

Fast detection of high-Z materials in a Muon Tomography Station (MTS)

<u>K. DAY, M. PHIPPS, J. TWIGGER M.</u> HOHLMANN

Outline

- Background
- Motivation
- Initial approach/results
- New approach/results
- Conclusion
- Future steps

Tomography

- Creating an image of an object through processing the deflection of rays that pass through it
 - Can be done with X-rays, gamma rays, electrons, etc.
- Shielding makes this difficult, but can be countered by using muons

Muon Tomography

Incoming muons (from natural cosmic rays)

Figure by Ben Locke, Florida Tech High Energy Physics Group A

3/08/2013

Point of Closest Approach (POCA) Angle

3/08/2013

Muon Tomography Station (MTS) at Florida Tech

3/08/2013

Photo by Mike Staib, Florida Tech High Energy Physics Group A FAS 77th Annual Meeting Barry University, Miami Shore – K. Day

Muon Tomography Station (MTS) at Florida Tech

Photo by Mike Staib, Florida Tech High Energy Physics Group A FAS 77th Annual Meeting Barry University, Miami Shore – K. Day

Scenarios

- Five target contains blocks of lead, tungsten, depleted uranium, tin, and iron
- Lead shield five target scenario plus a tantalum block and surrounded by lead
- Brass shield depleted uranium surrounded by brass
- Empty nothing in the station

3/08/2013

Five target

3/08/2013

Photo by Mike Staib, Florida Tech High Energy Physics Group A FAS 77th Annual Meeting Barry University, Miami Shore – K. Day

Lead shield

Photos by Mike Staib, Florida Tech High Energy Physics Group A

3/08/2013

Brass Shield

3/08/2013

Photos by Mike Staib, Florida Tech High Energy Physics Group A FAS 77th Annual Meeting Barry University, Miami Shore – K. Day

Reconstruction

Five target

Lead shield

Brass shield

A slice of three scenarios viewed from above Each came from a data set of over 100,000 points

Figures by Mike Staib, Florida Tech High Energy Physics Group A

FAS 77th Annual Meeting Barry University, Miami Shore - K. Day

Post-processing

High-Z materials appear much denser

Figure by Mike Staib, Florida Tech High Energy Physics Group A FAS 77th Annual Meeting Barry University, Miami Shore – K. Day

Motivation

- Muon Tomography Station (MTS) can image objects very well
- Can take hours/days to gather enough data to produce a clear image
 - Muons occur naturally at 10/sec/m²
 - MTS gets roughly 100 "good" events/minute
- Impractical for detecting potentially dangerous high-Z materials in cargo

Objective

- Investigate methods for *fast detection* of high-Z materials using POCA data statistics
- Find the lowest number of points necessary
- Location/shape not as important (for now)
- Should be able to run while the station is collecting data

3/08/2013

Initial Approach

- Use POCA point density
- High-Z materials should have a higher density of POCA points
- A region containing a high number of POCA points will be suspicious

In theory:

Initial Approach

- Divide the space into a 3D grid
- Count the number of POCA points in each box
- A box with a high number of hits suggests that it overlaps a high-Z material

3/08/2013

Initial Findings

5,000 events (~1.5 hrs), box length = 20 mm

	Highest count	Location of highest count (mm)	Avg scattering angle (degrees)
Five target	56	-20, -20, -40	13.30
Lead shield	25	60, 0, -60	13.72
Brass shield	29	-20, 0, -60	14.27
Empty	19	40, -20, -100	9.21

3/08/2013

Initial Findings

1,000 events (~20 mins), box length = 20 mm

	Highest count	Location of highest count (mm)	Avg scattering angle (degrees)
Five target	13	-20, -20, -60	13.04
Lead shield	7	0, -40, -20	12.80
Brass shield	7	40, -100, -100	13.76
Empty		40, -100, -100	8.65

3/08/2013

Initial Findings

500 events (~5 mins), box length = 20 mm

	Highest count	Location of highest count (mm)	Avg scattering angle (degrees)
Five target	6	-60, 60, -60	12.87
Lead shield	5	-20, 0, -60	13.19
Brass shield	5	0, 0, -60	13.21
Empty	8	40, -100, -100	8.88

3/08/2013

Problem

- Location was usually way off
- Realized there was a bias in the station
- Will always find the most events at the center

3/08/2013

MTS Bias

3/08/2013

New Approach

- Compare scattering data to the data of an empty station (like "dark-field" calibration)
- Requires normalizing the counts into a density distribution
- Then, the normalized empty data is subtracted from the normalized input scattering data
- Also calculate ratio of average scattering angles divide the input average angle by the empty scenario average angle

Detection methods

	Description	Strengths	Weaknesses
Maximum scattering density	The higher the value, the more likely high-Z materials are present	Can find small high-Z objects	Weakens with smaller data sets
Average scattering angle	If the ratio of input to empty is above I.00, high-Z materials are present		Won't find small high-Z objects

3/08/2013

5,000 events (~1.5 hrs), box length = 20 mm

	Highest density (normalized and calibrated)	Location of highest count (mm)	Avg scattering angle ratio (degrees)
Five target	0.008	-20, -20, -40	1.15
Lead shield	0.003	-100, -20, 0	1.19
Brass shield	0.004	20, 20, -20	I.24
Empty	0.001	40, -60, -100	0.80

3/08/2013

1,000 events (~20 mins), box length = 20 mm

	Highest density (normalized and calibrated)	Location of highest count (mm)	Avg scattering angle ratio (degrees)
Five target	0.009	-20, -20, -60	1.13
Lead shield	0.005	0, -40, -20	1.11
Brass shield	0.006	20, 20, -20	1.19
Empty	0.003	40, -100, -100	0.75

3/08/2013

500 events (~5 mins), box length = 20 mm

	Highest density (normalized and calibrated)	Location of highest count (mm)	Avg scattering angle ratio (degrees)
Five target	0.010	-60, 20, -40	1.12
Lead shield	0.009	-40, -40, 0	1.14
Brass shield	0.006	0, 0, -60	1.15
Empty	0.008	40, -100, -100	0.77

3/08/2013

100 events (~1 min), box length = 20 mm

	Highest density (normalized and calibrated)	Location of highest count (mm)	Avg scattering angle ratio (degrees)
Five target	0.026	0, 0, -60	1.11
Lead shield	0.029	-100, 20, 0	1.12
Brass shield	0.018	-40, 20, -20	0.82
Empty	0.023	40, 0, -100	0.70

3/08/2013

50 events (~30 secs), box length = 20 mm

	Highest density (normalized and calibrated)	Location of highest count (mm)	Avg scattering angle ratio (degrees)
Five target	0.036	0, 0, -60	I.27
Lead shield	0.039	-40, -40, 0	I.54
Brass shield	0.020	60, 0, 40	0.78
Empty	0.040	-20, -20, 60	0.70

3/08/2013

Conclusion

- It is possible to determine the presence of high-Z materials within minutes
- Average scattering angle method worked the best down to 500 events (~5 minutes)
 - Could still function down to 50 events for the cases with large amounts of high-Z materials (five target and lead shield)
- Maximum scattering density method worked down to 1000 events (~20 minutes)

Future steps

- Gather more test data
 - Empty station
 - Scenario where object is off-center
- Keep track of average scattering angle within a region
- Be able to identify the general locations of high-Z materials
- Calculate a probability estimate of presence of high-Z materials

Thank you!

3/08/2013

FAS 77th Annual Meeting Barry University, Miami Shore - K. Day

Wednesday, March 13, 13