Muon Tomography with compact
Gas Electron Multiplier Detectors

Dec. Sci. Muon Summit - April 22, 2010

Marcus Hohlmann, P.I.
Florida Institute of Technology, Melbourne, FL

- Concepts
- Gas Electron Multipliers
- GEM detector basics
- GEANT4 Simulation
- Comparison: Drift Tube Detector vs. GEM Detector
- Hardware Development
- Minimal GEM Muon Tomography Station
- GEM performance
- First muon tomography result
- Development of next prototype
- Design
- Electronics and DAQ

Concepts

Concept: MT with MPGDs

ADVANTAGES:

\square small detector structure allows compact, low-mass MT station:

- thin detector layers
- small gaps between layers
- low mult. scattering in detector itself
\square high MPGD spatial resolution ($\sim 50 \mu \mathrm{~m}$)
- provides good scattering angle measurement with short tracks
high tracking efficiency

CHALLENGES:

\square need to develop large-area MPGDs
large number of electronic readout channels

Gas Electron Multiplier Detectors

Use Micro Pattern Gaseous Detectors for tracking muons:

GEM - Electric Field Map

Florida

Advantages:

Developed for High Energy Physics

Drift
Cathode

GEM

GEM

GEM

Readout PCB

Total Gain: up to 10^{5}

Simulation results

Monte Carlo Simulation

- Generate cosmic ray muons with CRY package (Lawrence Livermore National Lab)
- Use GEANT4 to simulate station geometries, detectors, targets, interaction of muons with all materials, and tracks
\rightarrow Take advantage of detailed description of multiple scattering effects within GEANT4 (follows Lewis theory of multiple scattering)
- Simulate Drift tube MT station (using ~DS/LANL design) and GEM MT station, reconstruct muon scattering, and compare performances

Detector Geometries

Drift Tube Detector
Typical Tube Diameter $=5 \mathrm{~cm}$
GEM Detector
Typical Thickness $=1 \mathrm{~cm}$

Volume Coverage

Florida
Top \& Bottom Detectors only - no side detectors

Top, Bottom \& Side Detectors

4/22/2010
M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

DS/LANL: Drift Tube Station

Acceptance Comparison

DT station

GEM station
No. of muons in $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ voxel in 10 min

- Require ≥ 3 hits in DT or GEM station to accept muon
- Reduced DT acceptance is mainly due to "holes" in solid angle coverage in the corners of the DT station

Acceptance Ratio
$\frac{\text { GEM accept. }}{\text { DT accept. }}$

=> GEM MT station provides $50-100 \%$ better muon acceptance over the interrogated vehicle

Angular resolution

Expected angular resolutions:

- Compare polar angle θ of reconstructed muon tracks with "true" muon track angle from Monte Carlo at exit of tracking station:
track fit

$\Delta \theta=\theta_{\text {MC-truth }}-\theta_{\text {reconstr. }}$

$\Delta \theta_{\text {polar }}$ for
Drift Tubes with 3 Detector Layers, $400 \mu \mathrm{~m}$ Resolution, 270 mm Gap GEMs with 4 Detector Layers, $50 \mu \mathrm{~m}$ Resolution, 150 mm Gap

Simple Scattering Reconstruction

- Simple reconstruction algorithm using Point of Closest Approach ("POCA") of incoming and exiting 3-D tracks
- Treat as single scatter
- Scattering angle:

$$
\theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|a||b|}\right)
$$

(with $\theta>0$ by definition)

Simple Statistic for Z-discrimination: Mean Scattering Angles

Simple MC Scenario for GEM station

- Top, bottom \& side detectors
$\cdot 40 \mathrm{~cm} \times 40 \mathrm{~cm} \times 10 \mathrm{~cm}$ targets
- 5 materials (low-Z to high-Z)
- Divide volume into 1 -liter voxels
- 10 min exposure

Results:

- Scattering angles 20-100 mrad; >> angular resolution (few mrad)
- Good Z discrimination
- Targets well imaged
- Detector resolution matters
perfect resolution

Significance of Excess

- 10 min exposure
- Compare targets against Fe background using Fe ref. samples w/ high statistics
- Significance for all voxels with an excess at $\geq 99 \%$ confidence level over Fe standard:

$$
\operatorname{Sig}=\frac{\bar{\Theta}_{\mathrm{voxel}}-\bar{\Theta}_{\mathrm{Fe}}}{\sigma_{\bar{\Theta}_{\mathrm{voxel}}}}
$$

perfect resolution

100 micron resolution

200 micron resolution

Significance of Excess

- 1 min exposure
- Significance for all voxels with an excess at $\geq 99 \%$ confidence level over Fe standard
- Doing ok with $50 \mu \mathrm{~m}$ resolution

	perf	res		
$\mathrm{y}(\mathrm{mm}) \quad$ Sig				Sig
2,000	W			8
1,500	N			7
1,000	\square		12	6
500				5
0				4
-500		P		3
-1,000				2
-1,500				1
$\begin{array}{r} -2,000 \\ -2,000 \end{array}$	-1,000	0	1,000	2,000 0
		x (m		

- With 200 micron resolution we are losing some sensitivity

GEANT4 model of cargo van

Target cubes (1 liter)

Target Detection

[^0]M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

MT performance with shielding

Conclusion from simulation

Muon Tomography with GEM detectors could very well improve performance while making the MT station compact...

=> Develop some GEM hardware for Muon Tomography!

Hardware Development

Overall Hardware Strategy

- Build first prototype of GEM-based Muon Tomography station \& evaluate performance (using ten $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ GEM det.)
- Detectors
- Mechanics
- Readout Electronics
- HV \& Gas supply
- Data Acquisition \& Analysis
- Develop large-area Triple-GEMs together with RD51
- Build $1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$ GEM Muon Tomography prototype station
- Measure performance on shielded targets with both prototypes

2009/10 Strategy

Security

Two-pronged approach:

1. Build minimal first GEM-based Muon Tomography station:

- four Triple-GEM detectors (two at top and two at bottom)
- temporary electronics ($\sim 800 \mathrm{ch}$.)
- minimal coverage (read out $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ area per detector)
- preliminary data acquisition system
- Objectives:
- take real data as soon as possible and analyze it
- demonstrate that GEM detectors work as anticipated for cosmic ray muons
- $\quad \rightarrow$ produce very first experimental proof-of-concept

2. Simultaneously prepare the $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ MT prototype:

- Top, bottom, and side detectors (10 detectors)
- Mechanical stand with flexible geometry, e.g. variable gaps b/w detectors
- Fully instrumented front-end electronics (15,000 ch.) with RD51 coll.
- Final data acquisition with RD51 \& analysis

Hardware Progress

- Detector Assembly:
- Seven 30cm $\times 30 \mathrm{~cm}$ Triple-GEM detectors assembled in CERN clean rooms
- One $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ Double-GEM detector assembled in CERN clean rooms
- Tested triple-GEM detectors with X-rays and cosmic ray muons with respect to basic performance parameters:
- HV stability (sparks?)
- Gas gain
- HV plateau
- Rate capability
- झ> Six Triple-GEM detectors at CERN show good and stable performance
- One Triple-GEM detector has bad HV section; to be fixed later
- Built minimal prototype station for Muon Tomography; currently operating at CERN
- Used GASSIPLEX frontend r/o cards electronics with ~800 readout channels for two tests
- Designed and produced circuit board for interfacing detector r/o board ($x-y$ strips) with preliminary "GASSIPLEX" frontend electronics
- Developed DAQ system for first prototype tests - lots of debugging work
- Developed GEANT4 simulation for minimal and $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ MT prototype stations
- Operating also $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ Triple-GEM detectors at Fl. Tech

Triple-GEM design

Follows original development for COMPASS exp. at CERN \& further development for a proton therapy application (TERA)

Detector Production

Spacers \& Frames

Basic Detector Performance

Results from detailed commissioning test of Triple-GEM detector using 8 kV Cu X-ray source at CERN

lonization charge

Distribution of total strip cluster charge follows Landau distribution as expected

Setup of first cosmic ray muon run at CERN with four Triple-GEM detectors

Event Display: Tracking of a cosmic ray muon traversing minimal GEM MT station

Top 2
Bottom 1
Bottom 2

Strip Position [mm]

- Pulse heights on x-strips and y-strips recorded by all 4 GEM detectors using preliminary electronics and DAQ
- Pedestals are subtracted
- No target present; Data taken 4/13/2010

First Data: Strip Clusters

security

Sharing of deposited charge among adjacent strips will enable high spatial resolution by using the "center-of-gravity" of charge deposition when calculating the "hit" position:

=> Charge is shared between up to 5 strips

=> On the average, strip cluster is 3.2 strips wide $(\pm 1 \sigma)$

Minimal MTS with Pb target

Event recorded with Pb target present in center of minimal MTS:

First real GEM MT data

First attempt at reconstruction of muon scattering in high-Z target with Point-of-Closest-Approach (POCA) algorithm:
($3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm} \mathrm{~Pb}$ target)

Measured Scattering Angles

$30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ Prototype

APV25 readout chip

- originally developed for CMS Si-strip detector by ICL
- production in 2003/04
- yield of 120,000 good chip dies
- 128 channels/chip
- preamplifier/shaper with 50ns peaking time
- 192-slot buffer memory for each channel
- multiplexed analog output
- integrated test pulse system
- runs at 40 MHz
- used e.g. by CMS, COMPASS, ZEUS, STAR, Belle experiments

MOST IMPORTANT:

- Chip is available
- Cheap! (~\$20/chip)
- We need 120 chips for our ten $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ detectors.
- Have procured 160 chips

Front-end hybrid card

- 128 channels/hybrid

- Integrated diode protection against sparks in GEM detector
- Estimated cost: \$140/card
- Plan to get 160 cards
- 8 Prototype boards made at CERN

$30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ Prototype

Electronics \& DAQ under development (with engineering support from RD51 collaboration at CERN)

Est. cost per electronics channel: \$1-2

Prototypes of basically all components exist by now and are under test at CERN by RD51 electronics group

1. Run minimal station for few weeks

- Collect as much data as possible until early May 2010
- Measure performance: Resolution, efficiency
- POCA reconstruction for basic muon tomography on real data

2. Build \& operate $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ MT prototype

- Commission all GEM detectors with final electronics \& DAQ
- Get experimental performance results on muon tracking
- Take and analyze lots of Muon Tomography data
- Test performance with shielded targets in various configurations
- Ship prototype to Florida and install in our lab; continue MT tests there

3. Initial development of final $1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$ MT station

- Preparation of large-area GEM foils ($\sim 100 \mathrm{~cm} \times 50 \mathrm{~cm}$):

Adapt thermal stretching technique to large foils

- Try to simplify construction technique:

Build small Triple-GEM detectors without stretching GEM foils (using our standard CERN $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ detectors, going on now)

Future Plans

Large photosensitive GEM Detector (100-200 keV γ 's) ?
Radiation (γ, X-ray,

Muon Tomography

 with- charged particles)

Fl. Tech - U. Texas, Arlington planned joint effort (Physics \& Material Science Departments)

Thank you !

We thank

Decision Sciences

 for the opportunity to participate in the Muon Summit!Backup Slides

Scattering Angle Distributions

perfect resolution

GEM station
50 micron resolution high-statistics MC samples

$$
100 \text { micron resolution }
$$

Advanced Reconstruction Algorithm

Reproducing Los Alamos Expectation Maximization (EM) algorithm

- Input: Use lateral shift $\Delta \mathrm{x}_{\mathrm{i}}$ in multiple scattering in addition to information from scattering angle θ_{i} for each muon track

Multiple Coulomb Scattering

- Procedure:
- Maximize log-likelihood for assignment of scattering densities to all voxels given all observed muon tracks
- Analytical derivation leads to iterative formula for incrementally updating λ_{k} values in each iteration
- Output: Scattering density λ_{i} for each voxel of the probed volume

EM Result for Van Scenario

[^0]: $4 / 22 / 2010$

