
(hessian) needed in a child. If the tree partition step results in a leaf
node with the sum of instance weight less than min_child_weight,
then the building process will give up further partitioning. In linear
regression task, this simply corresponds to minimum number of
instances needed to be in each node. The larger min_child_weight is,
the more conservative the algorithm will be. Range: [0,00]
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XGBoost Hyper Parameters iii

e max_delta_step [default=0]: Maximum delta step we allow each
leaf output to be. If the value is set to 0, it means there is no
constraint. If it is set to a positive value, it can help making the
update step more conservative. Usually this parameter is not
needed, but it might help in logistic regression when class is
extremely imbalanced. Set it to value of 1-10 might help control the
update. Range: [0,00]

e subsample [default=1]: Subsample ratio of the training instances.
Setting it to 0.5 means that XGBoost would randomly sample half
of the training data prior to growing trees. and this will prevent
overfitting. Subsampling will occur once in every boosting iteration.
Range: (0,1]

e sampling_method [default= uniform]: The method to use to
sample the training instances. uniform: each training instance has
an equal probability of being selected. Typically set subsample j =
0.5 for good results.
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XGBoost Hyper Parameters iv

e gradient_based: the selection probability for each training instance is
proportional to the regularized absolute value of gradients subsample
may be set to as low as 0.1 without loss of model accuracy. Note
that this sampling method is only supported when tree_method is set
to gpu_hist; other tree methods only support uniform sampling.

e colsample_bytree, colsample_bylevel, colsample_bynode
[default=1]: This is a family of parameters for subsampling of
columns. All colsample_by* parameters have a range of (0, 1], the
default value of 1, and specify the fraction of columns to be
subsampled.

e colsample_bytree is the subsample ratio of columns when
constructing each tree. Subsampling occurs once for every tree
constructed.

e colsample_bylevel is the subsample ratio of columns for each level.
Subsampling occurs once for every new depth level reached in a tree.
Columns are subsampled from the set of columns chosen for the

ﬁ current tree.
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XGBoost Hyper Parameters v

e colsample_bynode is the subsample ratio of columns for each node
(split). Subsampling occurs once every time a new split is evaluated.
Columns are subsampled from the set of columns chosen for the
current level.

e colsample_by* parameters work cumulatively. For instance, the
combination 'colsample_bytree’:0.5, 'colsample_bylevel:0.5,
'colsample_bynode’:0.5 with 64 features will leave 8 features to
choose from at each split.

e On Python interface, when using hist, gpu_hist or exact tree method,
one can set the feature_weights for DMatrix to define the probability
of each feature being selected when using column sampling. There's
a similar parameter for fit method in sklearn interface.

e )\ [default=1, alias: reg_\]: L2 regularization term on weights.
Increasing this value will make model more conservative.

e o [default=0, alias: reg_a]: L1 regularization term on weights.
Increasing this value will make model more conservative.
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