

Calculation and Measurement of the Interstrip Capacitance on the Readout Board of the GE2/1 GEM Detector

Stephen D. Butalla & Marcus Hohlmann

March 8, 2019

Florida Academy of Sciences 2019 Florida Institute of Technology

The Compact Muon Solenoid [1].

- Gas electron multipliers (GEMs) are a micro-pattern gas detector (MPGD) that consists of three foils inside an active volume filled with gas (in our case its a mix of 70:30 Ar and CO₂)
- The foils are held at different potentials through a high voltage (HV) divider

Electron microscope image of a GEM foil [2].

Schematic of the foils in the detector [2].

Gas Electron Multipliers

CMS

- As a particle (or photon) enters the detector, it ionizes the gas
- Free electrons accelerated by electric fields cause secondary ionization inside the holes in the foils ($|\mathbf{E}|$ can be as high as 10⁷ V/m!) \Rightarrow creates an avalanche
- Charge is collected on the strips on the readout board (ROB) which is then integrated by the readout electronics

Electron avalanche and gain multiplication between GEM foils [3].

Ionization process and charge amplification [3].

Readout Strips

between GEM foils [3]. S. Butalla & M. Hohlmann – "Interstrip Capacitance of the GE2/1 Detector" – FAS 2019 – Mar. 8, 2019

Phase-II Upgrade for CMS

- High Luminosity LHC project (HL-LHC) will increase luminosity $\sim \times 5$
- The Phase-II muon detector upgrade will help increase the redundancy of the muon system
- The new GE2/1 will help lower the Level-1 trigger rate

Muon system for the proposed Phase-II upgrade [4].

CMS

The GE2/1 Detector

Schematic of the GE2/1 detector [4].

First fully assembled GE2/1 chamber [5].

Interstrip Capacitance of the GE2/1 ROB

- Interstrip capacitance is an important design parameter
- Lower interstrip capacitance = lower noise \Rightarrow higher S/N
- Interstrip capacitance influenced by strip length, width, gap width, dielectric substrate, and signal trace dimensions/geometry
- A custom GE2/1 ROB (in the shape of a GE1/1 ROB) was fabricated with twelve different strip geometries and dimensions
- Physical measurements of the interstrip capacitance were made on this board
- Analytical calculations performed

CMS

Layout of the GE2/1 ROB

CMS

- 1. M4, Original Design
- 2. M4, Strip gap = 0.3 mm
- 3. M4, Strip length halved, neighbors merged (width doubled), (new default)
- 4. M4, Extra long traces
- 5. M1, Original Design
- 6. M1, Strip gap = 0.3 mm
- 7. M1. Strip gap = 0.4 mm
- 8. M1, Strip length halved, neighbors merged (width doubled)
- 9. M1, Strip length halved, original width
- 10. M1, Extra long traces
- 11. M1, Minimal traces
- 12. M1. Minimal traces. strip length halved, width doubled

Figure on left adapted

from [6].

Calculation of the Interstrip Capacitance

- CMS
- Expression for interstrip capacitance/cm obtained from [7] and modified to include the signal traces on the opposite side of the board

$$(C/I) = \left(C_{sa} + C_a\right)I_s^{-1} + \left(C_{st} + C_t\right)I_t^{-1}$$

- Capacitance terms are functions of the complete elliptic integral of the first kind and dielectric constant
- Moduli of the integrals are functions of the strip and trace dimensions/geometry and substrate thickness

Diagram of the strip/trace/substrate system.

Detailed photo of the strips on the custom GE2/1 ROB.

Trace Measurements

- CMS
- Trace widths, gap widths, and lengths were measured 24 times in each sector; an average and its standard deviation were calculated

S. Butalla & M. Hohlmann - "Interstrip Capacitance of the GE2/1 Detector" - FAS 2019 - Mar. 8, 2019

Measurement of the Interstrip Capacitance

- Probes of the capacitance meter (Excelvan m6013) were placed at opposite ends of two adjacent strips
- The meter was zeroed by a second person while the probes were held ${\sim}1~{\rm cm}$ above the strips, then a measurement was taken

• Four measurements taken for 8-19 pairs of strips in each of the 12 sectors on the ROB

S. Butalla & M. Hohlmann - "Interstrip Capacitance of the GE2/1 Detector" - FAS 2019 - Mar. 8, 2019

CMS

Measurement of the Interstrip Capacitance

- CMS
- In the following discussion, the weighted average of capacitance of all strips measured in each sector is used as the capacitance figure of merit
- Maps of what strips were measured for each sector are shown below [8]; (Yellow lines indicate strip pairs that were measured)

Interstrip Capacitance of the GE2/1 ROB

Table 1: GE2/1 ROB Interstrip Capacitance

Sector	Module	Parameters	Avg. Meas. Cap.	Calc. Cap.	(C_m/C_c)
			(pF)	(pF)	
1	M4	Original Design, Gap: 0.2 mm	21.69±0.05	16.7	1.30
2	M4	Gap: 0.3 mm	$19.98{\pm}0.12$	15.3	1.31
3	M4	2×Width, 0.5×Length	$15.32 {\pm} 0.03$	10.5	1.46
4	M4	Original Design, Long traces	27.87±0.09	21.1	1.32
5	M1	Original Design, Gap: 0.2 mm	16.27±0.04	12.7	1.28
6	M1	Gap: 0.3 mm	$14.65{\pm}0.07$	11.2	1.31
7	M1	Gap: 0.4 mm	$13.17 {\pm} 0.04$	10.6	1.24
8	M1	2×Width, 0.5×Length	$11.82{\pm}0.06$	8.5	1.39
9	M1	0.5xLength	9.32±0.05	5.9	1.58
10	M1	Original Design, Long traces	20.07 ± 0.07	15.3	1.31
11	M1	Original Design, Minimal traces	14.02±0.02	11.8	1.19
12	M1	Minimal traces, 0.5xLength, 2xWidth	10.39±0.07	7.6	1.37

- $\sim\!\!30\%$ discrepancy between calculation and measurement \Rightarrow likely due to the simple model; 128 strips/traces per sector, only two pairs accounted for in calculation
- The predicted "best" strip geometries produce the lowest capacitance measured:
 - Smallest measured interstrip capacitance of M4 module (2xWidth, 0.5xLength): $C = 15.32 \pm 0.03 \text{ pF}$
 - Smallest measured interstrip capacitance of M1 module (0.5xLength): $C = 9.32 \pm 0.05 \text{ pF}$
- Traces introduce a non-negligible capacitance to the overall interstrip capacitance \Rightarrow trace length should be minimized
 - Longer traces significantly increase the interstrip capacitance, \sim 6 pF in M4 and \sim 4 pF in M1 (relative to default configuration)
 - Minimal traces reduce the interstrip capacitance, ${\sim}2~\text{pF}$ in M1 (relative to default configuration)

References

- [1] Image obtained from http://www.hephy.at/en/research/cms-experiment-at-lhc/.
- [2] "CMS Detector Design," http://cms.web.cern.ch/news/cms-detector-design.
- [3] CMS Collaboration, "CMS Technical Design Report for the Muon Endcap GEM Upgrade," Technical Report CERN-LHCC-2015-012, CMS-TDR-013, CERN, 2015.
- CMS Collaboration, "The Phase-2 Upgrade of the CMS Muon Detectors Technical Design Report," Technical Report CERN-LHCC-2017-012, CMS-TDR-016, CERN, 2017.
- [5] Photo courtesy of M. Bianco.
- [6] A. Ovcharova, "GEM Readout Board Design: Overview and Status," Presentation at the GEM Workshop XXII, https://indico.cern.ch/event/722089/contributions/3041863/attachments/1672580/2684057/ 18-06-21_ana_R0_boards_status.pdf.
- [7] S. Gevorgian and H. Berg, "Line Capacitance and Impedance of Coplanar-strip Waveguides on Substrates with Multiple Dielectric Layers," 31st European Microwave Conference, IEEE (2001), doi:10.1109/EUMA.2001.339161.
- [8] Figure courtesy of J. Collins.
- [9] L. M. Milne-Thomson, L. M. (1969). Ch. 17 from Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 9th ed. Eds. Abramowitz, M. and Stegun, I. A. p. 590. National Bureau of Standards: Washington, D.C.

Adapted from [7]:

$$\begin{split} (C/I) &= (C_{sa} + C_a) I_s^{-1} + (C_{st} + C_t) I_t^{-1} \\ &= \epsilon_0 \bigg((\epsilon - 1) \frac{K(k')}{2K(k)} + \frac{K(k'_{0s})}{K(k_{0s})} \bigg) + \epsilon_0 \bigg((\epsilon - 1) \frac{K(k'_t)}{2K(k_t)} + \frac{K(k'_{0t})}{K(k_{0t})} \bigg) \\ &\quad k = \tanh \bigg(\frac{\pi g}{2h} \bigg) \coth \bigg(\frac{\pi (w + g)}{2h} \bigg), \qquad k' = \sqrt{1 - k^2} \\ &\quad k_{0s} = \frac{g}{w + g}, \qquad \qquad k'_{0s} = \sqrt{1 - k_0^2} \\ &\quad k_t = \tanh \bigg(\frac{\pi g_t}{2h} \bigg) \coth \bigg(\frac{\pi (w_t + g_t)}{2h} \bigg), \quad k'_t = \sqrt{1 - k_t^2} \\ &\quad k_{0t} = \frac{g_t}{w_t + g_t}, \qquad \qquad k'_{0t} = \sqrt{1 - k_0^2} \end{split}$$

where K(k) is the complete elliptic integral of the first kind, w is the strip width, 2g is the gap width between the strips, w_t is the trace width, $2g_t$ is the gap width between the traces, h is the thickness of the substrate (FR4 with dielectric constant $\epsilon = 4.7$). S. Butalla & M. Hohlmann – "Interstrip Capacitance of the GE2/1 Detector" - FAS 2019 – Mar. 8, 2019 16

• The complete elliptic integral of the first kind is given in [9] as

$$K(k) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$$

