Preliminary results from the Muon Tomography Station (MTS) prototype

Kondo Gnanvo, Florida Tech. (Melbourne, Fl.)

Principle of Muon Tomography with cosmic ray muons

• to 1 order produces Gaussian distribution of scattering angles θ with width $\sigma = \theta 0$:

Triple GEMs, FE cards & DAQ system

8 triple 30 cm x 30 cm GEM detectors

- Built and tested at CERN GDD lab, 1 bad detector, (do not hold HV test)
- 2 more to be built this year at Florida Tech

- 8 Gassiplex FE cards From Saclay
- Adapters cards -
 - Adapt 96 gassiplex chan. to 128 GEM strips
 - Single/double strips & left/right cards

DAQ hardware and software

- 4 CAEN CRAMS V550 & 1 V551,
- VME crate from CERN e-pool
- Trigger with 2 PMT scintillators
- Labview DAQ software

Tests & debugging

Muon Tomography Station (MTS) prototype

Top scintillator/PMT for the trigger

Two top station GEMs

Pb target on its support plat

Gassiplex FE cards

Two bottom station GEMs

DAQ System

April 23, 2010

Cosmic data run with targets inside the MTS

We need 3 days to collect ~ 3K events because:

- Only 50 mm x 50 mm active area per GEM detector
 - Because we have only 8 Gassiplex FE cards
- 94.5 mm gap between the detectors
 - Mechanical constraints by the Gassiplex cards
- Acceptance volume of the MTS
 - defined by the distance between 40 cm the trigger scintillators/PMT
- About 40% are rejected for the reconstruction
 - Multi hits events
 - Missing hit in one of the 8 FE cards after pedestal subtraction

Very first results with cosmic run of the MTS

Typical good event for MTS

• Online raw data

readEventFromConcatFilesEightGassiplex.vi Front Panel * File Edit View Project Operate Tools Window Help

Page 1 Event position X Strip cluster Y-Strips cluster

-25 -20 -10 0 10 20 25

x-coordinate (mm)

y-coordinate (mm)

Hit strip cluster on GEM1

Hit strip cluster on GEM1

3500 -

3000-

-e 2500-

분 2000 -

¥ 1500-

1000 -

500

500

450 -

400 -

35

2 250

300

수 🐼 🍥 💵 13pt Application Font 🛛 🚛 🐨 🕮 🗸 🦚

• Offline pedestal suppression

EvNb 7

3000 -

2500

₫ 2000-

읍 1500 -

1000 -

500 -

250

225 -

200-

D 175-

2 150-

125-

₹ 100-75-

25

-25 -20

24.3375

-25 -20

Hit strip cluster on GEM2

Hit strip cluster on GEM2

-10 0 10

x-coordinate (mm)

y-coordinate (mm)

20 25

110

10

24.3375

April 23, 2010

Basic scattering point reconstruction for muon tomography

- Simple reconstruction algorithm using Point of Closest Approach ("POCA") of incoming and exiting 3-D tracks
- Treat as single scatter
- Scattering angle:

$$\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|a||b|}\right)$$

(with $\theta > 0$ by definition)

Reconstruction of targets in the MTS

Projection on XZ plane

K. Gnanvo, RD51-WG1 large MPGD Meeting

Projection in YZ plane

Next on GEM-based MTS !!!

Full readout of all 30 cm x 30 cm of our triple GEMs

• We are actively participating in the Scalable Readout System with RD51/WG5

http://rd51-public.web.cern.ch/RD51-Public/Activities/Documents/WG5SRS.pdf

Build the first 1m x 1m triple GEM detector as a unit for a large MTS