Measuring the detector efficiencies of a 8-detector Muon Tomography Station

Kim Day, Michael Staib, Ben Locke, and Marcus Hohlmann Florida Tech High Energy Physics Lab A March 16 2012

Overview

- Background
- Method
- Results

Background

Importance and Goals

- Need to know detector efficiency to understand reliability of the muon tomography station data
- Goals
 - 1. Calculate a percent efficiency for each detector
 - 2. Use a 2D histogram to map out the efficiency of each detector

The GEM detector

- GEM = Gas Electron Multiplier
- Gives the xy coordinates of the hit location when a muon passes through it
- Florida Tech Muon
 Tomography Station
 (MTS) uses 8 detectors

What is the efficiency?

- The efficiency is the number of "successful" hits with that detector divided by its total number of hits
- A detector's efficiency is affected by:
 - 1. Detector resolution
 - 2. Detector alignment
 - 3. Track selection algorithm

Track Selection

- Iterates through all detectors
- Finds events with single clusters and puts them together
- Single clusters one x hit and one y hit was found
- Looks for tracks where two pairs of detectors are hit

Method

Algorithm

- 1. Obtain data for an empty station
- 2. For every detector, count the number of events where it had a "successful hit"
- Divide the number of that detector's successful hits by the total number of hits to get its efficiency

Starting with an empty 4-detector station

Determining "success"

Determining "success"

Let's analyze the top detector

Linear fit algorithm

$$x(z) = a_x + b_x z$$

$$a_x = \frac{\Sigma z * \Sigma xz - \Sigma z^2 * \Sigma x}{(\Sigma z)^2 - n * \Sigma z^2}$$

$$b_x = \frac{\Sigma z * \Sigma x - n * \Sigma xz}{(\Sigma z)^2 - n * \Sigma z^2}$$

Fit in x direction

$$y(z) = a_y + b_y z$$

$$a_y = \frac{\Sigma z * \Sigma yz - \Sigma z^2 * \Sigma y}{(\Sigma z)^2 - n * \Sigma z^2}$$

$$b_y = \frac{\Sigma z * \Sigma y - n * \Sigma y z}{(\Sigma z)^2 - n * \Sigma z^2}$$

Fit in y direction

Continue to next event

Adjusting for side detectors

New fit for x $x(y) = a'_x + b'_x y$ $a'_x = a_x - a_y \frac{b_x}{b_y}$ $b'_x = \frac{b_x}{b_y}$

$$z(y) = a'_z + b'_z y$$

$$a'_z = -\frac{a_y}{b_y}$$

$$b'_z = \frac{1}{b_y}$$

Results

Data/Tools Used

- 8-detector empty setup
- 100,000 events with hits on four detectors
- Threshold value t = 0.75 mm
 - 0.75 mm \sim = 5 times the detector resolution

All detectors

Total successful hits	59,318	
Total hits	445,732	
Overall efficiency	13.3%	
Average residual	17.4 mm	

Individual detectors

Detector	Successful Hits	Total Hits	Efficiency
1	4,421	95,745	4.6%
2	21,156	95,745	22.1%
3	17,056	96,152	17.7%
4	9,100	96,152	9.5%
5	1,145	15,300	7.5%
6	2,642	15,300	17.2%
7	2,579	15,669	16.4%
8	1,219	15,669	7.8%
Total	59,318	445,732	
Average			13.3%

Histograms

- Bin size = 5
- Empty 4-detector station (1-4 only)
- Correspond to the xy surface of each detector
- Each pixel corresponds to the efficiency at that point

Conclusion and Future Goals

- Detectors are not as efficient as hoped, will need further alignment and testing
- Noticed a lower efficiency value for detectors
 1, 4, 5, and 8
- Possibly due to the extrapolation as these are all outer detectors

Acknowledgements

- Ben Locke
 - Linear fit algorithm and muon track code
- Michael Staib
 - Muon track data
- Dr. Marcus Hohlmann
 - Algorithm and research advisor

Questions?