

75 th Annual Meeting, March 11-12, 2011

Search for a Z' boson in the dimuon channel in p-p collisions at \sqrt{s} = 7TeV with CMS experiment at the Large Hadron Collider

H. Kalakhety, M.Hohlmann
Department of Physics and Space Sciences
Florida Institute of Technology
Melbourne, FL

Outline

LHC and CMS Detector

Standard Model

Z' boson

Physics analysis of 40 pb⁻¹ data

Summary

Large Hadron Collider(LHC)

- World's Largest and highest energy particle accelerator
- Built at CERN(European Center for Nuclear Physics).
- 27 km long, 50-175 m underground.

Six Detectors:

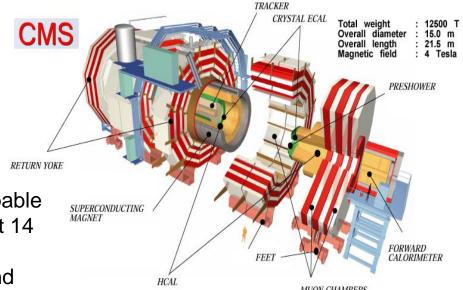
- ATLAS: A Toroidal LHC ApparatuS
- ALICE: A Large Ion Collider Experiment
- CMS: Compact Muon Solenoid
- LHCb: Large Hadron Collider beauty
- LHCf: Large Hadron Collider forward
- TOTEM: **Tot**al **E**lastic and diffractive cross section **M**easurements

Compact Muon Solenoid(CMS)

Compact: Compact in size

Muon: Special focus on precise

measurement of muons

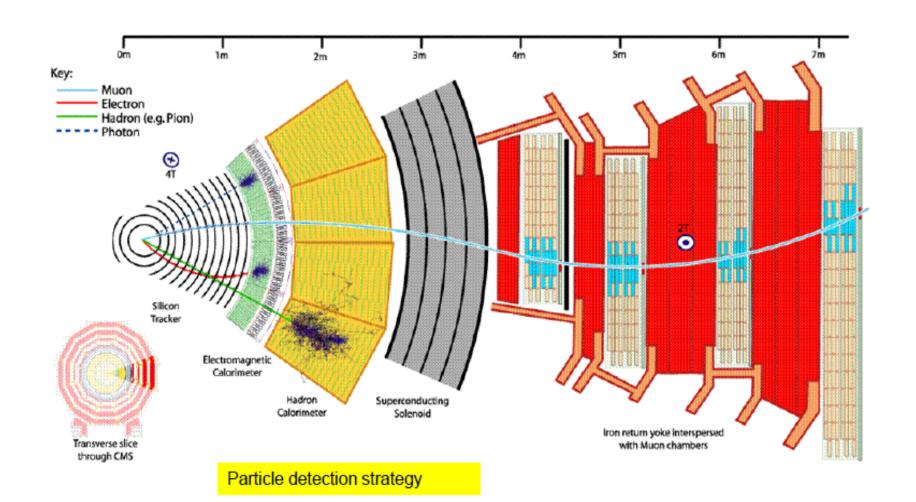

Solenoid: Super conducting Magnet

Detector:

- Designed as general purpose detector capable of studying many aspects of p-p collision at 14 TeV CM energy.
- Contains subsystems to measure energy and momentum of photons, electrons, muons and other products of collisions.

Goal:

- To explore physics at TeV scale
- To discover Higgs boson
- To look for evidence of physics beyond standard model such as Super Symmetry (SUSY) and extra dimensions.
- To study aspects of heavy ion collisions



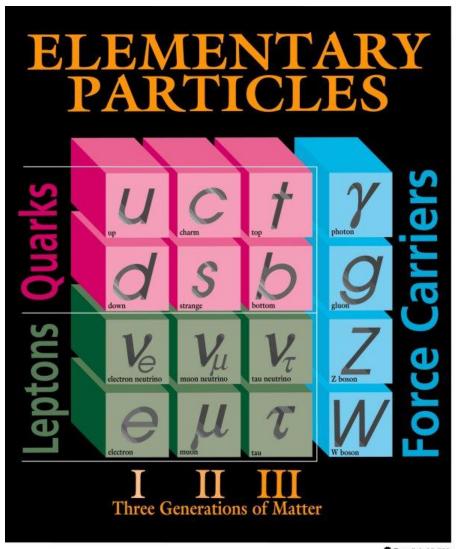
Particle Detection in CMS

Standard Model and Elementary Particles

- Current knowledge of fundamental particles and their interaction.
- Theory of strong interactions, unified theory of electromagnetic and weak interactions.
- SM is a gauge theory with symmetry group SU(3) X SU(2) X U(1).

Elementary Particles:

Fermions: Leptons, quarks (Spin ½)


Bosons: Gauge Bosons (Spin 1)

Force Carriers:

photon, gluons(8)

 W^{+},W^{-},Z^{0},H

H: Higgs boson(not discovered yet)

Proposed heavy boson(Z')

- Many proposed models of new physics includes particles that shows up as resonance in dimuon invariant mass spectrum.
- An extended gauge model predicts a neutral and heavy gauge boson, Z'.
- Sequential Standard Model(SSM)

Z'_{SSM}: Same coupling with fermions as in SM Z.

- U(1)_z: new force carrier of an additional U(1) gauge symmetry SU(3)_C X SU(2)_W X U(1)_Y X U(1)_Z.
- No theoretical prediction of Z' mass
- Current mass limit is > 1071 GeV/c² at Collider detector at Fermilab (CDF) (arXiv:1101.4578v1[hep-ex] Jan 24, 2011)

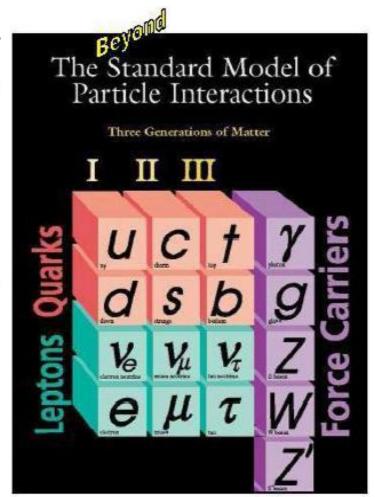
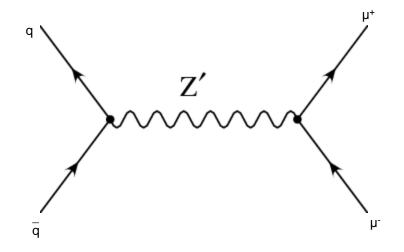
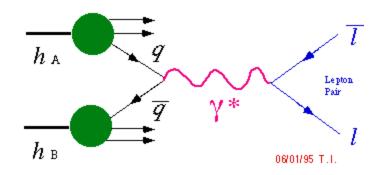


Table from H. Lee's talk

Z' search



Direct search:


- Looking for high-mass dilepton resonances
- Quark- antiquark annihilation and decay to opposite charge muons

$$pp \rightarrow Z' \rightarrow I^+I^- + X$$
, where $I = e, \mu$

- LHC is the first opportunity to search for Z' in a high-mass (TeV/c²) range.
- $Z' \rightarrow \mu^+ \mu^-$ is one of the most promising channel for its discovery (clear signature, low background).

The Drell-Yan Process

Physics analysis of 40pb⁻¹data Florida at $\sqrt{s} = 7$ TeV

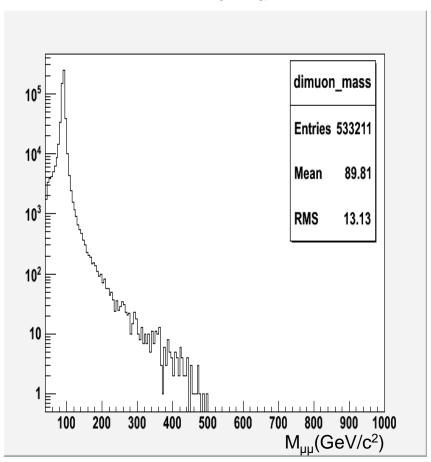
- **Run/Event Selection:**
- Good runs of Muon Physics(official)
- 40 pb⁻¹ of data (2010).
- **Luminosity:** The number of particles per unit area per unit time.
- Integrated Luminosity (JL dt): Measure of total data collected in an accelerator

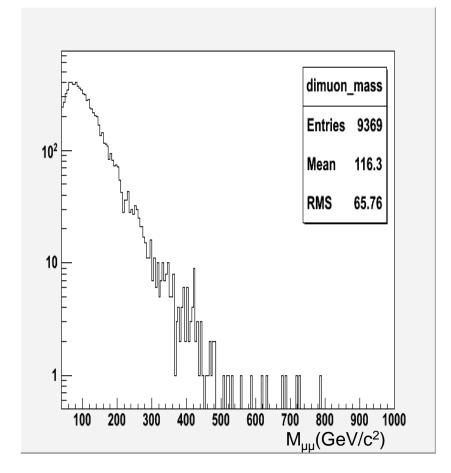
 $N = \sigma \int L dt$ (No of events = Cross section x Integrated luminosity)

- 1 pb⁻¹ of data will give 1 event for a process that has cross section of 1pb.
- Example : $Z^0 \rightarrow \mu^+ \mu^-$ N = 1998931, $\sigma = 1631$ pb \int L dt = N / σ = 1998931/1631 = 1225.58 pb⁻¹

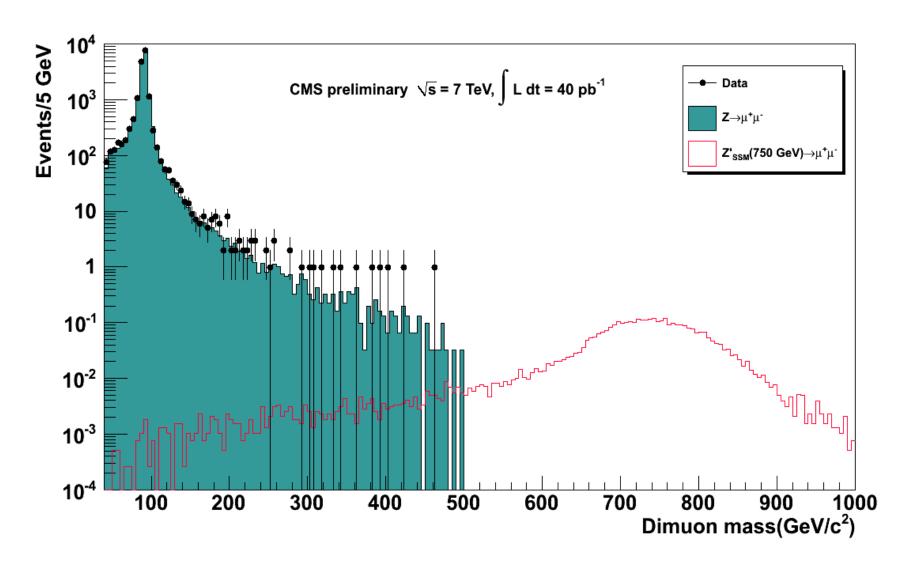
Data / Backgrounds

- The biggest background in our search is Drell-Yan.
- ttbar: 11% of Drell-Yan above 120GeV
- ttbarlike: 5%(tW, WW, WZ, ZZ, $Z \rightarrow \tau^+\tau^-$)
- Sources with misidentified muons:1%(W+jets, QCD)
- Dimuons from cosmic ray muons: removed by cut

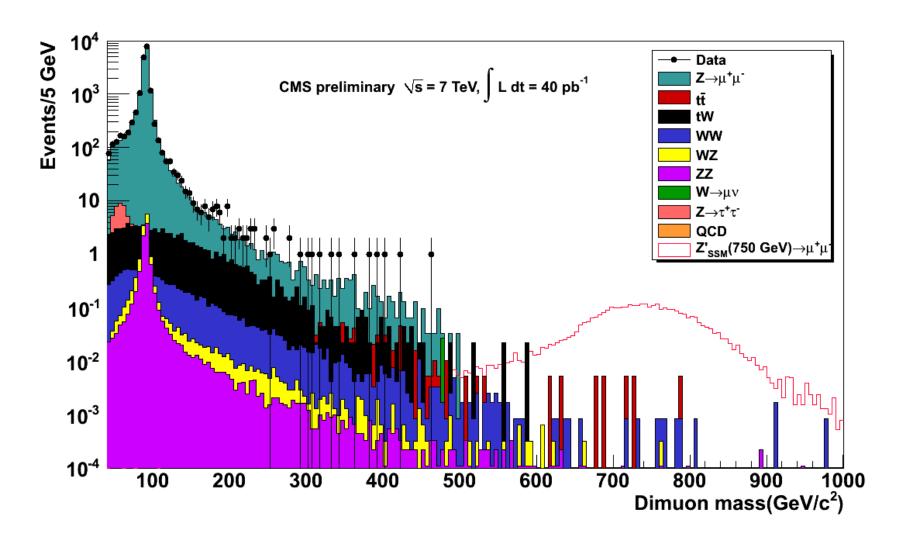

source	number of events			
	$120 < m_{\mu^+\mu^-} < 200 \text{ GeV}$	$m_{\mu^+\mu^-} > 200 \text{ GeV}$		
CMS data	227	35		
MC prediction total	204 ± 28.1	36.4 ± 4.6		
$\gamma^*/Z \rightarrow \mu\mu$	187 ± 28	30.2 ± 4.5		
tt production	12.3 ± 2.3	4.2 ± 0.8		
$t\bar{t}$ -like production ($tW, VV, Z \rightarrow \tau\tau$)	4.4 ± 0.4	1.7 ± 0.2		
dimuons from jets (QCD dijets, W+jets)	0.5 ± 0.2	0.2 ± 0.1		
$Z'_{SSM}(M = 750 \text{ GeV/ }c^2) \rightarrow \mu^+\mu^-$	-	13.6 ± 2.0		


MC histogram

Drell -Yan


ttbar

Dimuon Mass Spectrum(1)



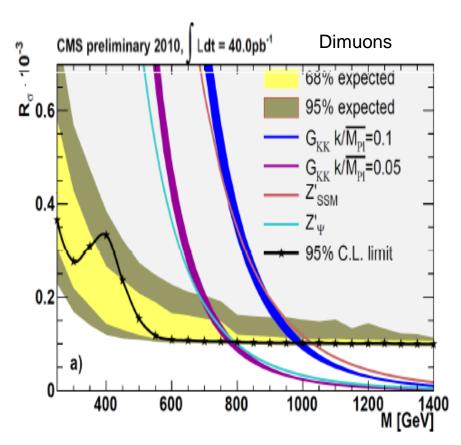
Dimuon Mass Spectrum (2)

Current lower Z' mass limit

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$$

- As there is no resonance in dimuon mass spectrum we set limit on Z'mass.
- There are different methods of limit setting.
 The limit reported here for LHC result are using Bayesian method.

Recent CDF result:


With 4.6 fb⁻¹ of data at CDF at \sqrt{s} = 1.96 TeV At 95% C.L: Z'_{SSM} = 1071GeV/c² (dimuons)

Recent LHC result:

With 40 pb⁻¹ of data at LHC at \sqrt{s} = 7TeV At 95% C.L:

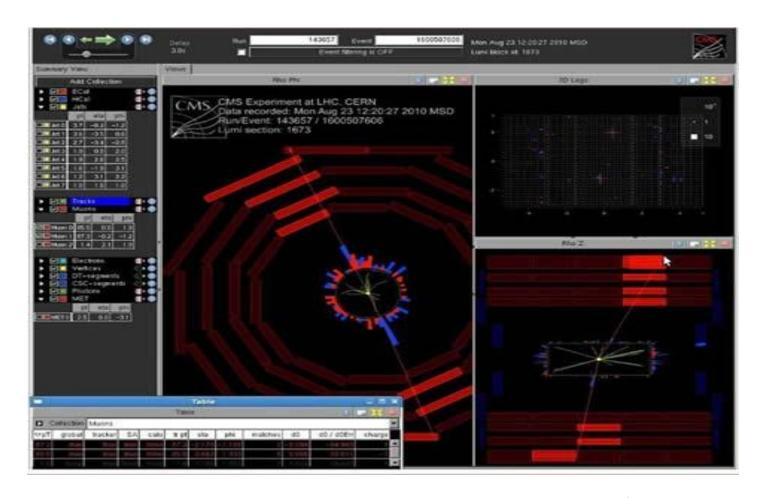
 $Z'_{SSM} = 1027 \text{ GeV/c}^2 \text{ (dimuons)}$

 $Z'_{SSM} = 1140 \text{ GeV/c}^2 \text{ (combined dileptons)}$

Ref: AN2010_317_v9 2010/12/25

Summary

- The data and MC samples in the dimuon mass spectra are consistent.
- We do not find evidence of resonance decaying to dimuons in the analyzed 40 pb⁻¹ of data.
- The limit for lower Z' mass at 95% C.L, for dimuons is 1027 GeV/c² where as for combined dileptons is 1140 GeV/c².
- Hope to see Z' bump in more data (~fb⁻¹) in 2011.



Back- up

A CMS collision event display

An event display of two opposite sign muons in pp collision at $\sqrt{s} = 7$ TeV

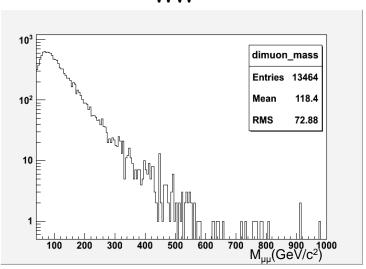
Datasets

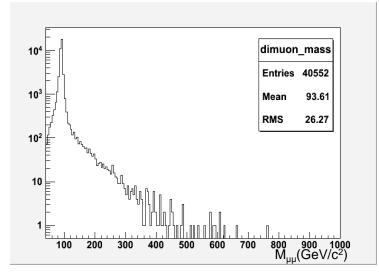
Data:

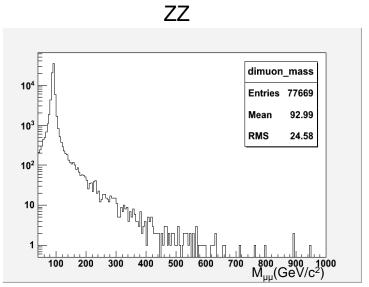
Sept 17th reprocessing for runs 136097-144114: /Mu/Run2010A-Sep17ReReco_v2/RECO

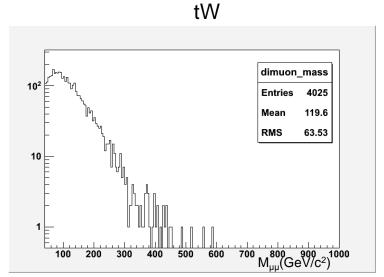
Run2010B prompt-reco for runs > 146427: /Mu/Run2010B-PromptReco-v2/RECO

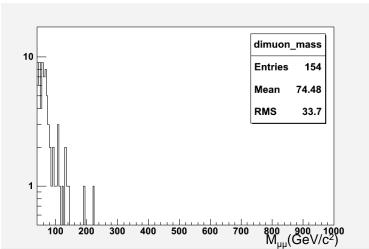
MC simulation:


Generator	Process	Kinematic cuts	σ (pb)	Events	PDF set
POWHEG	$Z^0 \rightarrow \mu \mu$	$M_{\mu\mu} > 20 \text{ GeV}/c^2$	1631	1998931	CT10
PYTHIA	$Z^0 \rightarrow \mu \mu$	$M_{\mu\mu} > 200, 500, 800 \text{ GeV}/c^2$	10.3	3×55000	CTEQ66
MADGRAPH	tī+jets		152	1167759	CTEQ6L1
MADGRAPH	tW	-	10.6	494961	CTEQ6L1
PYTHIA	WW	-	43	2061760	CTEQ6L1
PYTHIA	WZ	-	18	2194752	CTEQ6L1
PYTHIA	ZZ		5.9	2113368	CTEQ6L1
MADGRAPH	W+jets		1.04×10^{4}	15168266	CTEQ6L1
PYTHIA	t₹	-	162	1099550	CTEQ6L1
POWHEG	$Z^0 \rightarrow \tau \tau$	$M_{\tau\tau} > 20 \text{ GeV}/c^2$	1631	1994719	CT10
PYTHIA	Inclusive µ QCD	$\hat{p}_T > 20 \text{ GeV}/c$, $ \eta_H < 2.5$,	8.5×10^{4}	29504866	CTEQ6L1
		$p_T^{\mu} > 15 \mathrm{GeV}/c$			

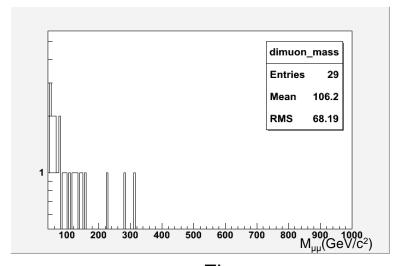


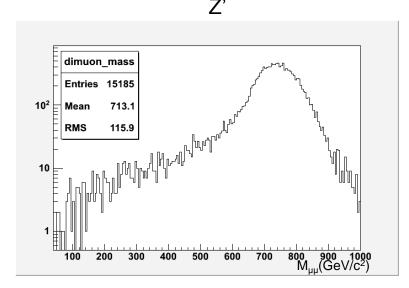

MC histogram(1)




FAS March Meeting, Florida Tech. - H. Kalakhety

MC histogram(2)





WJets

