Vector-Portal to The Dark Sector A Dark Matter Search at the LHC

Mehdi Rahmani Sep 3rd, 2022

CIPANP 2022

- Higgs and Z Boson Portals
- Effective Field Theories and Simplified Models
- Supersymmetric Models and Other Complete Theories
- Long-Lived Particle Models
- Dark Interactions and Dark Sectors

Dark Matter Models at CMS

Run I CMS searches

Run I CMS searches

Run I CMS searches Effective field theories (EFTs)

Run I CMS searches

Run II CMS searches

Effective field theories (EFTs)

Run II CMS searches

Run I CMS searches Effective field theories (EFTs)

Run I CMS searches

Effective field theories (EFTs)

Run II CMS searches

Run I CMS searches Effective field theories (EFTs)

Run I CMS searches — Effective field theories (EFTs)

Energies exceed the EFT cut-off energy scale.
Deviating mono-X reactions kinematics from ETF prediction
The mediator may also produce qualitatively different signals

Run I CMS searches

Solution

Effective field theories (EFTs)

Energies exceed the EFT cut-off energy scale.
Deviating mono-X reactions kinematics from ETF prediction
The mediator may also produce qualitatively different signals

The Dark Matter Simplified Models Run I CMS searches Effective field theories (EFTs) Energies exceed the EFT cut-off energy scale. Deviating mono-X reactions kinematics from ETF prediction The mediator may also produce qualitatively different signals Run II CMS searches Solution **Simplified Models**

vector mediator $(q\bar{q})$, $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV vector mediator ($\ell \bar{\ell}$), $g_q = 0.1$, $g_{DM} = 1$, $g_{\ell} = 0.01$, $m_{\chi} > 1$ TeV (axial-)vector mediator $(q\bar{q})$, $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV (axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV (axial)-vector mediator $(\ell \bar{\ell}), g_q = 0.1, g_{DM} = 1, g_{\ell} = 0.1, m_{\chi} > m_{med}/2$ scalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV scalar mediator (fermion portal), $\lambda_u = 1$, $m_{\chi} = 1$ GeV pseudoscalar mediator (+*j*/V), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV pseudoscalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_y = 1$ GeV complex sc. med. (dark QCD), $m_{\pi_{DK}} = 5$ GeV, $c\tau_{X_{DK}} = 25$ mm Z' mediator (dark QCD), $m_{dark} = 20$ GeV, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$ Baryonic Z', $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV Z' - 2HDM, $g_{Z'} = 0.8$, $g_{DM} = 1$, $tan\beta = 1$, $m_{\chi} = 100 \text{ GeV}$ Leptoquark mediator, $\beta = 1$, B = 0.1, $\Delta_{X, DM} = 0.1$, $800 < M_{LQ} < 1500$ GeV

Simplified Searches

vector mediator ($q\bar{q}$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV vector mediator ($l\bar{l}$), $g_q = 0.1$, $g_{DM} = 1$, $g_l = 0.01$, $m_{\chi} > 1$ TeV (axial-)vector mediator $(q\bar{q})$, $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV (axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV (axial)-vector mediator $(\ell \bar{\ell}), g_q = 0.1, g_{DM} = 1, g_{\ell} = 0.1, m_{\chi} > m_{med}/2$ scalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV scalar mediator (fermion portal), $\lambda_u = 1$, $m_{\chi} = 1$ GeV pseudoscalar mediator (+j/V), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV pseudoscalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV complex sc. med. (dark QCD), $m_{\pi_{DK}} = 5$ GeV, $c\tau_{X_{DK}} = 25$ mm Z' mediator (dark QCD), $m_{dark} = 20$ GeV, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$ Baryonic Z', $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV Z' - 2HDM, $g_{Z'} = 0.8$, $g_{DM} = 1$, $tan\beta = 1$, $m_{\chi} = 100 \text{ GeV}$ Leptoquark mediator, $\beta = 1$, B = 0.1, $\Delta_{X, DM} = 0.1$, $800 < M_{LQ} < 1500$ GeV

Simplified Searches

Dark matter searches at colliders A Boveia, C Doglioni

vector mediator $(q\bar{q})$, $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV vector mediator ($\ell \bar{\ell}$), $g_q = 0.1$, $g_{DM} = 1$, $g_{\ell} = 0.01$, $m_{\chi} > 1$ TeV (axial-)vector mediator $(q\bar{q})$, $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV (axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV (axial)-vector mediator $(\ell \bar{\ell}), g_q = 0.1, g_{DM} = 1, g_{\ell} = 0.1, m_{\chi} > m_{med}/2$ scalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV scalar mediator (fermion portal), $\lambda_u = 1$, $m_{\chi} = 1$ GeV pseudoscalar mediator (+*j*/V), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV pseudoscalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV complex sc. med. (dark QCD), $m_{\pi_{DK}} = 5$ GeV, $c\tau_{X_{DK}} = 25$ mm Z' mediator (dark QCD), $m_{dark} = 20$ GeV, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$ Baryonic Z', $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV Z' - 2HDM, $g_{Z'} = 0.8$, $g_{DM} = 1$, $tan\beta = 1$, $m_{\chi} = 100 \text{ GeV}$ Leptoquark mediator, $\beta = 1$, B = 0.1, $\Delta_{X, DM} = 0.1$, $800 < M_{LQ} < 1500$ GeV

Simplified Searches

DM

7

DM

t/(b)

 $\langle g_q g_\chi$

A Boveia, C Doglioni

95% CL observed and expected exclusion regions in m_{Med} - m_{DM} plane for di-jet searches and different MET based DM searches from CMS in the lepto-phobic vector model

CMS Searches Summery Plots

CMS Searches Summery Plots

95% CL observed and expected exclusion regions in m_{Med} - m_{DM} plane for di-jet searches and different MET based DM searches from CMS in the lepto-phobic Axial-vector model

CMS Searches Summery Plots

95% CL observed and expected exclusion regions in m_{Med} - m_{DM} plane for di-jet and di-lepton searches from CMS in the Vector model

CMS Searches Summery Plots

95% CL observed and expected exclusion regions in m_{Med} - m_{DM} plane for di-jet and di-lepton searches from CMS in the Axial-vector model.

Model-Independent Analysis

8

Vector-Portal Interpretation

- We explored the pair production of new bosons at the LHC in collaboration with research groups from Texas A&M, Rice University, and University of Sonora.
- Our analysis presents a search for new light bosons decaying into muon pairs, corresponding to an integrated luminosity of 59.8 fb^{-1} at the center-of-mass 13 TeV energy, recorded during 2018 at the CMS.
- The parameter space probed is for the mass of the mediator

Model-independent Analysis

Schematic example of the pp interaction that produces a pair of new bosons of which each decays into a muon pair. The grey circle indicate the dark sector inter- actions. The X particle is to signify any excess processes other than the four lepton final state.

- DM resides in a dark sector (charged) under a dark symmetry group).
- This new sector communicates with SM sector through a weak portal
- Spin 1-Vector portal where a dark gauge boson interacts with an SM gauge boson through kinetic mixing

The Vector Portal

$$\mathscr{L} = -\frac{1}{4}B^{\mu\nu}B_{\mu\nu} - \frac{1}{4}B^{\prime\mu\nu}B_{\mu\nu}^{\prime} - \frac{\varepsilon}{4}B^{\mu\nu}B_{\mu\nu}^{\prime}$$

- • $B^{\mu\nu}$ is the SM electromagnetic field tensor
- • $B'^{\mu\nu}$ The field tensor in the dark sector
- •*ɛ* is the kinetic mixing parameter

 $Z_{\!D}$ decays into a pair of scalar dark matter particles which then each subsequently decay into two oppositely charged muons.

ector portal & Scalars

The 90% CL upper limits (black solid curves) on the dark vector mediator in the plane of parameters m_{γ/Z_D} and ε are shown. The limits shown in light orange correspond to dataset recorded by CMS during the 2016 era.

A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV 2019

Vector Mediator Summary Plot

Samples & Selection 2018 Analysis

Samples Monte-Carlo Simulation

MC Simulation

Simulation Process	Description
Model Implementation	Feynrules
Hard Scattering Simulation	amc@nlo v2.6.5
Parton showering	PYTHIA 8
Hadronization, detector response, & reconstruction	CMSSW 10 2 X

2018 Data

Dataset Labels	Number Events
/DoubleMuon/Run2018A-17Sep2018-v2/ MINIAOD	75 499 90
/DoubleMuon/Run2018B-17Sep2018-v1/ MINIAOD	35 057 7
/DoubleMuon/Run2018C-17Sep2018-v1/ MINIAOD	34 565 80
/DoubleMuon/Run2018D-PromptReco-v2/ MINIAOD	169 225 3
Total	314 348 8

Analysis Trigger and Muon Selection

Trigger Paths

HLT_DoubleL2Mu23NoVtx_2Cha

HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx,

HLT_TripleMu_12_10_5

Muon selection

slimmedMuons in MiniAOD

PF Loose muon (>=3) + standalone-only (SA) muon (>=1)

Two muons: $p_T > 24$ GeV, letal < 2

Four muons: $p_T > 8$ GeV, letal < 2.4

Mass Window

Defining Control and Signal Regions

Since the muon pairs are produced from supposedly the same bosons with consistent masses, the invariant mass of muon pairs should be consistent as well.

$$m_1 - m_2 = f(\frac{m_1 + m_2}{2})$$

Available on the CMS information server

CMS AN-19-153

Publication Status

The content of this note is intended for CMS internal use and distribution only

2021/02/02 Archive Hash: 43bba85-D Archive Date: 2021/02/02

CMS PAPER HIG-21-004

DRAFT **CMS** Paper

The content of this note is intended for CMS internal use and distribution only

2021/02/02 Archive Hash: 945e303 Archive Date: 2021/02/02

ir production of new on-proton collisions at

new bosons in a mass range, 0 mm, is reported using events sponds to 59.97 fb^{-1} of proton-8 by the CMS experiment at the o excess is observed in the data luct of the cross section, branchs are interpreted in the context particle model, a vector portal

model, the next-to-minimal supersymmetric standard model, and dark SUSY models including those predicting a non-negligible lifetime of the new boson. In all scenarios, a sizable parameter space is excluded compared with previous results.

Background Below Upsilon (Y) Resonances (0.25-9 GeV)

- QCD multi-jet processes, especially contributions from $b\overline{b}$
- Double semi-leptonic decay or decay via resonances $\eta, \omega, \phi, J/\psi(1S), \psi(2S)$
- Data driven (2018 DoubleMuon)

Double semi-leptonic $b\overline{b}$ decays

Background

Below Upsilon (Υ) Resonances (0.25-9 GeV)

Work in progress

2D QCD background template + data at the CR

- 2D template integral SR/CR = 0.043/0.969
- 2-dimu events at CR: 98 (SR remain blinded)
- Estimated BKG events at SR: 4.34 +/- 0.44 (stat.)

Work in progress

2D QCD background template + data at the CR

- 2D template integral SR/CR = 0.035/0.965
- 2-dimu events at CR: 66 (SR remain blinded)
- Estimated BKG events at SR: 6.16 +/- 0.76 (stat.)

24

Background Above Upsilon (Y) Resonances (11-60 GeV)

- QED radiated high-energy photons produces muon pairs
- Each muon is then paired with Drell-Yan (DY) single muons which mimics our di-muon signal
- Reject the events with QED background

Background

Above Upsilon (Y) Resonances (11-60 GeV)

Expected events in SR: 12.28 ± 2.01

Expected Limits Kinetic Mixing Parameter

 $N_{\mu\mu}$: 95% CL upper limit on the number of events

$$\mathscr{L} = 59.7 \, fb^{-1}, \, r = SF_{\epsilon_{Full}} \times \epsilon_{Full}^{MC} / \alpha_{Gen}$$

Close to zero background analysis: expected 95% CL upper limit is ~3 events at each mass point

 $\sigma(pp \to Z_D)\mathscr{B}(Z_D \to s_D \overline{s_D})\mathscr{B}^2(s_D \to \mu^+ \mu^-) \times \alpha_{gen} \leq \frac{N_{\mu\mu}}{L \times r}$

Expected Limits Kinetic Mixing Parameter

 m_{Z_D}

By translating the production cross-section to ε^2 , we set 95% CL limit on:

 $\varepsilon^2 \mathscr{B}(Z_D \to s_D \overline{s_D}) \mathscr{B}^2(s_D \to \mu^+ \mu^-)$

The limit curves exhibit a structure with an increase and a dip as the s_D mass

approaches the kinematic limit of $m_{Z_D}/2$.

The expected 95% CL upper limits function of the dark scalar mass m_{s_D} and the dark vector boson mass

Combination

With

2017

CMS

Expected Limits | Expected Limits - 2017

Work in progress

Expected Limits | Expected Limits - 2017 + 2018

Work in progress

Summary

- A vector-portal model is introduced as a benchmark dark matter model: $pp \to Z_D \to s_D \overline{s_D} \to 4\mu$
- Model independent upper limits on kinetic mixing parameter, cross-section branching ratio and acceptance are set.
- The 2018 data from CMS is analyzed.
- We are adding 2017 data to the analysis to improve the background modeling.

Analysis

Muon Pairing

Save event for modeling background later

Form all possible muon pairs in the event: 1) opposite charge 2) $m_{\mu\mu}$ < 60 GeV 3) valid common vertex from the Kalman vertex fitter

No. of **≥**2 muon pairs

0

Analysis

High Level Selection

Selection	
Pixel Hit	Valid pixel hit for at
Dimuon Vertex	Fit dimuon vertex of
Mass Window	Two signal

Description

least one muon in the muon pair: $L_{xy} < 16$ cm, $L_Z < 51.6$ cm

each muon pair using KalmanVertexFitter, Pµµ > P(L_{xy}, f(Δ R), N_{SA}-µ)

dimuon required to have consistent invariant mass

Perfomance

Generator v.s. Reco Efficiency

Total selection efficiency over generator level selection acceptance, $\epsilon_{Full}/\alpha_{gen}$ as a function of the s_D mass for various Z_D masses in the vector portal model. The KM parameter, ε , is 10^{-2} .

Background

Above Upsilon (Υ) Resonances (11-60 GeV) - Signal Region

MC simulation compared with the data in control region for muon

pair 1.

MC simulation compared with the data in control region for muon pair 2.

Background

Above Upsilon (Υ) Resonances (11-60 GeV) - Signal Region

MC simulation in signal region for muon pair 1.

MC simulation in signal region for muon pair 2.

Estimated number of background events in the SR $SR : 12.28 \pm 2.01$

2017 Analysis Model-Indepandence Performance

Total selection efficiency over generator level selection acceptance, $\epsilon_{Full} / \alpha_{gen}$ as a function of the s_D mass for various Z_D masses in the vector portal model.

KM parameter, ε , is 10^{-2}

$4.34 \pm 0.44(stat.) \pm 0.18(sys.)$ Observed: 4 Events

Below Upsilon (Υ) Background

 $6.16 \pm 0.76(stat.) \pm 0.09(sys.)$ Observed: 6 Events

Above Upsilon (Υ) Background

$SR : 12.28 \pm 2.01$ events Observed: 20 Events

The **observed 95%** CL upper limits function of the dark scalar mass m_{s_D} and the dark vector boson mass m_{Z_D}

Observed Limits

- In 20-25 GeV region we observe 3 events
- The expected number of events in the said region is ~0.31
- This observation lead our research to explore the addition of 2017 CMS data to the our analysis

2018 Conclusion

Combination

With

2017

CMS

2017 Analysis Tigger Paths and Selections

Trigger Paths

HLT_Mu23_Mu12

HLT_Mu18_Mu9_SameSign

HLT_TrkMu12_DoubleTrkMu5NoFiltersNoVtx

HLT_TripleMu_12_10_5

Dataset Labels

/DoubleMuon/Run2017B-31

/DoubleMuon/Run2017C-31

/DoubleMuon/Run2017D-31

/DoubleMuon/Run2017E-31

/DoubleMuon/Run2017F-31

Total

Muon selection

slimmedMuons in MiniAOD

4 PF Loose muon

Two muons: $p_T > 13$ GeV, letal < 2

Four muons: $p_T > 8$ GeV, letal < 2.4

	Number of
Mar2018-v1/	14 501 767
Mar2018-v1/	49 636 525
Mar2018-v1/	23 075 733
Mar2018-v1/	51 589 091
Mar2018-v1/	79 756 560
	218 559 676

2017 Analysis Background: Below Y Resonances

•2D template integral SR/CR = 0.044/0.964

•2-dimu events at CR: 49 (SR remain blinded)

•Estimated BKG events at SR: 2.26 +/- 0.32

2017 Analysis Background: Below Y Resonances

•2D template integral SR/CR = 0.087/0.918

•2-dimu events at CR: 2 (SR remain blinded)

•Estimated BKG events at SR: 0.19 +/- 0.13

Work in progress

2017 Analysis Background: Above Y Resonances

•2D template integral SR/CR = 0.082/0.918

•2-dimu events at CR: 212 (SR remain blinded)

•Estimated BKG events at SR: 18.97 +/- 1.3

2017 Analysis Summary

Expected model independent 95% CL upper limit on the number of events.

The analysis remains approximately **near zero** background analysis

The results to be **combined with 2018 and 2016** results using the Higgs combine tool

Summary -A model independent analysis for $pp \rightarrow 2a \rightarrow 4\mu$ is represented

•A vector-portal model is introduced as a **benchmark** dark matter model: $pp \rightarrow Z_D \rightarrow s_D \overline{s_D} \rightarrow 4\mu$

•Model independent upper limits on kinetic mixing parameter, cross-section branching ratio and acceptance are set.

The 2018 data from CMS is analyzed.

•We are **adding 2017 data** to the analysis to improve₂the background modeling.

The Experimental Apparatus

CMS DETECTOR

CMS Illustration

SILICON TRACKERS Pixel (100x150 μm) ~1m² ~66M channels Microstrips (80x180 μm) ~200m² ~9.6M channels

> SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A

> > MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> > > PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

The Experimental Apparatus

Bending Muons

10'

10

A scan of production cross-section for

varying mass of Z_D .

Prod. σ [fb] 10

10

A scan of production cross-section for varying mass of Z_D .

 $\rightarrow \mu^+ \mu^$ $s_{\rm D} \overline{s}_{\rm D}$) B²(s_D-B(Z

A scan of production cross-section for **varying mass of** Z_D .

Kin. & geom. Acc.

A scan of production cross-section for varying mass of Z_D .

acceptance [fb] G B

 10^{2}

Model-Independence Performala6e.s. Reco

Model independent ratio: $\epsilon_{Full} / \alpha_{Gen}$

• α_{Gen} : generator level acceptance

•4 gen-muons p_T and η selection + fiducial cuts

• ϵ_{Full} : full analysis efficiency

•4 reco-muons p_T and η selection + fiducial cuts+ full selection

Constant $\epsilon_{Full}/\alpha_{Gen}$ indicates model performance is independent of its parameters

Average $\epsilon_{Full} / \alpha_{Gen} = 0.418$ is consistent with other benchmark models

Model-Independence

Total selection efficiency over generator level selection acceptance, $\epsilon_{Full} / \alpha_{gen}$ as a function of the s_D mass for various Z_D masses in the vector portal model.

The KM parameter, ε , is 10^{-2} .

Generator v.s. Reco

Background Estemation (Y) Resonances (0.25-9 GeV)

-Dominated by QCD multi-jet processes, especially contributions from $b\overline{b}$

• Double semi-leptonic decay or decay via resonances $(\eta, \omega, \phi, J/\psi(1S), \psi(2S))$

•Data driven (2018 DoubleMuon): because, MC for QCD processes are limited

•Construct 2D background templates, based on 1D MC distributions and fitting them -> $f(m_{\mu\mu_1}) \otimes f(m_{\mu\mu_2})$. (See **App. B**)

•Estimate the number of background events in the signal region

Background Estimation Above Upsilon (Υ) Resonances (11-60 GeV) - Control Region

Good agreement between data and MC in control region.

Background Estimation Above Upsilon (Υ) Resonances (11-60 GeV) - Signal Region

Estimated number of background events = SR : 12.28 ± 2.01

