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ABSTRACT 

Many institutions worldwide are considering how to include expectations about future sea level 
rise into their investment decisions regarding large capital infrastructures. This paper examines 
how to characterize deeply uncertain climate change projections to support such decision by 
examining a question facing the Port of Los Angeles: how to address the potential for 
presumably low probability but large impact levels of extreme sea level rise in its investment 
plans? Such extreme events—for instance, increased storm frequency and/or a rapid increase in 
the rate of sea level rise—can affect investments in infrastructure but have proved difficult to 
consider in such decisions because of the deep uncertainty surrounding them. This study uses a 
robust decision making (RDM) analysis to address two questions: (1) under what future 
conditions would a Port of Los Angeles decision to harden its facilities against extreme sea level 
rise at the next upgrade pass a cost-benefit test, and (2) does current science and other available 
information suggest such conditions are sufficiently likely to justify such an investment? A 
decision to harden at the next upgrade would merit serious consideration for only one of the 
four Port facilities considered and hardening costs would have to be 5 to 250 times smaller than 
current estimates to warrant consideration for the other three facilities. This study also 
compares and contrasts a robust decision making analysis with a full probabilistic analysis. 
These two analysis frameworks result in similar investment recommendations but provide 
different information to decision makers and envision different types of engagement with 
stakeholders. In particular, the full probabilistic analysis begins by aggregating the best 
scientific information into a single set of joint probability distributions, while the robust 
decision making analysis identifies scenarios where a decision to invest in near-term response 
to extreme sea level rise passes a cost-benefit test, and then assembles scientific information of 
differing levels of confidence to help decision makers judge whether or not these scenarios are 
sufficiently likely to justify making such investments.  
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Section 1: Introduction 

The Port of Los Angeles (PoLA) is one of the largest container shipping facilities in the world. It 
owns many square miles of land, but its main assets are twenty container ship terminals—large 
steel and concrete structures that serve as docking facilitates for large container ships, the 
foundations for the large moving cranes that load and unload these ships, and transportation 
hubs for the trucks and trains that carry goods inland. Many jurisdictions worldwide (including 
PoLA) have been or are considering how to include sea level rise into investments and 
management of large infrastructure investments (e.g., the case studies in Jonkman et al. 2008; 
Reeder and Ranger 2011; Rosenzweig 2010; Rosenzweig et al. 2011; van Dantzig 1956; Vrijling 
2001; Walsh et al. 2004). This paper focuses on a particular question facing PoLA: how to 
address the potential for presumably low probability but large impact levels of extreme sea 
level rise in its investment plans? Such extreme events—for instance, increased storm frequency 
and/or a rapid increase in the rate of sea level rise—can affect investments in infrastructure but 
have proved difficult to consider in such decisions because of the deep uncertainty surrounding 
them (Vellinga et al. 2009). 

A typical approach for estimating the risk posed by such changes begins by defining a small 
number of scenarios of future sea level rise and storminess, which are then used to help 
estimate exposure, vulnerability, and hence risk. For instance, the State of California has 
provided official sea level rise planning scenarios of 16” by 2050 and 55” by 2100 that local, 
regional, and state agencies can use as input to vulnerability analyses of their facilities (CO-CAT 
2010). Hanson et al. (2011) rank the potential exposure of 136 port cities worldwide to climate 
extremes in the years 2005 and 2070 by crafting scenarios that include changes in mean sea 
levels, storminess (focusing on the 1 in a 100-year event), patterns of urbanization and economic 
growth, and human-induced subsidence. To bound the potential exposure in the face of large 
uncertainties, the scenarios include what are termed high-end estimates for each of these 
factors. 

Such scenario analyses, which begin with scientific projections of changes in key climate 
variables and in some cases also include projections of socioeconomic factors, can provide 
useful information for surveys of relative exposure and risk as exemplified by Hanson et al. 
(2011). But this type of analysis, sometimes characterized in the literature as “science-first” 
(Dessai and Hulme 2007) or “predict-then-act” (Lempert et al. 2004), can prove a less useful 
guide for specific adaptation decisions, including those involved with investments in 
infrastructure, because it provides only very limited avenues to ensure that the scenarios being 
considered are those most relevant to the decisions that need to be made. In some cases, 
sufficiently reliable probabilistic projections may exist to support a traditional risk analysis, 
which also begins with projections of key climate and socioeconomic factors. But for many 
adaptation decisions, in particular those sensitive to extreme events, well-characterized 
distributions for climate variables are not available and probabilistic projections of relevant 
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socioeconomic factors may be even more unreliable (cf. Keller et al. 2008; Knutti et al. 2010; 
Oppenheimer et al. 2008; Rahmstorf 2010; Siddall et al. 2010).  

In such cases of deeply uncertain projections, it may prove more effective to begin with the 
specific decisions under consideration, and then use the requirements of these decisions to 
identify the climate and socioeconomic scenarios that should be considered. The literature offers 
several names for such approaches, including “context-first” (Ranger et al. 2010), “decision 
scaling” (Brown 2010), “assess risk of policy” (Carter et al. 2007; Dessai and Hulme 2007; 
Lempert et al. 2004), and “vulnerability and robust response” (Hall et. al. 2012). These specific 
approaches differ in their characterizations of uncertainty, specific decision criteria, and the 
information they provide to decision makers (see for instance, the comparison in Hall et al. 
2012.) But all share the central idea of defining a proposed policy or policies; identifying 
vulnerabilities of that policy, defined as conditions where the policy fails to meet its goals; 
identifying potential policy responses to those vulnerabilities; and then organizing scenarios to 
help policy makers decide whether and when to adopt those responses. The Thames River 
barrier plan provides an important example of such an approach in the context of sea level rise. 
The analysis began with the current flood protection system for London, identified the level 
where current defenses fail, and laid out a route-map plan that showed how different actions 
could be taken at different times (Reeder and Ranger 2011). New York City has adopted similar 
adaptive approaches (Rosenzweig 2010). 

This paper focuses on a particular challenge in implementing such approaches—the question of 
how to organize a rich body of information about climate and socioeconomic factors into the 
scenarios that can be used to inform infrastructure investment decisions. Past applications have 
identified simple thresholds to represent their decision-critical scenarios, such as in the Thames 
River Barrier work. But in general, such scenarios will be multi-faceted, combining a range of 
different climate and other factors. 

Complicating matters further, the available information about these factors may span a wide 
range of different types of uncertainty, from well-characterized to deeply uncertain. Both the 
annual means and daily extremes of future sea levels are expected to differ from past trends due 
in large part to the effects of anthropogenic climate change, which result from a complex 
interplay of effects such as thermal expansion, changes in oceanic structure, melting of land-
based ice, shifts in oceanic and atmospheric circulation, and changes in the terrestrial water 
balance (Milne et al. 2009). While some of these processes, such as thermal expansion, are 
relatively well understood, others remain deeply uncertain. For instance, current models fail to 
resolve mechanistically key processes that could contribute to, or constrain, rapid flows of land-
based ice (Pollard 2010). In addition, the impacts of anthropogenic climate change on the 
frequency and intensity of future storm surge is only poorly understood (e.g., Bromirski et al. 
2003; Cayan et al. 2008; Menendez and Woodworth 2010; Rosenzweig et al. 2011). 

This study conducts a Robust Decision Making (RDM)-based (Lempert and Collins 2007; 
Lempert et al. 2003) vulnerability and robust response option analysis for the Port of Los 
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Angeles to create multivariate scenarios combining a range of different climate and 
socioeconomic factors that can inform some of the port’s infrastructure decisions. The study 
focuses on the question of whether PoLA should harden its container ship terminals against 
future sea level rise during the next major upgrades of those terminals. Because these terminals 
are currently relatively high above the water, a decision to make such an investment can be 
thought of as purchasing relatively low-cost insurance against the potential impacts of poorly 
understood extreme events. To implement the vulnerability and robust response option 
approach, we ran a cost-benefit calculation for PoLA many hundreds of times to explore the 
implications of a wide range of different assumptions about future climate and terminal 
management conditions. We then conducted a “scenario discovery” cluster analysis (Bryant and 
Lempert 2010) on the resulting database of simulation model results to succinctly characterize 
the conditions where an early hardening would meet a cost-benefit test. Finally, we compared 
these conditions to available information in the scientific literature. This process allowed for a 
traceable combination of information from different sources and varying levels of uncertainty. 
While previous RDM analyses have used deeply uncertain climate information, this is the first 
analysis, to our knowledge, to explicitly use climate information of differing levels of 
uncertainty. 

This study demonstrates three important elements of the approach; how to: (1) use climate 
information with different levels of uncertainty, (2) combine uncertain climate information with 
uncertain information about relevant socioeconomic factors, and (3) display the results to 
decision makers. The next section of this paper describes the decision problem. The third section 
provides the RDM analysis on a particular PoLA facility. The fourth section compares the 
results to a more traditional full probabilistic risk analysis, and the fifth summarizes RDM 
analyses on three additional PoLA facilities. Overall, this study finds that a decision to harden 
at the next upgrade would merit serious consideration only for one of the four PoLA facilities 
considered and that the Port would have to identify hardening costs 5 to 250 times smaller than 
current estimates to warrant consideration for the other three facilities. 
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Section 2: PoLA’s Decision Challenge 

Past analyses have often suggested that future sea level changes alone do not warrant 
immediate infrastructure investments. However, when an organization such as PoLA is 
building new infrastructure or conducting major renovations of existing facilities, it may prove 
useful to consider future sea level rise (see, for instance, TRB 2008). The effect of sea level rise on 
PoLA’s decisions regarding its container ship terminals follows this pattern. 

The edge of PoLA’s terminals currently lies about 12 feet above mean sea level. As shown in 
Figure 1, conduits carrying high-voltage electric lines run underneath the main floor and lie 
9.2 feet above mean sea level. A breakwater, managed by the U.S. Army Corps of Engineers, 
provides the main barrier to wave action and storm surge in the harbor. 

 

 
Figure 1: Schematic of PoLA Container Ship Terminal Showing Height (H) Above Mean Sea Level 

 

The design and use of the terminals is driven by container ship technology. PoLA first built 
such terminals in the 1960s and gave them a major overhaul in the 1980s when the size of 
container ships increased significantly. Several factors will drive the lifetime of PoLA’s current 
terminals, including how long they take to wear out and any impending changes in container 
ship technology, both of which are uncertain. 

PoLA’s terminals are relatively high above today’s mean sea level and have never been flooded 
in the past few decades. Given this large apparent safety margin, PoLA would only consider sea 
level rise when planning a major upgrade of its terminals because hardening at that time would 
cost much less than it would at any other time. 

Figure 2 approximates PoLA’s decision challenge as a sequential decision problem. At some 
time in the future PoLA will upgrade one of its terminals. It can decide to spend an additional 
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sum Charden to make the terminal practically invulnerable to plausible future sea levels during 
the terminal lifetime. Such hardening might involve redesigning the electric conduits currently 
under the terminal and raising the terminal considerably higher. If the Port decides to harden 
the terminal, they pay an additional C1  Char den now, and then suffer no further costs from any 
plausible amount of sea level rise through the next upgrade, which would occur no less than 
several decades later. If the Port decides not to harden its terminals at the next upgrade, and 
there is no sea level rise large enough to flood the terminals, the costs are C3=0. 

 

 
Figure 2: Simplified Representation of PoLA’s Decision Regarding Whether or Not to Harden its 

Terminal at Its Next Upgrade and the Costs Resulting from Its Choices 

 

However, if PoLA decides not to harden, the terminal may prove vulnerable during its lifetime 
to sea level rise. Storm surges combined with high tides and a higher mean sea level might then 
occasionally flood the terminal. Such flooding would cause damage and disrupt operations. 
This study assumed that PoLA could tolerate some small flooding frequency, but if the flooding 
became too frequent, the organization would need to respond at significant cost. We assume 
that if the frequency of flooding exceeds this critical level ( pcrit ), that PoLA, rather than just 
hardening the existing terminal, would choose to conduct a major upgrade that would include 
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the hardening.1 If it chooses not to harden at the time of the next upgrade, they might be forced 
to upgrade in the future earlier than would otherwise be necessary. We assume that the main 
economic consequence of such an early upgrade is the early retirement of otherwise valuable 
infrastructure. Assuming the value of the terminal decreases linearly over its lifetime (i.e., linear 
depreciation), the resulting costs are  

C2   Cupgrade

L 
L







ed                                                        (1) 

where Cupgrade
 
is the cost of the upgrade, L is the lifetime of the terminal in years, d is the 

discount rate in percent per year, and   is the year when the frequency of flooding first exceeds 
the allowable threshold. Table 1 summarizes these and the other model parameters. 

                                                      
1 Note that this assumption may underestimate PoLA’s future options, but it provides a simple 

representation of the current cost implications.  A discussion of the implications of this and other 
assumptions is given below. 
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Table 1: Parameters Affecting PoLA’s Decision Whether or Not to Harden Terminals at Next Upgrade and 
the Treatment of the Uncertainty in Those Parameters. Height and hardening cost values for a decision 

regarding PoLA terminals is discussed in Section 3. 

 
RDM Uncertainty 
Characterization 

Full Probabilistic 
Uncertainty 

Characterization 

Future Sea Level   

 

 

Well-characterized joint 
probability distribution for a, 

b, c, c*, and t*. 

Sea level rise in 2011 (a) 

Well-characterized joint 
probability distribution 

for a, b, and c, as show in 
in Figure 3b. 

Normal rate of sea level rise 
(b) 

Normal sea level rise 
acceleration (c)  

Rate of abrupt sea level rise 
(c*)  

Deeply uncertain with range: 
0 to 30 mm/yr 

Year abrupt rise begins (t*) 
Deeply uncertain with range: 

2010 to 2100 

Daily anomaly location ( ) Deeply uncertain set of GEV 
distributions, with scale 

ranging from   517 to 569, 
constant shape   0.305 , 

and location 
  1760.1033   517  

(constant mean). 

Set of GEV distributions with 
constant shape   0.305 , 
uniform distribution over 

scale 517 mm   543 mm , 
and corresponding location 

  176mm  
0.1033   517mm   

Daily anomaly scale ( ) 

Daily anomaly shape ( ) 

Future Terminal 
Management  

 

Lifetime (L) 
Deeply uncertain with range: 

30 to 100 years 
Consider a range of 30 to 100 

years 

Max allowable overtop 
probability ( pcrit

) 
Deeply uncertain with range: 

5% to 50% per year 

Consider uniform 
distribution over range 5% to 

50% per year 

Decision Year Known at decision time: 2020 Known at decision time: 2020 

Height (H) above mean sea 
level 

Known at decision time: 
2804 mm 

Known at decision time: 
2804 mm 

Current hardening cost 
( CHar den Cupgr ade ) Known at decision time: 1% Known at decision time: 1% 

Discount rate (d) Known at decision time: 5% Known at decision time: 5% 

Notes: mm/yr = millimeters per year; GEV = generalized extreme value 
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A decision to harden at the next upgrade would pass an economic cost-benefit test if the cost for 
doing so is less than the expected present value cost of any future early upgrade forced by sea 
level rise. In other words, the expected present value of the savings due to the hardening 
( SHarden ) should be positive. For convenience, all the costs are normalized to fractions of the 
upgrade cost so that SHarden is approximated by: 

SHarden 

L 
L









Charden

Cupgrade

for   L

 Charden

Cupgrade

for   L













.                                                      (2) 

The present value savings, and in particular the year  , will depend on the future sea levels, 
which is approximated as a sum of two time-series: 

yt  zt  xt                                                           (3) 

where z t is the annual mean sea level in the Port of Los Angeles for time index t, and xt is the 
maximum hourly anomaly. We can usefully approximate future mean annual sea level as: 

zt  a  bt  ct 2  c*I (t  t * ),                                              (4) 

where the term a is the sea level anomaly at time zero (2011), b is a constant rate (mm/year), 
and c is an acceleration term (mm/year2). (See Table 1 for a summary of the parameter 
definitions and symbols). To simplify this analysis, we assume that these first three terms 
represent only the effects of relatively well-understood processes, such as thermal expansion of 
the oceans due to rising temperatures and the melting of small glaciers, that are well-
constrained by past observations. (As discussed in Section 6, these terms should more properly 
be considered as a mix of well and less well understood processes.) The fourth term represents 
currently poorly understood and poorly constrained processes; for example, potentially abrupt 
changes in the dynamics of ice flow (e.g., Alley et al. 2007), which is approximate with a step-
function increase in the rate of sea level rise c* (mm/year) that occurs after some time t*. 

While changes in the annual mean sea level are an important driver, any actual flooding events 
will happen on much shorter timescales (e.g., Anthoff et al. 2010; Church et al. 2006; van 
Dantzig 1956). The local, hourly anomalies at PoLA, xt, are well approximated by a generalized 
extreme value (GEV) distribution. Thus, we assume flooding would force PoLA into an early 
upgrade in the first year  in which 

P(x  H  z ) 1-exp  1+ H  z -











1 











 1 1 pcrit 

1

24*365





               (5) 

where , , and  are the GEV distribution’s location, scale, and shape parameters and the 

factor (24*365) translates the hourly frequencies into annual values. 
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This model is solved numerically by finding the smallest value of   that satisfies Eq (5) and 
then evaluating the present value cost savings with Eq (2).  
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Section 3: Robust Decision Making Analysis 

Any savings from a decision to harden at the next upgrade, as estimated by Eq (2), are 
contingent on the value of fourteen parameters shown in Table 1. The calculation would prove 
simple if these values were known precisely. The challenge is to evaluate the decision given 
large and divergent levels of uncertainty regarding these parameter values. 

The RDM approach addresses this challenge by answering two questions: (1) under what future 
conditions would PoLA find it advantageous to have hardened its terminal at the next upgrade, 
and (2) does current science and other available information suggest that these conditions are 
sufficiently likely to justify a decision to harden at the next upgrade? RDM answers these 
questions through the following steps: 

 Considering some parameters in Table 1 as deeply uncertain and evaluating Eq (2) over 
many cases, each described by some combinations of values of these deeply uncertain 
parameters;  

 Concisely summarizing the common factors among those cases in which hardening at 
the next upgrade passes the cost-benefit test;  

 Estimating the probability threshold that is the likelihood for these cases that would 
justify hardening at the next upgrade; and then  

 Evaluating scientific lines of evidence to help judge whether or not these cases are 
sufficiently likely to justify a decision to harden at the next upgrade. 

The following subsections describe each of these steps. 

3.1 Evaluating the Decision to Harden in Many Cases 

To implement this RDM analysis, we need to construct an experimental design that effectively 
samples over the plausible combinations of parameters in Table 1. The table divides the 
parameters affecting PoLA’s potential savings into two categories: eight parameters describe 
future sea level and six describe the terminal and its future management. The experimental 
design must appropriately combine parameters with different levels of uncertainty—some 
parameters known have known values, some are best represented with well-characterized 
probability distributions, and some parameters are deeply uncertain. 

We treat four of the terminal management parameters—the decision year, height of the 
terminal, hardening cost, and discount rate—as known at the time of the decision. The other 
two terminal management parameters—the terminal lifetime and the maximum allowable 
annual flooding probability—refer to choices made by future PoLA decision makers, and are 
thus deeply uncertain from the point of view of the audience of this analysis. We assume that 
the three coefficients of the quadratic expression for the well-understood processes of sea level 
rise, the first three terms of Eq (4), can be accurately described with a single, well-characterized, 
joint probability distribution. We treat the other five parameters describing future sea level 
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rise—the rate and starting time of any abrupt changes and the three parameters describing the 
future distribution of hourly anomalies—as deeply uncertain. 

The following sections describe these distributions and the experimental design used for the 
deeply uncertain parameters. 

3.1.1 Well-Characterized Uncertainties 

A single, joint probability distribution over the parameters describing what we have assumed to 
be the well-represented contributions to future sea level rise is estimated by fitting the first three 
terms of Eq (4) to observed sea levels over the past two centuries, as shown in Figure 3. 
Similarly to the many analyses that adopt sea level rise projections based on simple, semi-
empirical models or scenarios (e.g., Purvis et al. 2008; Rosenzweig et al. 2011; van Dantzig 1956), 
we use this quadratic form that in many previous studies has provided useful insights (e.g., 
Church and White 2006; Douglas 1992; Jevrejeva et al. 2008; Woodworth et al. 2009). Using more 
complex sea level models (e.g., Applegate et al. 2011; Irvine et al. 2012) would improve the 
physical realism of the analysis, but would require arguably unreasonable computational 
resources to perform the uncertainty and decision-analyses described below. 

  
Figure 3: Observed annually and globally averaged sea level anomalies (Jevrejeva et al. 2006) 

(green circles), the polynomial model best fit to the observations (black line) and model hindcast 
scenarios (grey lines) that sample the unresolved variability (left panel). The uncertainties in the 

resulting parameter estimates for a, b, and c as well as the absolute value of the parameter 
correlation coefficient (numbers in blue font) are shown in the right panel. 

 

A simple bootstrap analysis (e.g., Solow 1985) is used to estimate the joint distribution of the 
parameters a, b, and c using observations of globally and annually averaged sea levels 
(Jevrejeva et al. 2006). The sea level observations are normalize to a zero anomaly in the year 
2000 to simplify comparisons with other studies such as CO-CAT (2010). We fit the model in a 



12 

least-squares sense, approximate the data-model residuals using an autoregressive model of 
order one, superimpose bootstrap realizations of the residuals to the original fit, and then re-
estimate the parameters for each bootstrap realization. As shown in Figure 3a, this process 
provides a distribution of a, b, and c that approximates the past observed sea levels quite well. 
Figure 3b shows the distribution for each parameter. Note that the observed global rates are 
slightly larger than the local rates at PoLA (results not shown). As a result, the estimates of b 
and c may be high, compared to an estimate derived from local observations. We represent the 
projection uncertainties introduced by the discrepancies between local and globally averaged 
sea levels by expanding the uncertainty range (discussed below). The use of the globally 
averaged data (as opposed to local observations) is an approximation. This approximation 
guards to some extent against the effects of the observed decadal-scale oscillations in the rate of 
regional sea level rise and the resulting potential for a considerable increase in the rate of sea 
level rise in the Eastern Pacific; for example, due to circulation effects (e.g., Bromirski et al. 2011; 
Jevrejeva et al. 2006). In addition, this approximation makes it easier to link the sea level rise 
projections affected by well-represented uncertainties to studies analyzing deep uncertainties 
(discussed next).  

3.1.2 Deep Uncertainties 

The other uncertainties in Table 1—five for future sea level and two for future terminal 
management—are deep. They are represented by a range, or set, of plausible values. For each 
parameter a range is chosen that is consistent with physical or other constraints and sufficiently 
wide to contain the boundary between cases where hardening at the next upgrade does and 
does not meet the cost-benefit test. 

PoLA has design guidance for the lifetime L of its terminals, but in practice terminals can last 
longer than originally planned. We thus choose a range for L between 30 and 100 years. PoLA 
has no experience with such flooding and thus no solid estimates regarding the maximum 
allowable flooding probability—that is, the frequency of annual flooding that would force the 
organization to undertake an early terminal upgrade. We hence choose a wide range of values, 
between a 5 percent and 50 percent chance of annual flooding, that would force an early 
upgrade. 

The parameters c* and t* represent the contribution of poorly understood processes to future 
annual mean sea level rise. As described below, we choose the values of c* and t* to 
approximate two expert assessments. For t*, we add as an additional constraint that such a rise 
could begin immediately, and we take as our upper bound the end of the considered time 
horizon (the year 2100), where a rapid rise would no longer be relevant to any near-term 
hardening decision by PoLA. 

To treat the future daily anomaly, we begin with the common assumption of stationarity in the 
intra-annual variability, modeled by superimposing an estimate of the past variability on the 
projected future changes in the annual mean. The State of California Sea Level Rise Interim 
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Guidance Document (CO-CAT 2010) assessed this as a “reasonable starting point” because little 
information exists to project any future changes in this variability. A time series of past 
anomalies at PoLA is generated by subtracting the observed change in the annual mean from 
local observations (PMSL station 245 [Caldwell 2010]) spanning roughly eight decades. A GEV 
distribution is then fit to these anomalies. We employ the GEV as a simple and parameterizable 
interpolator that yields good agreement with the observations. As shown in Figure 4, a fit with 
location µ = -176 mm, scale  = 517 mm, and shape  = -0.305 reproduces the observed 

anomalies quite well. Note also that the hourly anomalies range over roughly 3000 mm—two 
orders of magnitude larger than the standard deviation of the unresolved interannual 
variability of approximately 24 mm shown in Figure 3. As an approximation in the interest of 
model parsimony, we hence neglect the relatively small effects of the unresolved intra-annual 
variability for the projection of flooding risks. 
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Figure 4: Black Line Shows the General Extreme Value (GEV) Distribution Fitted to the Hourly Sea 
level Anomalies with Respect to the Annual Mean Value Observed Close to PoLA (Caldwell 2010). 

The estimated GEV distribution parameters are given in Table 1. The blue line shows the GEV 
distribution with an expanded scale parameter of  considered in the decision analysis, as 

described in the test. 
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There is, however, no guarantee that the future distribution of hourly anomalies will remain 
stationary due to climate change and other factors. To represent these potential, deeply 
uncertain future changes we consider a set of GEV distributions, created by varying the scale 
parameter over the range 517 mm   569 mm , where the lower bound is the current scale 

and the upper bound is 10 percent larger. In general, other distribution parameters (such as the 
shape parameter) could also be varied, but as shown below there is insufficient scientific 
information available to justify this degree of fidelity. The mean of a GEV distribution is given 
by the expression     11   , where  is the gamma function (Hosking 1990). As 

the scale varies, the mean of the hourly anomaly around the annual mean must remain constant 
(our treatment of the anomalies demand that they do not shift the annual mean), so we write 
the location of each distribution in our set as 

     1305.1517176  mm  176 0.1033  517mm  .                    (6) 

3.1.3 Experimental Design 

Our initial analysis considers a decision where PoLA upgrades a terminal in 2020; the costs of 
hardening are small, Charden/Cupgrade = 1 percent; and PoLA uses a discount rate of 5 percent per 
year. As this analysis will show, this low hardening cost is considered because it is at the high 
end of near-term investments PoLA might reasonably make to protect its terminals against 
extreme sea level rise. In Section 4, we repeat the analysis for three other PoLA facilities with 
different combinations of heights and hardening costs to provide some summary insights. 

To evaluate this decision, we generate a 500-point Latin hypercube (LHC) sample (Bursztyn and 
Steinberg 2006) over the five deeply uncertain parameters: three for future sea level rise ( c *, 

t *, and  ) and two for future terminal management ( L  and pcrit), using the parameter ranges 
shown in Table 1. The LHC method provides a numerically efficient sample of the space of 
deeply uncertain parameters. For each case in the sample, the parameters are treated with well-
characterized uncertainty by calculating the cost savings for 700 equally likely combinations of 
values for the parameters a, b, and c. The average is then taken, to yield the expected savings for 
that case. Thus, for each of the 500 cases in the LHC sample, the expected savings of a decision 
to harden at the next upgrade is calculated, contingent on the distribution for the parameters 
with well-characterized uncertainty (a, b, and c) and on a particular set of values for the deeply 
uncertain parameters c *, t *,  , L , and pcrit. 

The results are summarized in Figure 5. The histogram shows that in about 327 of the 500 cases 
a decision to harden at the next upgrade would fail a cost benefit test. In 173 of the cases, such a 
decision would have some cost savings. In a small number of those cases, the cost savings 
would be quite large, up to 20 times the cost of hardening. 
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Figure 5: Histogram of Model Results Generated with 500-point Latin Hypercube Sample over 
Deeply Uncertain Parameters in Table 1. Positive values indicate cases in which hardening at next 

upgrade passes a cost-benefit test. 

3.2 Identifying Scenarios Where Early Hardening Passes a Cost-
Benefit Test 

We perform a scenario discovery analysis using this database of 500 cases to identify a scenario 
in where PoLA might regret a decision not to harden at the next upgrade. Scenario discovery 
(Bryant and Lempert 2010) applies a cluster analysis to a database of simulation model results, 
seeking to identify those combinations of uncertain input parameters which most concisely 
predict certain policy-relevant outcomes. Here we seek those combinations of the five deeply 
uncertain parameters that best predict those cases where a decision to harden at the next 
upgrade would pass the cost-benefit test. Previous applications of scenario discovery have used 
PRIM (patient rule induction method) to identify these clusters of cases. Here this approach is 
augmented by first applying a principle component analysis (PCA) to the parameters c * and 

t * and then applying PRIM to the resulting rotated set of parameters, as described in Dalal et 
al. (submitted). This PCA and PRIM combination can prove useful in situations where the 
scenarios can be best described by linear combinations of some uncertain input parameters, 
rather than just hyper-rectangular regions in the space of original input parameters. 

This scenario discovery analysis suggests, as shown in Figure 6, that the decision to harden at 
the next upgrade might pass the cost-benefit test in cases with a near-term and rapid increase in 
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sea level, given by c*14mm yr  0.3mm yr t *2010  ; a long terminal lifetime, given by 
L>50 years; and a significant increase in the hourly anomaly, given by >533 mm . The value 
of the critical threshold pcrit appears relatively unimportant to PoLA’s decision of whether or 
not to harden at the next upgrade. 

These three conditions define a cluster of cases that we label the Harden at Next Upgrade 
scenario. As described in Bryant and Lempert (2010), this cluster can serve as a scenario useful 
for decision making. The three conditions represent the scenario’s driving forces. The cluster 
analysis also provides two measures—coverage and density—of the scenario’s quality. This 
scenario has coverage of 63 percent, that is 109 of the 173 cases in the LHC sample where 
hardening at the next upgrade passes a cost-benefit test meet the three conditions in Figure 6. 
The scenario has density of 96 percent, that is, of the 113 cases in the sample that satisfy the 
conditions shown in Figure 6, 109 of them pass the cost-benefit test.  

It is possible to calculate a probability threshold for this scenario, that is, the likelihood PoLA 
would have to ascribe to it so that the expected cost savings for hardening at the next upgrade 
are greater than zero. This probability threshold Pthres  is the smallest value that satisfies 

PthresSHarden Scenario  1Pthres SAll Other Cases  0                                 (7) 

where SHarden Scenario  is the average savings of the cases that satisfy the conditions shown in Figure 
6 and SAll Other Cases  is the average savings of all the other cases in the considered parameter 
sample. We estimate these averages with a uniform distribution over the two respective sets of 
cases, which yields a Pthres  >7%. 

Thus PoLA might reasonably chose to harden its terminals at the next upgrade if they judged 
the probability of the Harden at Next Upgrade scenario, as defined by the conditions in Figure 6, 
to be at least 7 percent. 
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Figure 6: Parameter Ranges Defining the Harden at Next Upgrade Scenario. The blue boxes show 
the conditions under which a decision to harden at the next upgrade would pass a cost-benefit 

test. 

 

3.3 Scientific Evidence Regarding the Harden at Next Upgrade 
Scenario 

We now analyze information that can help inform the judgments regarding the likelihood of the 
Harden at Next Upgrade scenario. In particular, climate science can help inform judgments about 
the likelihood of values of the parameters c*, t *, and   that satisfy the conditions that define 
this scenario. 

Note first that the condition c*14mm yr  0.3mm yr t *2010  implies a sea level rise 
contribution from poorly understood processes of about 1400 mm in 2100. When combined with 
the roughly 500 mm contribution from well-understood processes, the Harden at Next Upgrade 
scenario implies a roughly 2 meter (m) sea level increase by century’s end. Such a level is 
within, but at the high end, of some current sea level rise projections (see Figure 7, as well as 
Pfeffer et al. 2008; CO-CAT 2010; and Vellinga et al. 2009). This suggests that the scenario may 
be less likely than the 7 percent threshold derived from the economic analysis. A more detailed 
understanding can result from estimates of joint probability distributions for c *and t *. While 
imprecise, such probability estimates can usefully contribute to judgments about the conditions 
under which PoLA might consider hardening its terminals at the next upgrade. 
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Figure 7: Parameter Estimates Resulting from the Model Calibration to the: (a) Extended 
Scenarios of Pfeffer et al. (2008), and (b) the CO-CAT (2010) Scenarios. The former uses a beta 

distribution and the latter a uniform distribution, and both begin with a uniform prior, as described 
in the text. 

 

Several studies such as Pfeffer et al. (2008), CO-CAT (2010), and Vellinga et al. (2009) have used 
physical arguments to derive upper and lower bounds for sea level rise in the year 2100. These 
bounding analyses typically extend well beyond the range of sea level rise predictions based on 
empirical or Earth system models (e.g., Grinsted et al. 2010; Kemp et al. 2011; Rahmstorf 2007) 
because they include processes that are typically poorly resolved in the more detailed models. 
Joint probability distributions are estimated for c* and t* by sampling from broad prior 
distributions and applying a rejection sampling to approximate the results of these bounding 
analyses. This study uses two different sets of projections—a modification of the analysis of 
Pfeffer et al. (2008) and the California Sea Level Rise Interim Guidance document CO-CAT 
(2010)—which yield two different joint probability distributions and thus a range of estimates 
for the likelihood of the condition c*14mm yr  0.3mm yr t *2010  . 

Pfeffer et al. (2008) analyze kinematic constraints on the sea level rise contributions from land-
based ice and derive lower and upper bounds of 785 and 2008 mm for sea level rise in the year 
2100 and a “more plausible” estimate of about 800 mm. We introduce two adjustments to the 
Pfeffer et al. (2008) results because these previous results neglect uncertainties due to 
thermosteric sea level rise and the divergence between global mean and local sea level change. 
The lack of uncertainty assessment of about the thermosteric sea level rise component is 
addressed by adding an additional rise of -230 to + 200 mm. This uncertainty range is derived 
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from a comparison of observed sea levels and an ensemble of runs from an Earth System Model 
of Intermediate Complexity, that includes a three-dimensional dynamic ocean general 
circulation model and samples key parametric uncertainties (Sriver et al. 2012).2 The local 
circulation effects are approximated with an additional rise of +/- 300 mm. This range is 
approximately the range of projected local sea level rise anomalies with respect to the global 
mean at the end of this century (Meehl et al. 2007). This range is also roughly consistent with the 
divergence of the simple parabolic fit to the local (PoLA) and global (Jevrejeva et al. 2006) 
observations extrapolated to the year 2100 (results not shown). These two adjustments yield a 
modified lower and upper bounds for the annual mean local sea level in 2100 of 255 mm to 
2508 mm with a more plausible value of 950 mm (Figure 7). This line of evidence is then 
approximated using a rescaled beta distribution, chosen because it provides a good 
approximation of the upper and lower bounds, as well as the most-likely regions. Applying a 
rejection sampling approach to approximate or emulate the resulting expert assessment for the 
projected sea level rise in the year 2100 allows us then to estimate joint distributions for c* and t* 
as shown in Figure 7.3  

The California Sea Level Rise Interim Guidance Document (CO-CAT 2010) reviews a number of 
published sea level rise projections and derives a sea level rise of between 310 and 1760 mm for 
California in the year 2100. Note that these “projections do not account for catastrophic ice-
melting” and are for a specific region (as opposed to the global mean). In the same way as we 
have modified the Pfeffer et al. (2008) scenario, we approximate the local circulation effects with 
an additional rise of +/- 300. This results in a modified CO-CAT (2010) range of 10 to 2060 mm 
by the end of the twenty-first century. We approximate this line of evidence using a uniform 
distribution, because the CO-CAT study reports no most plausible value. Using again a 
rejection sampling produces a joint distribution for c* and t* that approximates this expert 
judgment. 

We can now use each of the Pfeffer et al. (2008) and CO-CAT (2010) derived distributions to 
estimate likelihoods for the condition c*14mm yr  0.3mm yr t *2010  . As shown in 
Figure 8, the two distributions, though different, yield similar estimated likelihoods for this 
condition, of roughly 14 percent and 16 percent for the Pfeffer et al. (2008) and CO-CAT (2010) 
bounding analyses, respectively. We can thus express the probability that the inequality is 
satisfied as the narrow range 

               
       (8) 

                                                      
2 The asymmetry of this range is due to the slight difference between the median thermosteric sea level 

rise estimate adopted by Pfeffer et al. (2008) and the estimate from Sriver et al. (2012).   

3 This fit also yields a joint distribution for the parameters a, b, and c, which is largely uncorrelated with 
that for c* and t*, and thus consistent with that used in Section 3.1.1. 
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Figure 8: The Red Line Shows Estimates of the Likelihood of the First Condition Describing the 
Harden at Next Upgrade Scenario Shown in Figure 6, Using the: (a) Beta Distribution Fit to the 

Projections of Pfeffer et al. (2008) and (b) the Uniform Distribution Fit to the Projections of 
CO-CAT (2010) Shown in Figure 7. Green and blue lines show an analogous condition for two 

other PoLA facilities, Berths 206–209 and Alameda and Harry Bridges Crossing, respectively, as 
shown in Table 2. 

 

The scientific evidence regarding the condition for the hourly anomaly is even more sparse than 
that for c* and t*. Some studies suggest that the future hourly anomaly may remain unchanged 
from that currently observed. Translated into the approximation using a GEV distribution, this 
implies that is the distribution parameters may be assumed to be constant over time, i.e.: 
  517mm . For instance, the global-scale data analyses of Woodworth and Blackman (2004) 
and Menendez and Woodworth (2010) conclude that the changes in the extremes are similar to 
the changes in the mean. In contrast, the studies of Bromirski et al. (2003) and Mendez et al. 
(2007) find that the observed variability of sea levels has been increasing at several locations. 
Cayan et al. (2008) analyze model projections and place bounds on future increases in 
storminess near San Francisco. These bounds would correspond in our analysis to a range 
of 517mm   533mm . Figure 4 compares the GEV distribution with  = 533mm to that with 
  517mm  

These bounds may prove too narrow because the models used to project the short-term 
variability might miss important processes, such as potential changes in El Niño/Southern 
Oscillation properties or storm surges (Meehl et al. 2007), which is why the range used in our 
experimental design (See Table 1) is larger. Note that the values at the high end of our 
experimental design range produce a storm surge of roughly 1.6 meters at the return rates of 
relevance to this analysis. In contrast, Hurricanes Ike and Katarina in the U.S. Gulf Coast 
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produced a maximum surge of up to 7 or 8 meters.4 Storm surges are affected by the intensity of 
storms as well as the topography of region. At this time it is very difficult to define physically 
based bounds for future changes in storm frequency and intensity due to climate change 
(cf. Cayan et al. 2008). However, future and more refined data and numerical analyses might be 
able to improve the estimate of the maximum surge height that different-sized storms might 
produce in the Port of Los Angeles, and thus develop more plausible bounding cases for the 
parameter  to be used in future analyses. 

This disparate evidence regarding the likelihood of the Harden at Next Upgrade scenario can be 
summarized by asking the following question: Given the estimated range of likelihood for the 
condition on c* and t*, what range of likelihoods on the conditions for   and L  would yield a 
probability for the scenario greater than its critical threshold? That is, what set of values for 
Pr[  533 mm] and Pr[L  50 years] , the probabilities, respectively, that   and L  meet the 
conditions shown in Figure 6, satisfy the equation 

 Pr[  533 mm]Pr[L  50 years]Pr[c* 14
mm

yr
 0.3

mm

yr
(t*  2010)] 7%    (9) 

Figure 9 shows the resulting probability region, which suggests that PoLA should only choose 
to harden its terminals at the next upgrade if it ascribes probabilities of at least about 67 percent 
to the conditions L>50 years and  > 533mm. Given that the condition on the lifetime is longer 
than those PoLA has previously experienced, and the condition on the hourly anomaly increase 
is at the high end of available scientific evidence, PoLA might reasonably choose not to harden 
at the next upgrade of this facility, even at a cost of 1 percent of the cost of the upgrade. 

 

                                                      
4 Hurricane Ike storm surge: http://www.nhc.noaa.gov/sshws_statement.shtml, Hurricane Katarina 

storm surge: http://en.wikipedia.org/wiki/Storm_surge.  
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Figure 9: Probabilities of a Long Terminal Lifetime (L> 50 years) and Significant Increase in the 
Daily Anomaly (> 533 mm) Required for Decision to Harden Terminal Bottoms (H = 2804 mm) (at 

Next Upgrade to Pass a Cost-Benefit Test. Dark and light shaded regions show probabilities 
required using high and low estimates, respectively, of likelihood of condition on c* and t*. The 

dashed lines show boundary of probability regions for decisions to harden the other three 
facilities described in Table 2, which also lists the specific conditions for L and  in each case. 
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Section 4: Comparison with Full Probabilistic Analysis 

The steps of a full probabilistic analysis proceed in the opposite order from the Robust Decision 
Making (RDM) approach. To illustrate the comparison with RDM, we conduct a full 
probabilistic analysis of the PoLA decision considered above. As its first step, this new analysis 
uses the best available science to estimate a single joint probability distribution for all the 
uncertain input parameters in equations 2 and 5. The analysis then uses these equations and a 
Monte Carlo sample over their inputs to calculate a distribution for the cost of hardening at the 
next upgrade.5 

The right-most column of Table 1 shows our best estimate probability distribution over the 
model input parameters.  

The parameters driving the annual mean sea level are given by the distributions shown in 
Figure 7. This figure only shows the c* and t* values. But as described above, these distributions 
were produced by fitting to both the observational data and the extended Pfeffer and CO-CAT 
scenarios. These fits also generated distributions for the a, b, and c parameters. The correlations 
between these later parameters and c* and t* are weak. The RDM analysis in this study ignores 
them, while the full probabilistic analysis includes them. We have no information to distinguish 
the relative likelihood of the Pfeffer et al. and CO-CAT scenarios, so we assume a uniform 
prior—that is, each are equally likely. 

We use a set of GEV distributions, with the scale spanning the full range, 517 mm   543 mm , 
described in the literature. With no information to distinguish the relative likelihood of these 
values, a uniform prior is assumed. As in the RDM analysis, the location of hourly anomaly 
distribution for value of   is given by Eq (6) to leave the mean annual sea level unchanged. 

We have no information to determine the relative likelihood of different values of the maximum 
allowable overtop probability, pcrit , so we assume a uniform prior over the range used in the 
RDM analysis. 

We also lack any information to determine the relative likelihood of different values of the 
terminal lifetime. But many analyses do show the results of full probabilistic analyses as a 
function of a range of values for a single parameter; a convention we will adopt here. 

Figure 10 shows the results of this full probabilistic analysis, plotting the probability that 
hardening at the next upgrade would pass a cost-benefit test and the expected cost as a function 
of the terminal lifetime L. These results use 1954 Monte Carlo samples for each value of L. The 

                                                      
5 It is important to distinguish between two distinct roles for the stochastic samples used in this paper. In 

the RDM analysis, the quasi-random Latin Hypercube sample aims only to efficiently explore the full 
range of plausible model results.  The sample makes no statement about the relative likelihood of 
alternative cases in the real world. In the full probabilistic analysis, the Monte Carlo sample aims to 
reproduce our best-estimate of the likelihood of cases in the real world, in order to facilitate the 
calculation of expected cost. 
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probability of a positive cost-benefit is never high—at most, 16 percent for terminal lifetimes of 
100 years. Not until the terminal lifetime exceeds about 50 years do our calculations show a 
greater than 1 percent probability that early hardening passes a cost-benefit test.  

 

 

Figure 10: Results of Full Probabilistic Analysis Showing Expected Cost of Hardening at Next 
Upgrade and Probability of Passing a Cost-Benefit Test as a Function of the Terminal Lifetime 

 

The RDM and full probabilistic analyses thus appear to give similar recommendations. Both 
suggest that PoLA should not harden its terminals at the next upgrade at a cost of 1 percent (or 
higher) of the total upgrade cost. Only in situations where the terminal lifetime is very long, 
greater than about 50 years, is there any possibility that such hardening would pass a cost-
benefit test, and even in such cases the probability that it would do so seems low. 

The two analyses do, however, provide different information to decision makers and envision 
two different types of engagement with stakeholders. 
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The full probabilistic analysis collects all the analysts’ judgments at the start of the process. 
Once the probability distributions over future states of the world are defined, the analysis yields 
recommendations that follow deductively from the probability estimates and the simple, but 
explicit, representations of the decision makers’ preferences (e.g., the adopted decision-criterion 
of an expected benefit-cost ratio). As its primary products, the analysis provides distributions of 
the outputs of interest to decision makers—in this case, the expected cost of an early upgrade, 
and a ranking of the desirability of alternative decisions. In this case, the early upgrade is less 
desirable because its expected cost exceeds that of not upgrading. Sensitivity analysis can also 
suggest which uncertain input parameters contribute most to the variance of the outputs. 

The RDM analysis follows a more complicated process and one that employs analysts’ and 
decision makers’ judgments at more stages. The process begins by focusing on a specific 
proposed decision. Analysts then create an experimental design over the uncertain model input 
parameters designed to test this decision, judging which uncertainties to treat as well 
characterized and which to treat as deep. Next analysts and decision makers use simulation 
model results to identify scenarios where the policy fails to meet its goals—in this case, where a 
decision to harden at the next upgrade fails a cost-benefit test. Analysts then present the 
scientific evidence that could help decision makers decide whether such scenarios are 
sufficiently likely to justify taking an alternative decision. The RDM analysis does not in general 
produce a ranking of strategies, but rather provides information to help decision makers weigh 
their choices. As part of this process, the RDM analysis explicitly describes the scenarios where 
a proposed policy may fail to meet its goals and defines a probability threshold—that is, the 
likelihood that a decision maker would ascribe to that scenario in order to justify taking action 
to address it. 

The two approaches also embody different treatments of uncertainty, which we can usefully 
summarize with reference to the Intergovernmental Panel on Climate Change (IPCC) 
uncertainty guidance. This guidance provides a template for judging confidence in scientific 
judgments based on the level of supporting evidence and agreement (Mastrandrea et al. 2010). 

Figure 11 uses this template from the IPCC uncertainty guidance (Mastrandrea et al. 2010) to 
summarize the scientific information about future sea level rise used in our RDM and full 
probabilistic analyses. The figure shows the a, b, and c parameters in the upper right-hand 
corner because, as described above, there exists a high level of both evidence and agreement 
that the polynomial model structure fit to past observations should provide reasonable 
projections of the contributions of future sea level rise due to well-resolved processes such as 
thermal expansion. If, as discussed in Section 6, these terms were more properly represented as 
a mix of well- and less well-understood processes, the former would remain in this upper right-
hand corner and the latter would reside elsewhere on the figure. The figure shows the c* and t* 
in the middle left-hand side, because there is little direct observational evidence for potential 
changes in the system dynamics (for example by “rapid dynamical changes in ice-flow” (Alley 
et al. 2005). However, there exists some agreement on the upper bounds on such contributions 
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to sea level rise over the next century (Alley et al. 2005; Allison et al. 2009; Pfeffer et al. 2008). 
The figure shows  in the lower middle left because few studies and little agreement exists on 
how climate change might affect the future hourly anomaly at PoLA, but the worldwide 
diversity of current storm surge patterns in different locations with different topographies may 
provide useful evidence for estimating upper bounds on what the port might expect over the 
twenty-first century. 

 

 

Figure 11: Assessment of the Evidence and Level of Agreement Underlying the Scientific 
Information Used in this Analysis, Following the Characterization Method of Mastrandrea et al. 

(2010). The size of the text reflects the importance of information to PoLA’s decision. Italics show 
that the factor was considered deeply uncertain in the RDM analysis. 

 

The RDM analysis in Section 3, as would an analysis of variance in the full probabilistic 
analysis, makes clear that PoLA’s decision whether or not the harden at the next upgrade 
depends more strongly on scientific estimates in which we have low confidence than those in 
which we have high confidence. The full probabilistic analysis does not distinguish between 
these levels of confidence when informing PoLA’s decision. The RDM analysis, in contrast, 
distinguishes between information with different levels of confidence, differentiating between 
relatively well-characterized uncertainty (e.g., sea level rise that follows the past observed 
dynamics) and deeply uncertain information (e.g., abrupt potential future dynamic changes of 
land ice, the hourly anomaly, or the characteristics of future terminal management). 
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In brief, the full probabilistic analysis embodies a concept where experts assemble the best 
available science so that this information can be used to inform a ranking of alternative decision 
options. The RDM analysis embodies a scenario concept that explicitly distinguishes among 
differing levels of scientific confidence. In addition, the analysis helps decision makers 
recognize potentially stressing cases, consider how they might respond, and communicate this 
information within and externally to their organization. In other work, we have described how 
decision analytic approaches such as RDM that begin with policies, identify vulnerabilities, and 
then suggest potential responses can lead to more productive engagement with decision makers 
than do approaches that rank options based on specified probabilities (Bryant and Lempert 
2010; Lempert and Popper 2005; Lempert et al. 2003). Here we show how the former approach 
can also represent in the analysis information with differing levels of uncertainty, which may 
also facilitate engagement with decision makers. 
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Section 5: Results for Additional PoLA Facilities 

The analyses thus far consider one specific PoLA facility. This section examines three additional 
facilities of interest to PoLA staff. Table 2 summarizes the results from Section 3, along with 
similar analyses for each of three additional facilities: the top of the terminals, which lie 12.14 ft 
(3700 mm) above mean sea level (MSL); Berths 206–209, which lie 7.62 ft (2323 mm) above MSL; 
and the Alameda and Harry Bridges Crossing, which lies 6.13 ft (1868 mm) above MSL. For 
each facility the table lists: two infrastructure characteristics, height above mean sea level and 
the hardening cost we assumed; the conditions describing the Harden at Next Upgrade Scenario 
for those infrastructure characteristics (including the coverage and density for that scenario as 
discussed in Section 3.2); and the resulting probability thresholds and estimates. The Harden at 
Next Upgrade Scenario for each facility and the corresponding probability threshold for that 
scenario is identified following the procedure described in Section 3.2. The likelihood for the 
conditions on c* and t* for each facility’s Harden at Next Upgrade scenario are calculated as 
described in Section 3.3 and shown in Figure 8. 

As described in Section 3.1.3, this study assumes a hardening cost at the next upgrade for each 
of the facilities sufficiently low so that PoLA might reasonably consider such an investment for 
some probability threshold. The hardening costs for the three additional facilities, as shown in 
Table 2, are 0.1 percent for the terminal top, 5 percent for Berths 206–209, and 25 percent for the 
Alameda and Harry Bridges Crossing. Figure 10 compares the range of threshold probabilities 
to the probability region for the terminal bottom upgrade decision. (It is important to note 
however in comparing these probability ranges that the conditions on L and differ for each 
facility as shown in Table 2.) Not surprisingly, given this choice of costs, the conditions on the 
Harden at Next Upgrade Scenarios for each of these facilities becomes progressively less extreme—
that is, require less rapid sea level rise, shorter facility lifetimes, and less increase in 
storminess—as the height of the infrastructure above mean sea level becomes lower. 

PoLA’s estimates of the cost of hardening at the next upgrade are significantly higher than most 
of the values assumed in our analysis for all but the Alameda and Harry Bridges Crossing 
facility. The Port estimated that hardening would cost roughly 25 percent of the cost of the 
upgrade for each of the four facilities. Our results thus suggest two main conclusions for PoLA. 
First, of the facilities considered, the Alameda and Harry Bridges Crossing is the only location 
that merits serious consideration for hardening against rapid sea level rise at the currently 
estimated costs. Second, PoLA would have to develop strategies for hardening that are 5 or 250 
times lower than its current estimates to make a hardening at the next upgrade decision 
reasonable for the other facilities considered here. 



29 

Table 2: Characteristics and Results of RDM Analysis for Four Sets of PoLA Infrastructure: Terminal 
(Bottom) Discussed in Section 3; Terminal (Top), Berths 206–209, and the Alameda and Harry Bridges 

Crossing 

 Terminal 
(top) 

Terminal 
(bottom) 

Berths 206–
209 

Alameda 
and Harry 

Bridges 
Crossing 

Infrastructure Characteristics 

MSL Height (H) 12.14 ft 

3700 mm 

9.20 ft 

2804 mm 

7.62 ft 

2323 mm 

6.13 ft 

1868 mm 

Cost (% of 
upgrade) 

0.1% 1% 5% 25% 

Harden at Next Upgrade Scenario 

Year 2010 intercept 
and slope of 

condition for c* 
and t* 

14 mm/yr 

0.3 mm/yr2 

14 mm/yr 

0.3 mm/yr2 

11 mm/yr 

0.4 mm/yr2 

5 mm/yr 

0.4 mm/yr2 

L > (years) 75 50 50 30 

  >  543 mm (5%) 533 mm (3%) 520 mm (0.6%) 527 mm (2%) 

Coverage/ 
Density 

40% / 68% 63% / 96% 64% / 99% 78% / 91% 

Probability Thresholds and Estimates 

PThres 11% 7% 10% 14% 

Pc*,t* = 14–16% 14–16% 13–16% 34–35% 

PL P   69–79% 44–50% 63–77% 40–41% 
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Section 6: Concluding Observations 

This study examines how an organization such as the Port of Los Angeles can evaluate the 
potential for presumably low probability but large impact levels of extreme future sea level rise 
in its infrastructure investment decisions. Considering such extreme climate changes can prove 
difficult because of the deep uncertainty involved, not only in any scientific projections, but also 
regarding any expectations of future socioeconomic conditions that may affect judgments about 
the value of alternative near-term infrastructure investments. 

This study addresses this challenge by employing robust decision making (RDM) to address the 
following question: Should PoLA make an additional investment to harden its facilities against 
potential extreme future sea level rise during the next major upgrade of those facilities? Robust 
decision making represents one of a number of new decision analytic approaches that address 
deep uncertainty by beginning with a specific set of options facing a decision maker and then 
identifying specific information about the uncertain future that might affect the decision 
makers’ choice among those options. Robust decision making implements what has been called 
a “context first” or “vulnerability and robust response” analysis by answering two questions: 
(1) Under what future conditions would a PoLA decision to harden its facilities at the next 
upgrade pass a cost-benefit test, and (2) Does current science and other available information 
suggest that such conditions are sufficiently likely to justify such an investment?  

In particular, this study’s RDM analysis conducts a cost-benefit analysis of a PoLA decision to 
harden at the next upgrade over 500 cases representing a wide range of assumptions about 
future sea level rise and its future facility management. The analysis next uses a cluster analysis 
on the resulting database of simulation model outcomes to concisely describe scenarios where a 
decision to harden passes a cost-benefit test and estimates a probably threshold for those 
scenarios, that is the likelihood PoLA would need to ascribe to the scenario to choose to harden. 
Finally, the analysis evaluates the scientific evidence that would suggest whether the scenario is 
sufficiently likely or unlikely to justify a decision to harden. 

This study conducts such an RDM analysis for four PoLA facilities of varying height above 
mean sea level: the underside of the container ship terminals, the top of those terminals, Berths 
206–209, and the Alameda and Harry Bridges Crossing. Given the assumptions and decision-
criteria embedded in this study’s analysis, a decision to harden at the next upgrade merits 
serious consideration only for one out of the four facilities considered: the Alameda and Harry 
Bridges Crossing. The Port of Los Angeles would need to identify hardening costs that are 5, 25, 
and 250 times lower than current estimates to warrant additional study for Berths 206–209, the 
terminal bottoms, and terminal tops, respectively. 

Our analysis employs many simplified representation of important physical uncertainties and 
process, which introduce important caveats and also point to future research. For example, the 
sea level projections do not include the effects of different greenhouse gas forcing projections 
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(e.g., Meehl et al. 2007; Pardaens et al. 2011). The simple sea level rise model fails to account for 
the complex mixture of response time-scales (e.g., Holgate et al. 2007; Siddall et al. 2010; Kemp 
et al. 2011). We assume that future changes in the dynamics of the system (e.g., due to changes 
in ice-flow dynamics) introduce a step-function change in the rate of sea level rise, when in 
reality such changes would happen over time. In particular, some fraction of past sea level 
changes are due to changes in land-ice and model hindcasts, and projections of this component 
are deeply uncertain (e.g., Church et al. 2008; Milne et al, 2009; Pollard 2010; Pfeffer 2011). In 
representing all past sea level rise, as well-characterized uncertainty, we neglect considerable 
structural uncertainties about the most appropriate mixture of functional forms (cf., von Storch 
et al. 2008).  

The RDM framework used in this study could accommodate these richer physical descriptions 
and their multiple levels of attendant uncertainties. For instance, these processes might be 
represented with more complex models that resolve more of the relevant processes using 
physically motivated parameterizations (e.g., Irvine et al. 2012). These more complex models 
would introduce additional uncertain parameters into the RDM analysis. While the neglect of 
such processes in this study would not seem to affect any of our conclusions, including them in 
more detailed treatments of port infrastructure investment decisions would make for useful 
further research. 

This study also compares its RDM analysis of a decision to harden the terminal bottoms to a full 
probabilistic analysis. Such an analysis uses the best available science to estimate a single joint 
probability distribution for the uncertain model input parameters and then calculates the 
expected savings from an investment to harden and the probability that such an investment 
passes the cost-benefit test. 

The RDM and full probabilistic analyses give similar recommendations to PoLA regarding the 
investment considered here, but they provide different information to decision makers and 
envision different types of engagement with stakeholders. The full probabilistic analysis begins 
with the best scientific estimates and provides decision makers with the expected savings from 
an investment to harden. The RDM analysis begins by describing the conditions where such an 
investment would pass a cost-benefit test, estimates the probability such a scenario would have 
to have to justify making the investment, and then assembles the scientific evidence that can 
help a decision maker judge whether or not the investment is worthwhile. In situations where 
decision makers have confidence in the best scientific estimates of the probability distributions, 
the full probabilistic analysis provides a more streamlined approach. But in situations, such as 
those faced by PoLA as it considers the potential for extreme sea level rise, where the scientific 
estimates of probabilities are at best imprecise, approaches such as RDM may provide a more 
convenient and transparent framework for organizing the relevant scientific information and 
applying it to the decision. 
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