

MPGD 2017 Applications at future nuclear and particle physics facilities – Session IV Temple University – May 24, 2017

A Large Low-mass GEM Detector with Zigzag Readout for Forward Tracking at EIC

Marcus Hohlmann

with M. Bomberger, F.I. Jimenez, A. Zhang

Florida Institute of Technology

QCD @ Electron Ion Collider

2

Next QCD Frontier: Strong color fields in nuclei *"Understanding the GLUE that binds us all"*

- How do the properties of nucleons and nuclear matter (mass, spin) and the nuclear force emerge from quark-gluon interaction?
- How are gluons and sea quarks and their spins distributed in position space and momentum space inside a nucleon?
- EIC experiments will image gluons & quarks and their interactions in the nuclear environment.

EIC Designs

3

- Use existing RHIC
- Add electron ring

- Use existing CEBAF
- Add ion ring

All proposed EIC detector concepts feature a form of large GEM tracker at forward and backward rapidities:

<u>R&D effort dedicated to EIC forward tracking since 2011:</u> Florida Tech & U. Virginia (eRD6), Temple U. (eRD3)

EIC FT Geometry Option

5/24/2017 M. Hohlmann, A large low-mass GEM detector with zigzag readout for forward tracking at EIC; MPGD 2017 at Temple U.

6

- Easy assembly
- Mechanical stability
- Low multiple scattering
- High spatial resolution
- Reasonable cost

7

- <u>Trapezoidal Triple-GEM</u> Detector
- Mechanical detector assembly <u>without any spacers</u> (as in CMS GEMs)
- Construction <u>without PCBs</u> (drift, readout)
 - implement the readout on a foil
 - use a GEM foil as drift electrode
 - use stiff carbon fiber frames on perimeter for stability
- <u>Zigzag strip readout</u> to minimize number of strips and electronic channels
 - reduce system cost
 - maintain good spatial resolution

EIC GEM Foil Design

- Active area is divided into 8 HV sectors in R direction at inner R and 18 HV sectors in azimuthal directions at outer R. Reduces energy of any potential discharges.
- Each HV sector is ~100 cm² and gaps between sectors are 0.1 mm.
- HV connections are made at wide end

Mechanical Foil Stretching

5/24/2017 M. Hohlmann, A large low-mass GEM detector with zigzag readout for forward tracking at EIC; MPGD 2017 at Temple U.

9

Material Accounting

Active Area:

Detector with PCBs		Thickness (mm)	% of Rad. Length
2 PCBs		3.180	3.914
3 GEMs		0.180	0.261
	Kapton	0.150	0.051
	Copper	0.030	0.210
Total			4.175

Detector with foils only	Thickness (mm)	% of Rad. Length	
2 Al-Mylar foils	0.103	0.038	
Myla	r 0.102	0.036	
А	0.001	0.002	
3 GEMs	0.180	0.261	
Kaptor	n 0.150	0.051	
Coppe	r 0.030	0.210	
1 GEM as drift foil	0.060	0.087	
Kaptor	n 0.050	0.017	
Coppe	r 0.010	0.070	
Readout foil	0.060	0.087	
Kaptor	n 0.050	0.017	
Copper (15 um each side b/c of vias) 0.030	0.210	
Total		0.613	Factor 6.8 reduction

Minimizing material **reduces multiple scattering** of tracks in the GEM detectors

For an **EIC detector**, this helps with:

- matching electron tracks to EM clusters in the calorimeter
- seeding RICH ring reconstruction from incidence of hadron tracks on the RICH

- Mechanical support structures are **outer frames with thin windows** (e.g. aluminized mylar foil, not shown here) instead of solid PCBs to reduce radiation length in the active area
- Frames are made from carbon fiber composites that have high strength to take up the tension from the stretched foils

Carbon Fiber Frames cont'd

Plate for front-end electronics

Carbon Fiber Composite:

- Araldite epoxy (AY103)
- Intermediate-modulus uni-directional carbon fiber ("IM7")
- 8 layers of CF each; ~ 4mm thick
- Produced in-house

Load Versus Deformation of IM7/090 with Araldite Composite

Expect < 1 mm deformation in z (bending) with 5 fully stretched foils

2D stage and highly collimated X-ray gun (140µm) at BNL

Reconstructed position vs. X-ray position (azimuthal)

Florida Tech

Scans across strips at 3 different radii

- **Overetching** of tips and **underetching** of valleys of zigzag strips creates "spines" along strip centers
- GEM avalanche induces signal only on single strip
- Without charge sharing among adjacent strips:
 - Readout is insensitive to hit positions near the strip centers
 - Overall spatial response is non-linear
 - Spatial resolution degrades (360 µm)

Zigzag strips interleave almost all the way to centers of both neighboring strips:

 $C_{\text{strip-adj. strip}} = (22 \pm 2) \text{ pF; } C_{\text{strip-GND}} = (28 \pm 2) \text{ pF} \text{ (direct measurement on 10 cm strips)}$

- The design **pushes the PCB manufacturing limit** since spaces are below 3 mils (76 um)
- Produced a **foil readout board at CERN** to verify that there is no problem with producing high-quality zigzag strips on a large-area kapton foil at CERN
- Same design is implemented on large 1-m zigzag readout foil produced at CERN

Improved Linearity

Mean centroid measurement vs. X ray position (scan across strips)

Flat regions insensitive to hit positions.

New board (same angle pitch)

Linear response over whole range

• > 95% events fire 2 or 3 strips.

Measured resolutions for improved zigzag-strip readout boards/foils:

Spatial resolution	V _{drift} (V)	Approx. gas gain	Strips with angle pitch 4.14 mrad, r ≈ 229 mm			Strips with angle pitch 1.37 mrad, r ≈ 784 mm		
(µrad / µm)			2-strip clusters	3-strip clusters	2 & 3-strip clusters	2-strip clusters	3-strip clusters	2 & 3-strip clusters
Industrial PCB	3340	3000	288 / 66	480 / 110	384 / 88	57 / 45	97 / 76	84 / 66
CERN foil	3340	3000	397 / 91	393 / 90	397 / 91	-	-	-
CERN foil	3380	4000	-	-	-	57 / 45	92 / 72	71 / 56
Previous PCB			-	-	-			193 µrad

Ar/CO₂ 70:30

Resolutions (well) below 100 µm

Full-size Zigzag Readout Foil

Readout connectors (Panasonic 130-pin) 5 Sector 3 Sector 2 30.1° Sector 1 opening angle

Sec. Nr.	Strip type	No. of strips	Angle pitch (mrad)	Sector Length (cm)
1	Straight	128	4.14	12
2	Zigzag	128	4.14	12
3	Zigzag	384 (3×128)	1.37	22
4	Zigzag	384	1.37	22
5	Zigzag	384	1.37	22

Florida Tech

- Adopt the improved zigzag strip design but use straight strips in small innermost sector 1
- Divide readout into 5 main eta sections
- Produce r/o on a foil material (<100 µm thickness) so that total material in detector is reduced
- Total number of channels is 1152 (=128*9)
- Only 9 APV chips to read out the full detector
- Foil is a 2-layer design; signal routing from strips to connectors for APV front end was a challenge

Readout Foil – Zigzag side

Readout Foil – Routing Side

20

• •

9 connectors for FE chips (APV hybrids)

- Signal lines are blue (top side)
- Zigzag strips are red (bottom side)
- Connections made with numerous vias

Readout Foil – Routing Side

21

Cross-talk measurements will be interesting... (but occupancy is low at the EIC) Produced on same base material as GEM foils (with ~15 µm Cu due to vias)

Forward GEM tracking R&D for EIC since 2011

Conceptual design for EIC FT disk made from 12 trapezoids

New prototype detector

- Much reduced material with "all-foil" design (~ 0.6% rad. length)
- Designed at Florida Tech and manufactured at CERN:
 - Large trapezoidal GEM foil (30.1°)
 - Complex large readout foil with zigzag strips
- Produced carbon fiber frames with promising stiffness
- Zigzag strip readout gives linear response and good spatial resolution

Status & Outlook

- Currently working with industry on stack frames and gas seal frame
- Will assemble detector and put through battery of quality control tests
- Tests with X-rays and possibly beam test in 2017 or 2018

Thank you!

5/24/2017 M. Hohlmann, A large low-mass GEM detector with zigzag readout for forward tracking at EIC; MPGD 2017 at Temple U. 23