

75th Annual Meeting March 2011

Imaging with, spatial resolution of, and plans for upgrading a minimal prototype muon tomography station

<u>J. LOCKE</u>, W. BITTNER, L. GRASSO, K. GNANVO, and M. HOHLMANN

Florida Institute of Technology, Department of Physics and Space Sciences, 150 West University Blvd, Melbourne, FL 32901

Outline

- Motivation
- Background
 - Concept
 - Origin
 - Reconstruction algorithm
 - Voxelization

Prototype

- Design
- Imaging real targets
- Spatial resolution of detectors

• Upgrade

- Design
- Monte Carlo simulation

Motivation

Only 3.25 mm thick lead shielding needed to absorb 99% of gammas emitted by ²³⁵U.

How can we detect shielded nuclear contraband?

Muon Tomography Concept

Idea: Use <u>multiple scattering of charged particles in matter</u> to detect high-Z material

Origin of Muon Tomography

Original idea from Los Alamos (2003): Muon Tomography with Drift Tubes

INFN Padova, Pavia & Genova: Muon Tomography with spare CMS Muon Barrel Chambers (Drift Tubes)

Reconstruction Algorithm (POCA)

Voxelization

Minimal Prototype Muon Tomography Station (MTS) with Gas Electron Multiplier (GEM) Detectors

Min. MTS Reconstruction with Real Data

Comparing Real Data to Monte Carlo Simulation

Determining Spatial Resolution

Detector 0

Detector 0

Determining Spatial Resolution

ft³ MTS

ft³ MTS Simulation Reconstruction

Same targets imaged with minimal prototype MTS.

ft³ MTS Simulation Reconstruction (Top view)

Summary

- Muon tomography can be used to detect shielded nuclear contraband.
- Iron, lead, and tantalum blocks were successfully imaged with a minimal prototype muon tomography station.
- We estimate our **GEM detectors to have 130 μm spatial resolution** with *preliminary electronics*.
- The next generation muon tomography station will have **improved reconstruction abilities**.

Backup Slides

Another View of the Minimal MTS

Higher coverage \rightarrow Higher statistics for reconstruction