Prototypes For Particle Detectors Employing Gas Electron Multiplier

J. Slanker, G. Karagiorgi, F. Plentinger, K. Dehmelt, M. Hohlmann, L. Caraway

Florida Institute of Technology
Physics and Space Science
GEM Foils

GEM (Gas Electron Multiplier)

- 3M Worldwide
- copper coated Kapton foil
- 60 µm holes - 140 µm apart
- 1 in. active area

Typical dimensions:

\[D = 70 \mu \text{m} \]
\[d = 60 \mu \text{m} \]
\[p = 140 \mu \text{m} \]

Gas Electron Multiplier [F. Sauli, NIM A386, 531 (1997)]
GEM Foils

- Potential Difference across each GEM foil (300 V – 500 V)

- High energy particles ionize the gas inside the detector which drift to the GEM foil

- Electric field through the holes causes the electrons to cascade
Single GEM Detector

- All materials must have Negligible Out-Gassing

Drift Plane – Copper Coated G10 PC Board
Spacers – PeeK (Poly Ether Ether Ketone)

Florida Tech Single GEM Version 1.0
Single GEM Detector

Setup
- 9mm thick Plexiglas box
 50x50x10 cm
- Stainless Steel Tubing
- Swagelok stainless steel fittings
- 70:30 Ar/CO$_2$ Gas environment

Initial GEM conditions
- 2.5 kV total bias
- 400 V potential difference across the GEM foil

Observations
- Large, irregular pulses found (Cosmic Rays or Discharge)
- Frequency increased over time
- No pulse change with source
- Disassembled detector found damage near solder points
Single GEM Detector

Modifications

- BNC for signal output
- 500 V Potential Difference across GEM
- Hole drilled through Drift Plane covered with Mylar foil

Single GEM Electric Fields

- Electric Fields within Drift Gaps changed to match recommendations of F. Sauli, CERN
Single GEM Detector

Signal from Florida Tech Single Gem

- Acquired using National Instruments fast oscilloscope card
- Count rate consistent with Cosmic Ray muon flux
- However, no noticeable count rate change when using Fe55 source
- Most likely still sparking within in the GEM detector
Triple GEM Detector

- Design and Fabrication began as soon as the single GEM was complete.
- Learning from old mistakes and using new ideas.
- Pressed brass rings on either side of the GEM foil to apply High Voltage.
- Makes the detector more gas tight.
- Prevents damage from soldering iron and sparking due to solder points.
Triple GEM Detector

Top Assembly
Future Plans

- assemble
- use Fe55 source to find pulse height spectra
- compare our detector performance to others
- study aging in GEM detectors
- use for high energy physics/astrophysics research
Acknowledgements

Out-gassing Information

http://outgassing.nasa.gov/

GEM Graphics (order of appearance)

L. Caraway
F. Sauli
K. Dehmelt
G. Karagiorgi
F. Plentinger