A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS

Johanna-Laina Fischer

Mentor: Dr. Lauren Hsu [FNAL, CDMS]

September 23, 2011 – PSS Colloquium
Part 1:

BRIEF EXPLANATION OF DARK MATTER
Missing Mass?

• Jan Oort and Fritz Zwicky
 – Used Virial theorem to find an observed gravitational mass of astronomical systems and found luminous mass
 • 400x more gravitational mass
• Vera Rubin
 – Used rotation curves to same conclusion as Zwicky
• CMB
 – Anisotropies
• Gravitational Lensing
 – Light distortions by unknown massive object
DM Candidates (some examples)

• WIMPs (Weakly Interacting Massive Particles)
 – Non baryonic matter
 – Hypothetical particle (predicted by SUSY)
 – Large mass compared to other particles
 – Interact gravitational force

• MACHOs (Massive Compact Halo Objects)
 – Made of baryonic matter
 – Emits little or no radiation
 • Black hole, neutron star, brown dwarf
 – Gravitational Lensing
Detection of DM

• Accelerator Creation
 – Detection of decay products of WIMPS created from hadron collision
 • Early Universe, ATLAS, CMS, LHC

• Indirect
 – Search for products via annihilation of relic DM
 • GLAST, ICEcube

• Direct
 – Interactions with ordinary matter
 • CDMS, COUPP, DRIFT, SuperCDMS
Part 2:

SUPER CRYOGENIC DARK MATTER SEARCH
The Cryogenic Dark Matter Search

- ZIP Detectors, stacked in towers
 - Si and Ge crystal with sensors attached
 - Detection in the form of phonons and ionization
- Soudan Mine
 - Depth: 780 m, Blocks most cosmic rays
- Expected WIMP flux (Earth orbits inside a dark matter halo!)
 - >1 event/kg/year

DM is a needle in a haystack!
SuperCDMS

• Improved detectors
 – New iZIP detectors (SNOLAB)
 • Larger, 100 kg (vs. 4 kg for CDMS)
 • Each side can collect both phonon and ionization energy to better reject surface events

• Better shielding
 – Deeper site (SNOLAB): 2 km
 • Lower cosmic ray-induced neutron background
 – Proposed neutron veto
 – Implement more radio-pure material for shielding
The Haystack: Backgrounds for SuperCDMS

• Gammas:
 – Decay chains of ^{238}U, ^{232}Th, and ^{40}K, as well as natural gammas from (α, n)

• Neutrons:
 – Internal Radiogenic
 • Fission and (α, n) of non-negligible contributions from trace isotopes (primarily U) in material surrounding CDMS detectors
 – Cosmogenically Produced
 • Spallation from cavern rock and the experimental apparatus
 • Small contribution from neutrons from cavern rock
 – Radiogenic Rock
 • Fission and (α, n) of trace isotopes in the cavern rock
 • Removed with sufficient shielding; negligible contribution

• Muons:
 – Cosmogenically Produced
 • Need active veto
Shielding Options

- **Gammas: High ‘Z’**
 - Steel
 - Lead/Ancient Lead
 - Copper

- **Neutrons: Low ‘Z’**
 - Polyethylene (Radio Pure)
 - Scintillator or water (active)

- **Muon: High ‘Z’**
 - Mine Depth
 - Scintillator Paddles
 - Neutron veto doubles for this purpose
Neutron Veto

• The Problem
 – Both WIMPs and neutrons are neutral
 – Both WIMPs and neutrons are very weakly interacting
 – Both will scatter off a Ge nucleus and provide a nuclear-recoil
 – “False Positive”

• The Solution
 – Neutron Veto
 • Modular tanks of liquid scintillator (mineral oil) doped with 10-20% ^{10}B

Tag neutrons that cause problems!
Part 3: SIMULATIONS AND RESULTS
Overview of Studies Performed

• General
 – Purpose:
 • Study gamma shielding configurations
 • Help improve intuition
 • Validate Geant4 based simulations for neutron veto studies
 – Methods:
 • Modified geometry
 – Simple shielding configurations
 • Analyzed data in ROOT

• Study 1
 – 1D Simulation: Effective Attenuation Length of Materials

• Study 2
 – 3D Simulation: Liquid Scintillator

• Study 3
 – 1D Simulation: Stacked Materials
Definitions

• Attenuation length (λ)
 – $P(x) = e^{-(x/\lambda)}$
 – Survival probability, $P(x)$: Probability that a particle will enter a detector with K.E. equal to its original K.E.

• Effective Attenuation length (λ_e)
 – $P(x)$: Probability that a particle will enter a detector with K.E. > 0
 – Approximate exponential curve

• Stopping power
 – The average energy loss of a particle per unit path length (dE/dx)
Study 1

- Purpose:
 - Determine attenuation length of different materials used in shielding for SuperCDMS

- 1.5 Million events
- Beam of gammas from y-axis
- 1 MeV
- Variables Changed:
 - Various thicknesses of materials
 - Liquid scintillator, lead, copper, steel
Results: Attenuation length of several materials
Purpose:
- Determine effective attenuation length of liquid scintillator for 3D case; multiple energies

Results:
- Comparison viable between 1D and 3D simulations
- Attenuation length vs. Effective attenuation length

10 M events
- 1, 2.6, 5, 8, 10 MeV
- Gammas from cavern
Study 3

- **Purpose:**
 - Determine effective attenuation length

- **Variables constant:** Copper and Steel
- **Variable changing:** Veto thickness
- **~1.5 Million events for each energy**
- **Energies simulated:** 0.511, 1, 2.6, 5, 8, 10 MeV
Study 3
Study 3

• Results:
 – Changed geometry for study
 • Original geometry did not hold
 – Effective attenuation length found for liquid scintillator
Summary

• Background events problematic
 – Gamma particles
 • Greater stopping by high Z materials
 • Greater the gamma energy, greater the attenuation length needed
 – Neutrons cause “false positive” for DM

• Simulations of effective attenuation lengths of different materials
 – Geant4 viable for neutron veto studies
 – How much shielding needed
 • Effective attenuation lengths of liquid scintillator (multiple energies)
 – Alone
 – Stacked with steel
 – Stacked with copper and steel
 • Can use 1D simulations
Backup Slides

BACK-UP!
Shielding and Veto

- **Shielding**
 - Passive, just blocks particles
 - Steel, Lead, Copper
- **Veto**
 - Shields from gamma particles and neutrons
 - Detects neutrons produced from radioactive decay in internal shielding
 - Active, takes information from particles that it blocks
 - Mineral Oil
- **Rate of blocking particles**
 - Need 10^4 reduction in background gammas
 - Attenuation lengths (λ), Beer-Lambert Law
 - $P(x) = e^{-x/\lambda}$
 - Effective attenuation length
Geant4

• GEometry ANd Tracking
• Simulates particles through matter
 – MC
 • Geometry
 • Tracking
 • Detector Response
 • Run management
• Object oriented programming in C++