A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection

M. Staib, F. Costa, K. Gnanvo, L. Grasso, M. Hohlmann, J. B. Locke, S. Martoiu, H. Muller

Dept. of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
CERN, Geneva CH 1211, Switzerland

Abstract

Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with eight to ten 30 cm x 30 cm Triple GEM Electron Multipliers (T-GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ~120 μm in both dimensions and the station is operated at a muon trigger rate of ~35 Hz. The 1,586 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.

Muon Tomography Concept

Incoming muons (from natural cosmic rays)

DAQ Hardware & Software

The >12k analog channels are read out at ~5.8 Hz using the largest implementation of the RD51 Scalable Readout System (SRS) to-date. The SRS was developed at CERN as a low-cost scalable DAQ system for specific use with micro-pattern gaseous detectors. Data are collected using a hybrid card based on the 128-channel APV25 chip and sent via HDMI cables to ADC cards which support 16 APV hybrids each. ADC data are formatted by a front-end concentrator (FEC) based on the Virtex LX50T FPGA. Data from 6 FECs are sent via gigabit ethernet through two switches to a DAQ computer at 15 MB/s and processed for online and offline analysis using DATE and AMORE software developed for the ALICE experiment. Raw event size without zero suppression is ~500 kB.

Spatial Resolution

The spatial resolution of the GEM detectors was measured using data from an empty station with 3 GEMs each at top and bottom. Unbiased residuals are found for each detector using straight tracks and compared to GEANT4 Monte Carlo simulation. Utilizing all tracks, including those with higher polar angles, a global spatial resolution of ~170 μm is found. If the detector is tilted to incident polar angles <3°, the spatial resolution estimate is ~120 μm.

Detector Characterization

Charge is unequally shared between the top and bottom strips of the readout due to their geometry. The fiberglass support structure within each of the GEM detectors is clearly visible in the hit occupancy plot. It is important to note the effect of high incidence angles on the side detectors. Cluster multiplicities and sizes increase for tracks with high incidence angles.

Future Work

We plan to improve the reconstruction in the future, e.g. include more robust hit and track selection algorithms to account for improperly assigned tracks and to include an automatic alignment procedure to improve the quality of the side detector reconstruction by aligning the detectors to the sub-mm scale. There is also a need to suppress zeros in the data at the hardware level to reduce the data size. Imaging resolution and discrimination time are also currently under investigation.

Acknowledgments & Disclaimer

We thank Leszek Ropelewski and Miranda Van Sterris (GDD, CERN) for their help and technical support with the detector construction and data acquisition systems at CERN. The material is based upon work supported in part by the U.S. Department of Homeland Security under Grant Award Numbers 2007-DN-077-ER006-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.