

Muon Tomography with compact Gas Electron Multiplier Detectors

Dec. Sci. Muon Summit - April 22, 2010

Marcus Hohlmann, P.I. Florida Institute of Technology, Melbourne, FL

Outline

Concepts

- Gas Electron Multipliers
- GEM detector basics

GEANT4 Simulation

- Comparison: Drift Tube Detector vs. GEM Detector

Hardware Development

- Minimal GEM Muon Tomography Station
 - GEM performance
 - First muon tomography result
- Development of next prototype
 - Design
 - Electronics and DAQ

Concepts

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

3

Concept: MT with MPGDs

Use Micro Pattern Gaseous Detectors for tracking muons:

ADVANTAGES:

- small detector structure allows compact, low-mass MT station:
 - thin detector layers
 - small gaps between layers
 - · low mult. scattering in detector itself
- \Box high MPGD spatial resolution (~50µm) provides good scattering angle measurement with short tracks
- high tracking efficiency

CHALLENGES:

- need to develop large-area MPGDs
- □ large number of electronic readout channels

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

Electronics

GEM - Electric Field Map

Typical Dimensions:

4/22/2010

GEM Detector

Developed for High Energy Physics

X-COORDINATE

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

(w/ 400 µm pitch)

Triple-GEM Detector

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

Florida Tech

Simulation results

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

8

- Generate cosmic ray muons with CRY package (Lawrence Livermore National Lab)
- Use GEANT4 to simulate station geometries, detectors, targets, interaction of muons with all materials, and tracks
 - →Take advantage of detailed description of multiple scattering effects within GEANT4 (follows Lewis theory of multiple scattering)
- Simulate Drift tube MT station (using ~DS/LANL design) and GEM MT station, reconstruct muon scattering, and compare performances

Readout Wire

Volume Coverage

Top & Bottom Detectors only – no side detectors

Top, Bottom & Side Detectors

-1000

-1500

-2000

-1500

-1000

-500

0

500

1000

1500

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

0.2

0.1

0

2000

X [mm]

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

Acceptance Comparison

2000 -4000

Homeland

Security

Require ≥ 3 hits in DT or GEM station to accept muon

Florida

 Reduced DT acceptance is mainly due to "holes" in solid angle coverage in the corners of the DT station

=> GEM MT station provides 50-100% better muon acceptance over the interrogated vehicle

Angular resolution

 $\Delta \theta_{\text{polar}}$ for Drift Tubes with 3 Detector Layers, 400µm Resolution, 270mm Gap

Expected angular resolutions: GEMs with 4 Detector Layers, 50µmResolution, 150mm Gap **Drift Tubes** Compare polar angle θ of reconstructed Entries: 41368 2.200 muon tracks with "true" muon track angle Sum of Weights: 55966 2,100-FWHM: 2 000 0.88 mrad from Monte Carlo at exit of tracking 1.900 Mean: 8.16E-3 1.800 mrad RMS: 3.23 mrad station: 1,700 1,600 Out of Range: 538 **GEMs** 1,500 2 1,400-0 **GEMs** 1.300 1.200 Ś Entries: 55966 Event 1.100 FWHM | FWHM: 0.52 mrad track fit 1.000 900 Mean: -4.03E-3 Number of 800-RMS: 2.10 mrad Dec. Sci. Drift Tubes 700-Out of Range: 244 600-500 400 300 Drift Tube 200 100 2.0 25 3.0 -4.0 -3.5 -3.0 1.5 $\Delta \theta_{\text{polar}}[\text{mrad}]$ θ 14.00 🧄 FWHM for $\Delta\theta$ for 3-6 GEM layers vs. layer separation $\Delta \theta$ 13.00 (for angle-dependent resolution) 12.00 3 Lavers 11.00 4 Lavers 10.00 Reconstructed 5 Lavers FWHM for Δθpolar [mrad] 9.00 muon direction 6 Layers 8.00 $\Delta \theta = \theta_{\text{MC-truth}} - \theta_{\text{reconstr.}}$ from fit Drift Tubes (400µm Resolution, 3 ubdetector Lavers, 270mm Gap) 7.00 **GEMs** 6.00 5.00 **True muon** 4.00 direction from MC 3.00 **Drift Tubes** 2.00 1.00 0.00

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

10

80 90

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

GEM Layer Separation [mm]

- Simple reconstruction algorithm using Point of Closest Approach ("POCA") of incoming and exiting 3-D tracks
- Treat as single scatter
- Scattering angle:

$$\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|a||b|}\right)$$

(with θ >0 by definition)

Simple Statistic for Z-discrimination: Mean Scattering Angles

Simple MC Scenario for GEM station perfect resolution 50 micron resolution • Top, bottom & side detectors $\overline{\Theta}$ [deg] Θ [deg] y (mm) y (mm) • 40cm × 40cm × 10cm targets 2,000 2,000 -9 W W • 5 materials (low-Z to high-Z) 8 1,500 1,500 7 1,000 1,000 4 Divide volume into 1-liter voxels Pb Pb 6 500 500 -5 -4 -3 -2 10 min exposure 0 Α Fe A -e -500 -500 -1,000 -1,000 -1,500 -1,500 -2.000 -2,000 -2,000-1,500-1,000 -500 -2,000-1,500-1,000 -500 500 1,000 1,500 2,000 500 1,000 1,500 2,000 0 0 x (mm) x (mm) **GEM** Targets results 100 micron resolution 200 micron resolution Θ [deg] Θ [deg] y (mm) y (mm) 2,000 2,000 10 10 W W 1,500 1,500 -8 2.4 1,000 1,000 -8 Pb Pb **Results:** 500 500 -6 -6 -1 0 Scattering angles 20-100 mrad; Fe Al A Fe -500 -4 -500 >> angular resolution (few mrad) -1,000 -1,000 -2 Good Z discrimination -1,500 -1,500 -2,000 -2,000

- Targets well imaged
- Detector resolution matters

Homeland Security

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

x (mm)

1,000

2,000

-2,000

-1.000

x (mm)

-2,000

-1,000

2,000

1,000

Significance of Excess

- 10 min exposure
- **Compare targets** against Fe background using Fe ref. samples w/ high statistics
- Significance for all voxels with an excess at \geq 99% confidence level over Fe standard:

y (mm)

2,000

1,500

1,000

500

-500

-1,000

-1,500

-2.000

4/22/2010

Significance of Excess

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

min <u>exposure</u>

- Significance for all voxels with an excess at \geq 99% confidence level over Fe standard
- Doing ok with 50µm resolution
- With 200 micron resolution we are losing some sensitivity

Target Detection

MT performance with shielding

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

Muon Tomography with GEM detectors could very well improve performance while making the MT station compact...

=> Develop some GEM hardware for Muon Tomography!

Hardware Development

4/22/2010

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

23

- Build first prototype of GEM-based Muon Tomography station & evaluate performance (using ten 30cm × 30cm GEM det.)
 - Detectors
 - Mechanics
 - Readout Electronics
 - HV & Gas supply
 - Data Acquisition & Analysis
- Develop large-area Triple-GEMs together with RD51
- Build 1m×1m×1m GEM Muon Tomography prototype station
- Measure performance on shielded targets with both prototypes

2009/10 Strategy

Two-pronged approach:

- **1. Build minimal** first GEM-based Muon Tomography station:
 - four Triple-GEM detectors (two at top and two at bottom)
 - temporary electronics (~ 800 ch.)
 - minimal coverage (read out 5cm × 5cm area per detector)
 - preliminary data acquisition system
 - Objectives:
 - take real data as soon as possible and analyze it
 - demonstrate that GEM detectors work as anticipated for cosmic ray muons
 - → produce very first experimental proof-of-concept
- 2. Simultaneously prepare the 30cm × 30cm × 30cm MT prototype:
 - Top, bottom, and side detectors (10 detectors)
 - Mechanical stand with flexible geometry, e.g. variable gaps b/w detectors
 - Fully instrumented front-end electronics (15,000 ch.) with RD51 coll.
 - Final data acquisition with RD51 & analysis

Hardware Progress

- Detector Assembly:
 - Seven 30cm × 30cm Triple-GEM detectors assembled in CERN clean rooms
 - **One** 30cm × 30cm Double-GEM detector assembled in CERN clean rooms
- Tested triple-GEM detectors with X-rays and cosmic ray muons with respect to basic performance parameters:
 - HV stability (sparks?)
 - Gas gain
 - HV plateau
 - Rate capability
- => Six Triple-GEM detectors at CERN show good and stable performance
- One Triple-GEM detector has bad HV section; to be fixed later
- Built minimal prototype station for Muon Tomography; currently operating at CERN
 - <u>Used GASSIPLEX frontend r/o cards electronics</u> with ~800 readout channels for two tests
 - Designed and produced <u>circuit board for interfacing</u> detector r/o board (x-y strips) with preliminary "GASSIPLEX" frontend electronics
 - Developed <u>DAQ system</u> for first prototype tests lots of debugging work
- Developed GEANT4 <u>simulation</u> for minimal and 30cm×30cm MT prototype stations
- Operating also 10cm × 10cm Triple-GEM detectors at FI. Tech

Triple-GEM design

Detector Production

4/22/2010

Triple-GEM Detector

4/22/2010

Basic Detector Performance

Results from detailed commissioning test of Triple-GEM detector using 8 kV Cu X-ray source at CERN

Homeland

Security

Ionization charge

Distribution of total strip cluster charge follows Landau distribution as expected

Minimal MT Station

Setup of first cosmic ray muon run at CERN with four Triple-GEM detectors

Event Display: Tracking of a cosmic ray muon traversing minimal GEM MT station

Strip Position [mm]

- Pulse heights on x-strips and y-strips recorded by all 4 GEM detectors using preliminary electronics and DAQ
- Pedestals are subtracted
- No target present; Data taken 4/13/2010

=> Charge is shared between up to 5 strips

=> On the average, strip cluster is 3.2 strips wide $(\pm 1\sigma)$

Event recorded with Pb target present in center of minimal MTS:

Homeland Security First real GEM MT data

First attempt at reconstruction of muon scattering in high-Z target with Point-of-Closest-Approach (POCA) algorithm: (3cm × 3cm × 2cm Pb target)

4/22/2010

Measured Scattering Angles

M. Hohlmann, Florida Institute of Technology - DSC Muon Summit, San Diego

30cm×30cm×30cm Prototype

Planned Geometry & Mechanical Station Design:

4/22/2010

30cm×30cm×30cm Prototype

APV25 readout chip

- originally developed for CMS Si-strip detector by ICL
- production in 2003/04
- yield of 120,000 good chip dies
- 128 channels/chip
- preamplifier/shaper with 50ns peaking time
- 192-slot buffer memory for each channel
- multiplexed analog output
- integrated test pulse system
- runs at 40 MHz
- used e.g. by CMS, COMPASS, ZEUS, STAR, Belle experiments

MOST IMPORTANT:

- Chip is available
- Cheap! (~\$20/chip)
- We need 120 chips for our ten 30cm × 30cm detectors.
 Have procured 160 chips

4/22/2010

Front-end hybrid card

- 128 channels/hybrid
- Integrated diode protection against sparks in GEM detector
- Estimated cost: \$140/card
- Plan to get 160 cards
- 8 Prototype boards made at CERN

Electronics & DAQ under development (with engineering support from RD51 collaboration at CERN)

Est. cost per electronics channel: \$1-2

Plans for 2010

- 1. Run minimal station for few weeks
 - Collect as much data as possible until early May 2010
 - Measure performance: Resolution, efficiency
 - POCA reconstruction for basic muon tomography on real data

2. Build & operate 30cm × 30cm × 30cm MT prototype

- Commission all GEM detectors with final electronics & DAQ
- Get experimental performance results on muon tracking
- Take and analyze lots of Muon Tomography data
- Test performance with shielded targets in various configurations
- Ship prototype to Florida and install in our lab; continue MT tests there

3. Initial development of final $1m \times 1m \times 1m$ MT station

- Preparation of large-area GEM foils (~100cm × 50cm): Adapt thermal stretching technique to large foils
- Try to simplify construction technique: Build small Triple-GEM detectors without stretching GEM foils (using our standard CERN 10cm × 10cm detectors, going on now)

Future Plans

Fl. Tech – U. Texas, Arlington planned joint effort (Physics & Material Science Departments)

4/22/2010

We thank **Decision Sciences** for the opportunity to participate in the **Muon Summit!**

Backup Slides

4/22/2010

Scattering Angle Distributions

Homeland

Security

Reproducing Los Alamos Expectation Maximization (EM) algorithm

• Input: Use lateral shift $\Delta x_{\underline{i}}$ in multiple scattering in addition to information from scattering angle $\theta_{\underline{i}}$ for each muon track

• Procedure:

- Maximize log-likelihood for assignment of scattering densities to all voxels given all observed muon tracks
- Analytical derivation leads to iterative formula for incrementally updating λ_k values in each iteration
- **Output**: Scattering density λ_i for each voxel of the probed volume

4/22/2010

EM Result for Van Scenario

Homeland

Security