Measurement of the photon structure function $F_2^{\gamma}(x,Q^2)$ with the LUMI detector at L3

Gyongyi Baksay

Florida Institute of Technology Melbourne, Florida, USA

Advisors:

Dr. Marcus Hohlmann, Florida Institute of Technology

Dr. Maria Kienzle-Focacci, University of Geneva

Topics of Discussion

Introduction:CERN, L3, LUMI
Theoretical considerations
Data analysis and results
Summary

Different appearances of the photon

- **QED**: photon mediator, structureless: direct/bare photon
- Photon violates conservation of energy: ΔE · Δt > 1
 If fermion or antifermion interacts => parton content resolved
 Photon extended object=> charged fermions+gluons
- Dual nature of photon: direct or resolved $\gamma \rightarrow ff$
- One possible description: Photon Structure Function
 Photon interactions receive several contributions:

direct	resolved		
"bare photon"	point-like	hadron-like	
ŴŴŴ		~~~~	
(a) γ	(b) $\gamma \to \text{ff}$	(c) $\gamma \rightarrow V(J^{PC} = 1^{})$	

Photon couples to fermions (quarks & leptons)

Lepton pair production => process can be calculated in QED

The QED structure functions can only be used for the analysis of leptonic final states.

⊕ Quark pair production => QCD corrections

For hadronic final states the leading order QED diagrams are not sufficient and QCD corrections are important.

$e^+e^- \rightarrow e^+e^- \gamma^* \gamma^* \rightarrow e^+e^- + hadrons deep-inelastic scattering reaction$

 $\theta_{tag} >> 0 \rightarrow$ electron observed inside the detector $\theta_{antitag} \approx 0 \rightarrow$ other electron undetected \rightarrow "single-tag"

Photon Structure Function

 $\mathbf{F}_{2}^{\gamma}(\mathbf{x}, \mathbf{Q}^{2}) \sim \mathbf{probability}$ that the probe photon with virtuality \mathbf{Q}^{2} sees a parton (quark or gluon) with momentum fraction x inside the target quasi-real photon.

$$\frac{d\sigma_{e(k)\gamma^{*}(q) \to e_{tag}(k')X}(x,Q^{2})}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} [(1+(1-y)^{2})F_{2}^{\gamma}(x,Q^{2}) - y^{2}F_{L}^{\gamma}(x,Q^{2})]$$

$$y = (p \cdot q)/(p \cdot K) \approx 1 - (E_{tag}/E_{beam}) \cdot \cos^2(\theta_{tag}), y \approx 0$$

$$q_{i} = (E_{\gamma_{i}^{*}}, \vec{p}_{\gamma_{i}^{*}}), \quad (i = 1, 2)$$

$$q_{i}^{2} = E_{\gamma_{i}^{*}}^{2} - \vec{p}_{\gamma_{i}^{*}}^{2}$$

$$-q_{1}^{2} = Q_{1}^{2} \equiv Q^{2} > 0$$

$$-q_{2}^{2} = Q_{2}^{2} \cong 0$$

Single-tag variables:

$$Q^{2} = -q^{2} \approx 2E_{tag}E_{beam}(1 - \cos\theta_{tag})$$

$$x = Q^{2}/(Q^{2} + W^{2} + P^{2}) = Q^{2}/2(p \cdot q)$$

$$W^{2} = (q_{1} + q_{2})^{2} = (E_{\gamma^{*}} + E_{\gamma})^{2} - (\vec{q} + \vec{p})^{2}$$

$$q_{1} = (E_{\gamma^{*}}, q), q_{2} = (E_{\gamma}, p)$$
For single tagged events: P
$$x = \frac{Q^{2}}{Q^{2} + W^{2}}$$

masssquared of the outgoing interacting fermion:

$$k^{2} = (xq_{2} + q_{1})^{2} = q_{1}^{2} + 2xq_{1} \cdot q_{2} \cong 0$$

$$\implies x = -\frac{q_{1}^{2}}{2q_{1} \cdot q_{2}} = \frac{Q^{2}}{2q_{1} \cdot q_{2}}$$

The Bjorken variable x tells us what fraction of the photon four momentum was carried by the particle which participated to the interaction: the target photon itself or a parton (quark or gluon) inside the photon.

Analysis Method

- 1) Selection
- 2) Split x and Q² in several bins
- Unfolding (Bayes) energy of the target photon is not known
- ⇒ Correction with MC
 (Pythia, Phojet, Twogam)
- 4) Calculate measured cross section
- 5) $F_2^{\gamma}(x,Q^2)$ obtained using analytically calculated differential cross section (program Galuga)

Selection

	Data				
year	E _{beam} (GeV)	$L(pb^{-1})$	Nselected		
1998	94.3	171.8	6628		
1999a	97.3	111.4	4220		
1999b	100.0	90.1	3095		
2000	103.1	210.5	7990		
Monte Carlo					
	94.5	2807.4	54073		
	97.8	1817.4	33603		
PHOJEI	99.8	1818.1	33341		
	102.0	1754.3	33380		
	94.5	318.2	21223		
PYTHIA	98.7	456.4	26169		
	103	453.3	28570		
	94.5	5489.1	81127		
TWOGAM	97.8	4264.4	61265		
(QCD+QPM+VDM)	99.8	4390.4	62067		
	102.0	5298.5	73949		
Background MC					
	94.5	1022.7	1057		
$\gamma^*\gamma^* \to \tau \overline{\tau}$	98.0	224.7	211		
, ,	102	1100.0	1148		
	94.3	1960.7	381		
7	97.8	1123.5	200		
$\angle \gamma \rightarrow q q \gamma$	99.8	1141.5	210		
	103.3	11318.4	396		

<u>Unfolding</u>

Extraction of F_{2}^{Υ}

To obtain F₂^{$$\gamma$$}/ α : $F_2^{\gamma}/\alpha = \frac{\Delta \sigma_{meas}(e^+e^- \to e^+e^-X)}{\Delta \sigma_{Galuga}(e^+e^- \to e^+e^-X)}$. $\Delta \sigma_{meas} = \frac{\mathsf{N}_{unfolded} - \mathsf{N}_{background}}{\mathsf{L} \cdot \mathsf{acceptance} \cdot \mathsf{trigger efficiency}}$

GALUGA calculates the integrated cross section $\Delta \sigma_{e^+e^-}$, using a parametrization similar to equation:

$$\Delta \sigma_{e^+e^-}^{GALU} = \int [L_{TT} F_T (Q_1^2) F_T (Q_2^2) \sigma_{TT} + L_{LT} F_L (Q_1^2) F_T (Q_2^2) \sigma_{LT} + L_{TL} F_T (Q_1^2) F_L (Q_2^2) \sigma_{TL} + L_{LL} F_L (Q_1^2) F_L (Q_2^2) \sigma_{TL} + L_{LL} F_L (Q_1^2) F_L (Q_2^2) \sigma_{LL}] dQ_1^2 dQ_2^2 dW$$

Evolution of F_2^{γ} with x

 $F_2^{\gamma}(x,Q^2)$ vs x with the different contributions:

VDM, QCD, QPM

Preliminary results:

x dependence of $F_2^{\gamma}(x, \langle Q^2 \rangle)/\alpha$. 1998–2000 1.2 $< Q^2 >= 18.4 \text{ GeV}^4$, all years ave., with tot. errors تــا <02>=23.1 GeV2 Ø/(<,0.6 0.6 0.4 ALEPH $\langle Q^2 \rangle = 17.3 \text{ GeV}^2$ OPAL $<Q^2>=17.5 \text{ GeV}^2, <Q^2>=17.8 \text{ GeV}^2$ Ŧ 0.2 D 0.1 0.2 0.3 0.5 0.4 0.6 o X

<u>Q² evolution of $F_{2^{\gamma}}$ </u>

Expected LUMI-L3 results

add data points to the low x region!

High statistics! Test of QCD and QED.

Colorado, May 1-4, 2004

Summary and outlook

- Photon structure function analyzed for
 e⁺e⁻ → e⁺e⁻ γ^{*} γ^{*}→ e⁺e⁻ + hadrons
- Single tag events selection done for 189-209 GeV, high enough statistics, low background.
- Compared MC's (Pythia, Phojet, Twogam) with data=>Pythia best.
- Used binning similar to other measurements by L3, OPAL, ALEPH experiments
- Used unfolding (Bayes method) to correct for detector effects and acceptance. Data unfolded with Pythia, Phojet, Twogam.
- Calculated measured cross-section and analized x dependence using 3 MC average.
- Obtain F_2^{γ} using GALUGA.
- Evolution of F_2^{γ} with x analyzed and compared to ALEPH,L3,OPAL. Comparison based on the average of the 3 MC's.
- Comparison with theoretical predictions and Q² dependence under investigation.

Thank you! 🙂