Cosmic Ray Muon Detection

Department of Physics and Space Sciences
Florida Institute of Technology
Georgia Karagiorgi
Julie Slanker
Advisor: Dr. M. Hohlmann
Cosmic Ray Muons

\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]

\[\pi^- \rightarrow \mu^- + \bar{\nu}_\mu \]
Main goals

- Set up equipment
- Flux measurement
- Investigate count rate/flux variation with
 - Overlap area
 - Orientation angle with respect to the horizon
Equipment

- 2 scintillation detectors developed at Fermilab
- 2 PMT tubes
- amplifiers, discriminators, fast coincidence unit, counter
A scintillation detector has the property to emit a small flash of light (i.e. a scintillation) when it is struck by ionizing radiation.
When a particle passes through the scintillation material it collides with atomic electrons, exciting them to higher energy levels. After a very short period of time the electrons fall back to their natural levels, causing emission of light.
The scintillator is optically coupled to a photomultiplier through a light guide.

The photomultiplier converts the received light to a current of photoelectrons and sends it to an electronic system to be analyzed.
The equipment is set so that the counter is counting "coincidences", i.e. signals received from both discriminators at the same time.
We recognize a coincidence when the two signals are received by the fast coincidence unit within 100ns.

This technique:
- results in elimination of background noise (from the PMT’s, amplifiers, etc)
- offers a great number of possible experiments
I. Setting up equipment

- Calibration of the discriminators

Method:
Used a signal generator, and looked at discriminator output signal on the oscilloscope

Georgia Karagiorgi, Julie Slanker – Florida Academy of Sciences – March 2003
I. Setting up equipment

- Plateau Measurements for PMT’s
 (Procedure for finding working voltage)

Example of a plateau curve:

Georgia Karagiorgi, Julie Slanker – Florida Academy of Sciences – March 2003
Plateau Measurements

Plan A… (without noise discrimination)

Plateau measurement on #13

High Voltage (arbitrary units)

Counts/100s

Georgia Karagiorgi, Julie Slanker – Florida Academy of Sciences – March 2003
Plateau Measurements

Plan A… (without noise discrimination)
Plateau measurements

Plan B… (using partial noise discrimination, and operating at higher amplification)

...On progress for #14
II. Flux

Muons reach the surface of the Earth with typically constant flux F_μ.

\[
F_\mu = \frac{\text{(count rate)}d^2}{\text{(area of top panel)}(\text{area of bottom panel})}
\]

$F_\mu = 70 \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1} \ (\sim 1 \text{ cm}^{-2}\text{min}^{-1}) \ (\text{independent of detector})$

Goal: verify this value
III. Investigation of count rate variation

With overlap area

(CURRENTLY IN THE PROCESS OF TAKING DATA)
Investigation of flux variation

With angle θ with respect to the horizon

$$F_\mu \sim \cos^2 \theta$$
Problems we are facing

- We are dealing with old equipment
- We need to calibrate many pieces of our equipment
- We need to re-mask detectors on a frequent basis in order to avoid light leaks
Status

- Calibration of equipment: Complete
- Plateau measurements: In progress
- "Overlap area" measurement: In progress
- Flux measurement: Complete
- Build frame for "angle" measurements: In progress
- "Angle" measurements: In progress

Currently working on:

Have taken successful measurements
References

- http://www2.slac.stanford.edu/vvc/cosmicrays/crdctour.html