

A Volume Clearing Algorithm for Muon Tomography

D. Mitra¹ (IEEE Senior Member), K. Day^{1,2}, M. Hohlmann² (IEEE Member)
¹ Department of Computer Science, Florida Institute of Technology
² Department of Physics and Space Sciences, Florida Institute of Technology

Introduction

- Millions of packages enter the US every day, but only a small percentage can be scanned without slowing down the process
- Nuclear material can be easily smuggled by using lead shielding to hide the emitting
 radiation

Muon Tomography

- 3D scanning method uses naturally occurring muon showers
- Muon passing through a dense material scatters in its trajectory
- A muon tomography station (MTS) records incoming and outgoing paths of muons
- Point and angle of scattering is recorded where the projected incoming and outgoing rays come closest (POCA)
- POCA Algorithm: Analyzing high-angle scattered points shows image of the densest materials

Problem & Goals

- We have no control on the slow and sparse incoming muon flux
- Visualizing sufficient scattered POCA points in target volume satisfactorily takes long time
- Muons with unscattered straight tracks are typically ignored by reconstruction algorithms
- Question 1: Can the straight tracks be used to clear some regions of the observed volume

- There is a need to see through lead shielding without being intrusive or time consuming
- A prototype cubic foot detector has been built at Florida Tech using Gas Electron Multiplier detectors positioned above, below, and on two sides of probed volume
- Question 2: Can we qualify if the scan time is sufficient to clear a volume, and if not, which area(s) to focus looking into with further incoming muons

Method & Result

Scattered and Non-scattered Tracks

Green Voxels: No scattering material

Data acquired at Muon Tomography Station With five objects placed on central plane Lead, Tungsten, DU, Tin, and Iron

Algorithm Volume-clearing:

// Input: Set E of coincidence events: each event is $(A_{i'}, D_{i'}, A_{o'}, D_{o})$ where $A_{i'}, D_{i'}$ are angle and point on a detector of the incoming muon, and $A_{o'}, D_{o}$ are those of outgoing ray of the same muon at another detector;

Probed volume V with voxels $v_m: m \le M$;

Threshold parameters: POCA angle α , POCA counts in a voxel c, tracks count in a voxel t;

// Output: Classified voxels in V for threat / cleared / insufficientinformation types // Ray tracing part of the algorithm

Red Voxels: Threat **Blue Voxels:** Not-sufficient data yet

Plane above the objects

At plane of the objects Plane below the objects

3 horizontal slices of reconstructed 3D image: 2 cm above center, at center, 2cm below center

1. For each event in E do

- 2. Draw lines I_i using A_i , D_i , and I_o using A_o , D_o ;
- 3. Find POCA point and angle of scattering between I_i and I_o respectively as (p, Φ);
- 4. If Φ > threshold angle α
- 5. Increment POCA count C_m of voxel v_m ; Else
- 6. Ray-trace R between detector points D_i to D_o ;
- 7. For each voxel v_m on the ray path of RIncrement straight-track count T_m of voxel v_m ; End For loop; // over voxel-wise countings End For loop; // on events // Decision making part of the algorithm 8. For each voxel v_m in V 9. If $C_m > c$ then v_m is "threat-type" 10. Else If $T_m > t$ then v_m is "cleared" 11. Else v_m is "insufficient-data" End For loop; // over voxels 12. Return the voxels' status in V

References

Conclusions & Future Work

We can clear more voxels in a given period of time than we can find sufficient scattering (POCA) points within threat voxels

Algorithm volume-clearing provides the evolving scenario as muons come in, and also is highly

parallelizable

Suspicious threat voxels get indicated early enough for further waiting on information near those regions

Quality and locations of insufficient-data type voxels may determine when to terminate a scan We will develop automated decision making process regarding when to stop the scanning based on statistics and machine learning.

1 C. L. Morris et al., "Tomographic Imaging with Cosmic Ray Muons," Science and Global Security, 16:37–53, 2008.

2 D. Mitra, A. Banerjee, S. Waweru, S. White, K. Gnanvo, and M. Hohlmann. "Simulation Study of Muon Scattering For Tomography Reconstruction," *IEEE Nuclear Science Symposium Conference Record*, 2009.

K. Gnanvo, LV. Grosso III, M. Hohlman, JB. Locke, A.Quintero, and D.Mitra, "Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors," Nuclear Instruments and Methods in Physics Research A, 652 (2011) 16–20.