

OPERATIONAL EXPERIENCE WITH THE GEM DETECTOR ASSEMBLY LINES FOR THE CMS FORWARD MUON UPGRADE

Stefano Colafranceschi^a & <u>Ilaria Vai^{b,c}</u> on behalf of the CMS Muon Group

^a Florida Institute of Technology, Physics and Space Sciences Department, Melbourne, FL, USA ^b Department of Physics, University of Pavia, Italy ^c Istituto Nazionale di Fisica Nucleare (INFN), Section of Pavia, Italy

Outline

- Motivations
- GEM Technology
- The GE1/1 station
- The GE1/1 slice test
 - Operational conditions of the system
 - Inclusion in the CMS operation
- The GE1/1 mass production
 - Quality controls
 - Preparation of the assembly sites
- Summary and timeline of the GE1/1 project

Motivations – The CMS Muon System

Run1 muon system configuration includes 3 technologies:

- Drift Tubes (DTs) and Cathode Strip Chambers (CSCs) → precision position measurements and trigger
- Resistive Plate Chambers (RPCs) → redundant trigger and coarse position measurement

→Installation of triple GEM detectors in the region $1.6 < |\eta| < 2.2$ scheduled in 2019-2020

10/25/2017 IEEE-NSS-MIC 2017

LHC luminosity increase up to 5 x 10^{34} cm⁻²s⁻¹ \rightarrow

- Background rate in the $1.6 < |\eta| < 2.2$ region up to $\sim 1000 \ Hz/cm^2$
- With the Run1 muon system configuration it would not be possible to achieve an acceptable L1 trigger rate for muons with $p_T < 25 \ GeV$ without increasing the threshold on muon p_T .

Motivations - The GE1/1 station

GE1/1 will allow to keep <5 kHz trigger rate without increasing threshold on muon's momentum

GE1/1:

- will add redundancy in the 1.6<|η|<2.2 region.</p>
- Will work in combination with CSCs, allowing the measurement of the muon bending angle in magnetic field

Top: Level-1 muon trigger rates before and after the GE1/1 upgrade at a luminosity of 2×10^{34} cm⁻²s⁻¹, for constant efficiency of 94%.

Bottom: Measurement of the bending angle from CSC and GEM combined.

GEM Technology

The GE1/1 station will be instrumented with Triple-GEM detectors \rightarrow

- A GEM (Gas Electron Multiplier) foil is a 50 µm thick polymer foil coated with 5 µm copper on each side
- Regular (triangular) pattern of holes
- Biconical holes with maximum diameter of 70 μm, interspace 140 μm
- \rightarrow Triple-GEM = stack of three GEM foils

Clear separation of drift and amplification regions:

- Avalanche multiplication of electrons localized inside the holes
- → Improved Rate Capability (up to 100 MHz/cm²) and Space resolution (~100s of μ m)

The GE1/1 station

The GE1/1 station will be installed in the first muon endcap station:

- It will be composed of 36 superchambers (GEMINI) per endcap
- Each GEMINI spans 10°
- GEMINI long and short versions alternate to maximize η coverage
- Each GEMINI is composed of 2 Triple-GEM detectors, for a total 144 chambers for the whole system

The GE1/1 slice test

The GE1/1 slice test detectors were installed in one of the CMS endcaps in January 2017.

5 GEMINIs, for a total of 10 Triple-GEM detectors were installed, to:

- Acquire installation and commissioning expertise
- Prove the system's operational conditions
- Demonstrate the integration into the CMS online system

System configuration:

- 4 GEMINI powered through a ceramic HV divider
- 1 GEMINI powered with multichannel power supply (7 HV channels per chamber)
- Readout system based on VFAT2 chip and optohybrid (OHv2b) \rightarrow 3 LV channels for each chamber
- 3 Ar/CO2 70:30 gas lines

Pictures from the installation

Triple-GEM detectors installed in this region

10/25/2017 IEEE-NSS-MIC 2017

GE1/1 slice test – operational conditions of the system

For the HV systems (both single channel power supply and multichannel) an overall stability of the order of 1 % or less has been observed with and without collisions

GEMINI28L1

Left: overall stability within 10-³ observed in a 7 hours period during collisions with the single channel HV system

 Similar results have been observed for the LV system **Right:** stability within 10-³, observed in a 12 hours period during collisions with the multichannel HV system

GE1/1 slice test – local calibration of the system

The local calibration of the system foresees mainly 3 steps:

- Threshold scans → noise of the channels as function of applied threshold.
- S-curves → response of the channels to an injected pulse calibrated to a given charge at a given threshold.
- Latency* scans → ratio of events with detected hits over the total number of events, per different latency values.

*The latency is the time difference between the time of arrival of a L1Accept (L1A) and the time at which the related event was stored.

Right: Delay between seen S-bit and received L1A for cosmic ray muon data Left: result of an S-curve performed with one VFAT installed on one slice test chamber

GE1/1 slice test – integration in CMS

DAQ integration

- Function manager and MiniDAQ operational
- Preparing the setup for the high rate test

DCS* integration

- Local version of the system completely operational
- Protection system, aimed at moving the system in a safe state during injection and magnet ramping, programmed → tests ongoing
- Integration in the automation system under test
- *DCS = Detector Control System

The GE1/1 mass production

The mass production for the full GE1/1 station will be shared between CERN and many production sites around the world:

- Share the effort with other institutes, members of the CMS GEM collaboration
- Generate a large community of CMS
 GEM detector experts over the world

GE1/1 quality controls

The production and quality control activities are shared between CERN and the external sites

managed by CERN. Shipment box are sent by CERN to assembly sites.

FIT assembly site

Summary and timeline

The installation of the GE1/1 project is planned for LS2 in 2019-2020:

- 5 GEMINIs were installed in 2017 in the CMS endcap to test the integration and gain operational experience:
 - The detectors proved to be stable

IEEE-NSS-MIC 2017

- The integration in central DCS and DAQ is on-going
- The production of the full station will be shared between CERN and other production sites around the world:
 - The labs are being completed and certified to host the production
 - The first production kits are being delivered in these weeks.

									We are here					
2016				2017					2018				2019	
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	Q1	
External Assembly Site preparation	External Assembly Site preparation	External Assembly Site preparation	External Assembly Site preparation	External Assembly Site preparation	Assembly sites validation	Start of the production	Production						n at CMS	
Detector pre- production at CERN	Detector pre- production at CERN	Detector pre- production at CERN ready	Detector pre- production installation at CMS	Detector pre- production Commissioning at CMS	Detector pre-production Commissioning at CMS	Detector pre-production Commissioning at CMS	Detector pre production integ in CMS		Data acquisition with detector pre-production in CMS			h ion	Installation	

Backup

Layout of the GE1/1 slice test readout

system

Reference: VFAT2: A front-end system on chip providing fast trigger information, digitized data storage and formatting for the charge sensitive readout of multi-channel silicon and gas particle detectors, Proceedings of TWEPP Prague, Czech Republic, 3-7 September 2007, ISBN 978-92-9083-304-8, p.292, P. Aspell, CERN

10/25/2017 IEEE-NSS-MIC 2017

HV divider and multichannel HV system layout

