2010 Florida Academy of Sciences Indian River State College, Fort Pierce, Florida

Monte Carlo simulations of a first prototype micropattern gas detector system used for muon tomography

J. B. Locke, K. Gnanvo, and M. Hohlmann

Florida Institute of Technology Melbourne, Florida

FIT High Energy Physics (FIT HEP) Research Group http://research.fit.edu/

Pictures from the FIT HEP archives †, Florida Institute of Technology ‡, and the US Census Bureau ‡†.

High Energy Physics Research at FIT

CMS at LHC Experiment Search for the Z' Boson

z:y:x:parameter

Muon Tomography Simulation

Quarknet

Particle Detector Construction

Open Science Grid Computing Cluster

Pictures from the FIT HEP archives.

What are Muons?

- Elementary particles, particularly leptons.
- Symbols:
 - Muon = μ^{-}
 - Antimuon = μ^+
- Similar to electrons, but 200 times more massive:
 - Muon mass = 0.106 GeV/c^2
 - Electron mass = 0.000501 GeV/c^2
 - Muon charge = -1 e
- Interact weakly electromagnetically with matter.

Picture of Earth from NASA Goddard Space Flight Center.

Important Numbers

• Average muon energy (sea level): 4 GeV

• Most probable muon energy (sea level): 1 GeV

• Muon flux at sea level: 10,000 muons/m²/min

Micropattern Gas Electron Multiplier (GEM) Detector

- Cost and space efficient.
- High resolution.

Triple GEMs

XY Readout Plane

GEM Detector Operation

Muon Tomography Applications

• Investigate trucks with the drivers inside.

 Locate high-Z contraband (Uranium, Plutonium, etc.), even if shielded.

 Possible medical applications when technology significantly improves.

GEANT4 Monte Carlo Simulations

Prototype Muon Tomography System

30x30 cm² **GEM Detectors** (Only 5x5 cm² Used) 3x3x2 cm³ Pb Block Target Support **GEM Detectors**

First Results from the Prototype MTS

Muon and x-ray counts

Detector gain from x-ray source

Tomography data still being analyzed.

Pb Box Target Simulation Results

24 hours exposure to natural muon flux. Scattering angles less than 0.12° are cut from the data.

Pb Box Target Simulation Results

5 mm ≤ z ≤ 15 mm

Pb Box Target Simulation Results $75 \text{ mm} \le z \le 85 \text{ mm}$ $-85 \text{ mm} \le z \le -75 \text{ mm}$

(far above target)

-85 mm $\leq z \leq$ -75 mm (far below target)

Current and Future Work

- Analyze data from the GEM detector system prototype.
- Construct a GEM detector system with a more efficient geometry and 8 to 12 detectors.
- Continue Monte Carlo simulations for various GEM detector system geometries.

Pb Box Simulation Results 24 hours exposure to natural muon flux. No points are cut from the data.

"Empty" Detector Simulation Results

24 hours exposure to natural muon flux.

No points are cut from the data.

Pb Box Simulation Results

$-5 \text{ mm} \le z \le 5 \text{ mm}$

Picture from the FIT HEP archives.