A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer Mentor: Dr. Lauren Hsu [FNAL, CDMS] September 23, 2011 – PSS Colloquium

BRIEF EXPLANATION OF DARK MATTER

Part 1:

Missing Mass?

- Jan Oort and Fritz Zwicky
 - Used Virial theorem to find an observed gravitational mass of astronomical systems and found luminous mass
 - 400x more gravitational mass
- Vera Rubin
 - Used rotation curves to same conclusion as Zwicky
- CMB
 - Anisotropies
- Gravitational Lensing

Light distortions by unknown massive object

DM Candidates (some examples)

- WIMPs (Weakly Interacting Massive Particles)
 - Non baryonic matter
 - Hypothetical particle (predicted by SUSY)
 - Large mass compared to other particles
 - Interact gravitational force
- MACHOs (Massive Compact Halo Objects)
 - Made of baryonic matter
 - Emits little or no radiation
 - Black hole, neutron star, brown dwarf
 - Gravitational Lensing

Detection of DM

- Accelerator Creation
 - Detection of decay products of WIMPS created from hadron collision
 - Early Universe, ATLAS, CMS, LHC
- Indirect
 - Search for products via annihilation of relic DM
 - GLAST, ICEcube
- Direct
 - Interactions with ordinary matter
 - CDMS, COUPP, DRIFT, SuperCDMS

SUPER CRYOGENIC DARK MATTER SEARCH

Part 2:

The Cryogenic Dark Matter Search

- ZIP Detectors, stacked in towers
 - Si and Ge crystal with sensors attached
 - Detection in the form of phonons and ionization
- Soudan Mine
 - Depth: 780 m, Blocks most cosmic rays
- Expected WIMP flux (Earth orbits inside a dark matter halo!)
 - >1 event/kg/year

DM is a needle in a haystack!

SuperCDMS

- Improved detectors
 - New iZIP detectors (SNOLAB)
 - Larger, 100 kg (vs. 4 kg for CDMS)
 - Each side can collect both phonon and ionization energy to better reject surface events
- Better shielding
 - Deeper site (SNOLAB): 2 km
 - Lower cosmic ray-induced neutron background
 - Proposed neutron veto
 - Implement more radio-pure material for shielding

The Haystack: Backgrounds for SuperCDMS

- Gammas:
 - Decay chains of ²³⁸U, ²³²Th, and ⁴⁰K, as well as natural gammas from (α , n)
- Neutrons:
 - Internal Radiogenic
 - Fission and (α, n) of non-negligible contributions from trace isotopes (primarily U) in material surrounding CDMS detectors
 - Cosmogenically Produced
 - Spallation from cavern rock and the experimental apparatus
 - Small contribution from neutrons from cavern rock
 - Radiogenic Rock
 - Fission and (α, n) of trace isotopes in the cavern rock
 - Removed with sufficient shielding; negligible contribution
- Muons:
 - Cosmogenically Produced
 - Need active veto

Shielding Options

- Gammas: High 'Z'
 - Steel
 - Lead/Ancient Lead
 - Copper
- Neutrons: Low 'Z'
 - Polyethylene (Radio Pure)
 - Scintillator or water (active)
- Muon: High 'Z'
 - Mine Depth
 - Scintillator Paddles
 - Neutron veto doubles for this purpose

Neutron Veto

- The Problem
 - Both WIMPs and neutrons are neutral
 - Both WIMPs and neutrons are very weakly interacting
 - Both will scatter off a Ge nucleus and provide a nuclearrecoil
 - "False Positive"
- The Solution
 - Neutron Veto
 - Modular tanks of liquid scintillator (mineral oil) doped with 10-20% ¹⁰B

Tag neutrons that cause problems!

Part 3:

SIMULATIONS AND RESULTS

Overview of Studies Performed

- General
 - Purpose:
 - Study gamma shielding configurations
 - Help improve intuition
 - Validate Geant4 based simulations for neutron veto studies
 - Methods:
 - Modified geometry
 - Simple shielding configurations
 - Analyzed data in ROOT
- Study 1
 - 1D Simulation: Effective Attenuation Length of Materials
- Study 2
 - 3D Simulation: Liquid Scintillator
- Study 3
 - 1D Simulation: Stacked Materials

Definitions

- Attenuation length (λ)
 - $P(x) = e^{-(x/\lambda)}$
 - Survival probability, P(x): Probability that a particle will enter a detector with K.E. equal to its original K.E.
- Effective Attenuation length (λ_e)
 - P(x): Probability that a particle will enter a detector with K.E. > 0
 - Approximate exponential curve
- Stopping power
 - The average energy loss of a particle per unit path length (dE/dx)

•Purpose:

Determine attenuation
length of different materials
used in shielding for
SuperCDMS

- 1.5 Million events
- Beam of gammas from y-axis
- •1 MeV
- Variables Changed:
 - Various thicknesses of materials
 - Liquid scintillator, lead, copper, steel

Results: Attenuation length of several materials

- Purpose:
 - Determine effective attenuation length of liquid scintillator for 3D case; multiple energies
- Results:
 - Comparison viable between 1D and 3D simulations
 - Attenuation length vs. Effective attenuation length

- 10 M events
- 1, 2.6, 5, 8, 10 MeV
- Gammas from cavern

- Purpose:
 - Determine effective attenuation length

- Variables constant: Copper and Steel
- Variable changing: Veto thickness
- ~1.5 Million events for each energy
- Energies simulated: 0.511, 1, 2.6, 5, 8, 10 MeV

- Results:
 - Changed geometry for study
 - Original geometry did not hold
 - Effective attenuation length found for liquid scintillator

Effective Attenuation Length of Stacked Materials (1D)

Starting Energy of Gamma Particles [MeV]

Summary

- Background events problematic
 - Gamma particles
 - Greater stopping by high Z materials
 - Greater the gamma energy, greater the attenuation length needed
 - Neutrons cause "false positive" for DM
- Simulations of effective attenuation lengths of different materials
 - Geant4 viable for neutron veto studies
 - How much shielding needed
 - Effective attenuation lengths of liquid scintillator (multiple energies)
 - Alone
 - Stacked with steel
 - Stacked with copper and steel
 - Can use 1D simulations

Backup Slides

Shielding and Veto

- Shielding
 - Passive, just blocks particles
 - Steel, Lead, Copper
- Veto
 - Shields from gamma particles and neutrons
 - Detects neutrons produces from radioactive decay in internal shielding
 - Active, takes information from particles that it blocks
 - Mineral Oil
- Rate of blocking particles
 - Need 10⁴ reduction in background gammas
 - Attenuation lengths (λ), Beer-Lambert Law
 - $P(x) = e^{-(x/\lambda)}$
 - Effective attenuation length

Geant4

- GEometry ANd Tracking
- Simulates particles through matter
 - -MC
 - Geometry
 - Tracking
 - Detector Response
 - Run management
- Object oriented programming in C++