Measurement of the photon structure function $F_2^\gamma (x,Q^2)$ with the LUMI detector at L3

Gyongyi Baksay
Florida Institute of Technology
Florida, USA

• Introduction
• Data and Monte Carlo
• Event selection
• Binning
• Unfolding
• Differential cross sections
• x and Q^2 dependence of F_2^γ
• Conclusion and outlook
Analysis goal

• Measure the photon structure function $F_2^\gamma(x,Q^2)$ from the measured differential cross section $\Delta\sigma(e^+e^-\rightarrow e^+e^-\text{hadrons})$

• Centre-of-mass energies:
 \[\sqrt{s} = 189 - 206 \text{ GeV} \]

• Tagging detector: Luminosity Monitors (LUMI)

• LUMI Q^2 range

 1998 (189 GeV): 11-34 GeV2
 1999 (194 GeV): 11-37 GeV2
 (200 GeV): 11-38 GeV2
 2000 (206 GeV): 11-40 GeV2

• Compare results with other experiments and theoretical predictions
Single-tag analysis of the $e^+e^-\rightarrow e^+e^-$ hadrons deep inelastic scattering reaction:

- One of the scattered electrons detected (tagged) in LUMI; second electron undetected (scattering angle small, $P^2 \approx 0$)
- Quasy-real target photon probed by the highly virtual photon ($Q^2 >> 0$)
Variables

\[q_i = (E_{\gamma_i}^*, \vec{p}_{\gamma_i}^*) \quad (i = 1, 2) \]
\[q_i^2 = E_{\gamma_i}^* - p_{\gamma_i}^2 \]

for single-tagged hadron production:

\[
\begin{aligned}
-q_1^2 &= Q_1^2 = Q^2 > 0 \\
-q_2^2 &= Q_2^2 \approx 0 = P^2
\end{aligned}
\]

mass squared of the outgoing interacting fermion:

\[
k^2 = (xq_2 + q_1)^2 = q_1^2 + 2xq_1 \cdot q_2 \approx 0
\]

\[
\Rightarrow \quad x = -\frac{q_1^2}{2q_1 \cdot q_2} = \frac{Q^2}{2q_1 \cdot q_2} \quad \text{x: Bjorken variable}
\]

Single-tag variables:

\[
Q^2 = -q^2 \approx 2E_{\text{tag}}E_{\text{beam}}(1 - \cos \theta_{\text{tag}})
\]

\[
x = \frac{Q^2}{(Q^2 + W^2 + P^2)} = \frac{Q^2}{2(p \cdot q)}
\]

\[
W = (q_1 + q_2)^2 = (E_{\gamma} + E_{\gamma})^2 - (\vec{q} + \vec{p})^2
\]

\[
q_1 \quad (E_{\gamma}^*, q), \quad q_2 = (E_{\gamma}, p)
\]

For single tagged events: \(P \neq 0 \)

\[
x = \frac{Q^2}{Q^2 + W^2}
\]
Goal: measure the cross section for the single-tagged $\gamma^*\gamma$ process to extract the photon structure function $F_2^\gamma (x, Q^2)$

\[
\frac{d\sigma_{e(k)\gamma^*(q)\rightarrow e_{\text{tag}}(k')X}(x, Q^2)}{dx\, dx\, Q^2} = \frac{2\pi \alpha^2}{x\, Q^4} [(1 + (1 - y)^2)] F_2^\gamma (x, Q^2) - y^2 F_L^\gamma (x, Q^2)
\]

\[
y = (p \cdot q)/(p \cdot K) \approx 1 - \left(\frac{E_{\text{tag}}}{E_{\text{beam}}}\right) \cdot \cos^2 (\theta_{\text{tag}}), y \approx 0
\]

Main Processes contributing to the $e^+e^- \rightarrow e^+e^-\gamma^*\gamma$

$\rightarrow e^+e^- + \text{hadrons cross section}$

VDM

Direct process (QPM)

Single Resolved
Analysis Method

1. Selection
2. Binning
3. Unfolding

 Energy of the target photon is not known: correction with MC (PYTHIA, PHOJET, TWOGAM)
 BAYES unfolding method

4. Calculate measured cross section

 \[
 \frac{N_{\text{unfolded}} - N_{\text{background}}}{L \cdot \text{acceptance} \cdot \text{trigger efficiency}}
 \]

5. Divide measured cross section with analytically calculated cross section
 [Galuga] to obtain $F_{2\gamma}$

Error calculation

Statistical error (absolute)
Systematic error: difference between the results obtained with PHOJET, PYTHIA and TWOGAM (systematical error from data selection and unfolding is negligible compared to the systematical error obtained from the unfolding with MC’s)
Total error: quadratic sum of the statistical and systematic error

M.N.Kienzle-Focacci

L3-General Meeting, Nov.17, 2003
Selections

1. LUMI tag
 at least one cluster in LUMI with

 • Polar angle
 \[0.0325 \text{ (rad)} \leq \theta \leq 0.0637 \text{ (rad)} \]

 • Energy of the cluster reconstructed as an electromagnetic shower
 \[E_{\text{clus}} > 0.7 E_{\text{beam}} \]

 • Raw energy of the cluster
 \[E_{\text{raw}} > 0.8 E_{\text{clus}} \]

2. Hadrons in final state
 number of tracks in TEC and photons in ECAL
 \[N_{\text{tracks}} + N_{\gamma} \geq 6 \]

3. Reject \(e^+ e^- \rightarrow q\bar{q}\gamma \) background
 \[E_{\text{ECAL+HCAL}} < 0.4\sqrt{s} \]

4. Anti-tag
 for clusters in LUMI opposite to the tag
 \[E_{\text{clus}}^{\text{opp}} < 0.45 E_{\text{beam}} \]

5. Exclude low masses
 \[W_{\text{vis}} \geq 5 \text{ GeV} \]
Data sets and Monte Carlo

<table>
<thead>
<tr>
<th></th>
<th>E(_{\text{beam}})(GeV)</th>
<th>L(pb(^{-1}))</th>
<th>N(_{\text{selected}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>94.3</td>
<td>171.8</td>
<td>6628</td>
</tr>
<tr>
<td>1999a</td>
<td>97.3</td>
<td>111.4</td>
<td>4220</td>
</tr>
<tr>
<td>1999b</td>
<td>100.0</td>
<td>90.1</td>
<td>3095</td>
</tr>
<tr>
<td>2000</td>
<td>103.1</td>
<td>210.5</td>
<td>7990</td>
</tr>
</tbody>
</table>

Monte Carlo			
PHOJET	94.5	2807.4	54073
	97.8	1817.4	33603
	99.8	1818.1	33341
	102.0	1754.3	33380
PYTHIA	94.5	318.2	21223
	98.7	456.4	26169
	103	453.3	28570
TWOGAM	94.5	5489.1	81127
(QCD+QPM+VDM)	97.8	4264.4	61265
	99.8	4390.4	62067
	102.0	5298.5	73949

Background MC			
\(\gamma^*\gamma^*\rightarrow\tau\tau\)	94.5	1022.7	1057
	98.0	224.7	211
	102	1100.0	1148
\(Z\gamma\rightarrow qq\gamma\)	94.3	1960.7	381
	97.8	1123.5	200
	99.8	1141.5	210
	103.3	11318.4	396
SELECTIONS: CUT 2–5 for 1998

![Graphs showing distributions of events with different cuts.](image-url)
Ratio data and MC for Q^2, YEAR 1998

- Compare data and Pythia
- MC norm. to nr. of data events

- Compare data and PHOJET

- Compare data and TOWGAM
Ratio data and MC for W_{vis} selected, YEAR 1998

MC norm. to nr. of data events

compare data and pythia

compare data and phojet

compare data and twogam
Ratio data and MC for x_{vis} selected, YEAR 1998

- **Data vs. Pythia**
 - Compare data and pythia
 - MC norm. to nr. of data events

- **Data vs. PHOJET**
 - Compare data and PHOJET

- **Data vs. TwoGOM**
 - Compare data and TwoGOM

x_{vis} selected
Binning

For the x dependence of $\Delta \sigma / \Delta x$, and F_2^γ / α:

<table>
<thead>
<tr>
<th>Nr. x bins</th>
<th>Δx</th>
<th>$<x>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01 - 0.035</td>
<td>0.022</td>
</tr>
<tr>
<td>2</td>
<td>0.035 - 0.060</td>
<td>0.047</td>
</tr>
<tr>
<td>3</td>
<td>0.060 - 0.085</td>
<td>0.071</td>
</tr>
<tr>
<td>4</td>
<td>0.085 - 0.110</td>
<td>0.097</td>
</tr>
<tr>
<td>5</td>
<td>0.110 - 0.160</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>0.160 - 0.210</td>
<td>0.18</td>
</tr>
<tr>
<td>7</td>
<td>0.210 - 0.260</td>
<td>0.23</td>
</tr>
<tr>
<td>8</td>
<td>0.260 - 0.310</td>
<td>0.28</td>
</tr>
<tr>
<td>9</td>
<td>0.310 - 0.385</td>
<td>0.34</td>
</tr>
<tr>
<td>10</td>
<td>0.385 - 0.510</td>
<td>0.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr. Q^2 bins</th>
<th>$\Delta Q^2 [\text{GeV}^2]$</th>
<th>$<Q^2> [\text{GeV}^2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-14</td>
<td>12.4</td>
</tr>
<tr>
<td>2</td>
<td>14-20</td>
<td>16.6</td>
</tr>
<tr>
<td>3</td>
<td>20-28</td>
<td>23.6</td>
</tr>
<tr>
<td>4</td>
<td>28-34</td>
<td>30.8</td>
</tr>
</tbody>
</table>

$\Delta Q^2 [\text{GeV}^2]$ | $<Q^2^2> [\text{GeV}^2]$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.01</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

For the Q^2 dependence of $\Delta \sigma / \Delta Q^2$ (*), and F_2^γ / α:

<table>
<thead>
<tr>
<th>Nr. x Bins</th>
<th>Δx</th>
<th>$<x>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01-0.1</td>
<td>0.050</td>
</tr>
<tr>
<td>2</td>
<td>0.1-0.2</td>
<td>0.144</td>
</tr>
<tr>
<td>3</td>
<td>0.2-0.3</td>
<td>0.248</td>
</tr>
<tr>
<td>4</td>
<td>0.3-0.5</td>
<td>0.322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr. Q^2 bins</th>
<th>$\Delta Q^2 [\text{GeV}^2]$</th>
<th>$<Q^2> [\text{GeV}^2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-14</td>
<td>12.4</td>
</tr>
<tr>
<td>2</td>
<td>14-20</td>
<td>16.6</td>
</tr>
<tr>
<td>3</td>
<td>20-34</td>
<td>23.6</td>
</tr>
</tbody>
</table>

* under investigation
PHOJET 1998, $Q^2 = 11 - 34 \text{ GeV}^2$, before unfolding
PYTHIA 1998, $Q^2 = 11-34$ GeV2, before unfolding

Graphs showing X_{VIS} vs X_{GEN}, \sqrt{s} vs W_{GEN}, Q^2_{VIS} vs Q^2_{GEN}, and \sqrt{s} vs W_{GEN}.
TWOCHAM QPM 1998, $Q^2 = 11 - 34 \text{ GeV}^2$, before unfolding
compare xvis, unfolded, and final corrected data, Wcut 5 GeV, 1998
Acceptance = $N_{\text{GEN accepted}} / N_{\text{GEN}}$, Wcut 5 GeV, 1998

PYTHIA

PHOJET

TWOGAM
x dependence of $\Delta \sigma/\Delta x$, YEAR 1998

L3 189 GeV

- data (Phojet)
- data (Pythia)
- data (Twogam)

with stat. error

L3 189 GeV

- data (Phojet)
- data (Pythia)
- data (Twogam)

with sys. error
x dependence of $\Delta \sigma/\Delta x$, YEARS 1998–2000

L3 (Phojet)

- data 189 GeV
- data 194 GeV
- data 200 GeV
- data 206 GeV

with stat. error

L3 (Phojet)

- data 189 GeV
- data 194 GeV
- data 200 GeV
- data 206 GeV

with sys. error
Measurement of F_2^γ using GALUGA

(Version 2.0, Author: G.A. Schuler, CERN)

GALUGA calculates total e^+e^- cross section integrated over

$$W_{\text{min}} < W < W_{\text{max}} \quad \text{and} \quad Q^2_{\text{min}} < Q^2 < Q^2_{\text{max}}$$

model: ρ-pole (Regge theory)

Reaction:

$$e^+(p_a) + e^-(p_b) \rightarrow e^+(p_1) + X(p_X) + e^-(p_2)$$

The two photon process:

$$\gamma(q_1) + \gamma(q_2) \rightarrow X(p_X)$$

The $\gamma\gamma$ c.m. energy:

$$W^2 = p_X^2$$

The photon virtualities:

$$-Q_1^2 = t_1 = q_1^2 \equiv (p_a - p_1)^2$$

$$-Q_2^2 = t_2 = q_2^2 \equiv (p_b - p_2)^2$$

_Total cross section:

$$\sigma_{ab}(W^2, Q_1^2) = h_a(Q_1^2) h_b(Q_2^2) \sigma_{\gamma\gamma}(W^2)$$

_for ρ-pole:

$$\sigma_{\gamma\gamma} = 1$$

for real photon:

$$h_a(Q^2) = \left(\frac{m_\rho^2}{m_\rho^2 + Q^2} \right)^2$$

for virtual photon:

$$h_b(Q^2) = \frac{\xi Q^2}{m_\rho^2} \left(\frac{m_\rho^2}{m_\rho^2 + Q^2} \right)^2$$

Obtain F_2^γ/α:

$$F_2^\gamma / \alpha = \frac{\Delta \sigma_{\text{meas}}(e^+e^- \rightarrow e^+e^- X)}{\Delta \sigma_{\text{Galu}}(e^+e^- \rightarrow e^+e^- X)}$$
Integration limits (x dependence):

<table>
<thead>
<tr>
<th>YEAR</th>
<th>W_{min} [GeV]</th>
<th>W_{max} [GeV]</th>
<th>Q^2_{min} [GeV2]</th>
<th>Q^2_{max} [GeV2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>5</td>
<td>189</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>1999a</td>
<td>5</td>
<td>194</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>1999b</td>
<td>5</td>
<td>200</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>2000</td>
<td>5</td>
<td>206</td>
<td>11</td>
<td>34</td>
</tr>
</tbody>
</table>

Integration limits (Q^2 dependence):

<table>
<thead>
<tr>
<th>YEAR</th>
<th>W_{min} [GeV]</th>
<th>W_{max} [GeV]</th>
<th>Q^2_{min} [GeV2]</th>
<th>Q^2_{max} [GeV2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>5</td>
<td>189</td>
<td>11 14</td>
<td>14 20</td>
</tr>
<tr>
<td>1999a</td>
<td>5</td>
<td>194</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1999b</td>
<td>5</td>
<td>200</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2000</td>
<td>5</td>
<td>206</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* to be analyzed
x dependence of $F_2(x,\langle Q^2 \rangle)/\alpha$, YEAR 1998

- Red circle: L3 data (PHOJET) 189 GeV, $\langle Q^2 \rangle = 18.4$ GeV2, stat. err.
- Green square: L3 data (PYTHIA)
- Blue triangle: L3 data (TWOQAM)
x dependence of $F_2^7(x, <Q^2>/\alpha$). YEARS: 1998–2000

- L3 (PHOJET) 189 GeV, $<Q^2>=18.23$ GeV², stat.err
- L3 (PHOJET) 194 GeV, $<Q^2>=18.47$ GeV²
- L3 (PHOJET) 200 GeV, $<Q^2>=18.41$ GeV²
- L3 (PHOJET) 206 GeV, $<Q^2>=18.63$ GeV²
Q^2 dependence of F_2^γ/α. YEAR 1998

For $x=0.01-0.1$

- L3 (PHOJET) 189 GeV, $\langle Q^2 \rangle = 12.44, 16.75, 25.30$ GeV2, stat. error
- L3 (PHOJET) 183 GeV

For $x=0.1-0.2$

For $x=0.2-0.3$

For $x=0.3-0.5$
Q^2 dependence of F_2^γ/α. YEAR 1998

$x=0.01-0.1$

- L3 (PHOJET) 189 GeV, $<Q^2> = 12.44, 16.75, 25.30$ GeV2, sys. error
- L3 (PHOJET) 183 GeV

$x=0.1-0.2$

$x=0.2-0.3$

$x=0.3-0.5$
Conclusions and outlook

- Used Binning similar to other measurements by L3, OPAL, ALEPH experiments.
- Used unfolding to correct for detector effects and acceptance. Data unfolded with PYTHIA, PHOJET, and TWOGAM: good agreement.
- Calculated measured cross section and analyzed x dependence. Q^2 dependence: under investigation.
- Obtain F_{2\gamma}/\alpha using GALUGA. Evolution of F_{2\gamma}/\alpha with x analyzed and compared to ALEPH and OPAL: good agreement.
- Evolution of F_{2\gamma}/\alpha with Q^2 analyzed and compared to L3 (183 GeV) measurements: good agreement. The x range 0.1-0.6 should be included to be able to compare to other experiments: OPAL, ALEPH.
- Decide how to calculate systematic error (consider error from MODEL separately?)
- Comparison with different parameterizations not decided yet