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ABSTRACT 

Species ranges are dynamic, and often respond to changes in global climate. Recorded increases 
of global average temperatures through the twentieth century have already resulted in 
observed shifts of species ranges within California. Projections of future species distributions 
under climate change are possible through models that correlate known species occurrences 
with observed historical climate, then project this correlation onto scenarios of climate change. 
Previous work in California has focused on modeling changes in the distribution of vegetation 
and species. This study expands on this work through (1) modeling species at finer spatial 
scales than previously possible, (2) applying those models in advanced conservation planning 
tools, and (3) illustrating the intersection of human adaptation and conservation under climate 
change. Section 1 presents a suite of species distribution models created with climate and water 
balance data that has been statistically downscaled to finer horizontal resolutions than previous 
statewide modeling efforts. The models encompass range simulations for over 2,000 native 
California plant species at scales of 90 meters, 270 meters, 800 meters, 4 kilometers, and 16 
kilometers, using three time periods, two global climate models, and two emissions scenarios. 
Section 2 presents Network Flow Analysis that has been developed as a conservation planning 
tool to assess landscape connectivity for species to respond to climate change. California is a 
particularly challenging application for Network Flow Analysis because of its large size and 
diverse flora. This paper presents methods that have been developed to overcome these 
challenges and applied as proof-of-concept for use in California. Section 3 presents changing 
suitability for wine grape cultivation in California using fine-scale (270 meter) 
climatology. Results from this study show that projected future distributions of climates 
currently associated with California viticulture may result in cropping changes or other 
adaptive responses from wine grape growers, with potentially serious implications for land and 
water conservation. 
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Section 1: Fine-Scale Species Models 

1.1 Introduction and Background 

Previous assessment work in California has focused on modeling of changes in the distribution 
of vegetation types and species. These analyses have been conducted at scales of kilometers. 
Recent advances in climate downscaling now make it possible to implement species models at 
sub-kilometer scales. Yet coarser-scale models remain relevant for statewide assessment, where 
fine-scale models become computationally intensive. We therefore have modeled California 
native plant species for this assessment at multiple scales: 90 meters (m), 270 m, 4k m, and 
16 kilometers (km). The 90 m modeling is over 100 times finer resolution than the previous 
1 km-scale state assessment species models. The remainder of this introduction presents the 
history of species modeling, its rationale, the development of fine-scale modeling techniques, 
and the importance of fine-scale models.  

Species’ responses to temperature increases have already resulted in observed shifts of species’ 
ranges both poleward and upward along elevational gradients (Parmesan 2006). Recent 
research provides empirical evidence of shifting species ranges. Kelly and Goulden (2008) 
compared 1977 and 2006–2007 plant cover surveys along a 2,314 m elevation gradient in the 
Santa Rosa Mountains of Southern California. The study found that the elevation of the 
dominant plant species rose by an average 65 m between survey periods. Moritz et al. (2008) 
document an average of 500 m upward change in the range limits of small mammal species in 
Yosemite National Park in comparison to surveys conducted in the early twentieth century 
(Grinnell 1924). 	

California’s Mediterranean habitat diversity has evolved under hot, dry summers and cool, wet 
winters (Ackerly 2009), but climate projections for California indicate that this climate regime 
may contract by up to 20 percent of current extent by 2050 (Klausmeyer and Shaw 2009). Mean 
annual temperatures in California have already increased by 1˚C (1.8˚F) between 1950 and 2000 
(LaDochy et al. 2007), and in the future novel climates are expected to appear (Williams and 
Jackson 2007). Under the current global greenhouse gas emissions trajectory, California’s 
average annual temperatures are projected to rise by 3.8˚C–5.8˚C (6.8˚F–10.4˚F) and annual 
precipitation changes may range anywhere from a decrease of 157 millimeters (mm) to an 
increase of 38 mm (Hayhoe et al. 2004; Cayan et al. 2008). The anticipated emergence of future 
climatic conditions with no current analog threatens endemic species with limited dispersal 
capability and/or a high degree of ecological specialization (Loarie et al. 2008; Stralberg et al. 
2009). 

In light of these changes, it is important to estimate the possible extent of species’ range 
movements due to future climate change. Many researchers in California have helped pioneer 
modeling designed to address this question. Early results have been very useful in framing 
conservation problems posed by climate change and making initial efforts at designing 
solutions. As these efforts have matured, a variety of modeling approaches have begun to 
converge, with many researchers now using Maxent as their main modeling tool. Scale of 
modeling has become increasingly fine-grained, with 800 m horizontal resolution now common 
and finer-resolution models (90 m–270 m) emerging. 
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To produce a uniform set of species distribution models at multiple scales, this project used 
newly available climate data and an improved dataset of species occurrence data for 2,235 
native California plant species. Modeled distributions were generated at 270 m, 800 m, 4,000 m, 
and 16,000 m for current climate, as well as mid-century and end-of-century projections across 
multiple general circulation model (GCM)/emission scenario combinations (Geophysical Fluid 
Dynamics Laboratory [GFDL] and Parallel Climate Model [PCM] projections; A2 and B1 
Intergovernmental Panel on Climate Change’s [IPCC’s] Special Report on Emissions Scenarios 
[SRES] emissions scenarios). A limited number of species (53 total) were modeled at 90 m, as the 
very large datasets involved precluded running and archiving all species. The capacity to run 
species on demand at 90 m now exists for all 2,235 species, however. The 270 m and 90 m 
datasets are the largest such modeling effort at the statewide domain with this newly produced 
fine-scale climatology.  

1.2 Methods 

1.2.1 Fine-scale Climatologies 
Historical climate data is based on PRISM (PRISM Climate Group, Oregon State University), 
and future climate data is from simulations of the GFDL (2001-2100) and PCM (2000-2099) 
models using A2 and B1 emission scenarios. All climate data were downscaled to 90 m and 
270 m and upscaled to 4,000 m and 16,000 m by Alan and Lorrie Flint of the United States 
Geological Survey (USGS) (Flint and Flint 2012) and to 16,000 m by us using the aggregate 
function in ArcGIS (ver 9.3). From annual monthly maximum temperature, minimum 
temperature and precipitation data, we calculated 30-year averages for the periods of 1971–
2000, 2040–2070, and 2070–2100.  

1.2.2 Species Distribution Model - Maxent 
Maxent 3.3.3e (Phillips and Dudik 2008) is used to generate a probability surface of species 
presence according to the environmental input layers (e.g., bioclimatic variables, soils) and the 
known locations of species occurrence. In building the predictive models presented in this 
paper, 70 percent of the occurrence points were used to correlate the environmental layers to 
observed species presence. The remaining 30 percent of occurrence points were reserved to 
validate the model. 

Standard Maxent output is a grid of continuous values from 0 to 1 representing the statistical 
correlation of the environmental layers based on what is observed at each known occurrence 
point of a particular species. When projected over the entire model domain (Figure 1.1), this 
correlation may be interpreted as the probability of species occurrence at the location of a 
particular grid cell. To produce a binary species range map (presence vs. absence), a threshold 
must be applied to the raw, continuous output. For modeled distributions presented here, the 
“equal sensitivity and specificity logistic threshold” (Figure 1.2) generated from the model test 
run is used to produce a binary range map (Figure 1.3) in each time period.  
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Figure 1.1: Sample Maxent Model for Present Distribution of Quercus Lobata. Warm colors 
indicate greater probability of species occurrence whereas cooler colors indicate lower 

probability. Species occurrence points used in building the model are depicted by white squares. 

 

 

Figure 1.2: Sample Maxent Output Plot of Model Sensitivity vs. 1 – Specificity. In this paper, the 
equal sensitivity plus specificity is used as a threshold to produce binary range maps from 

continuous value Maxent model output. 
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Figure 1.3: A Sample Binary Range Map Produced from the Maxent Model Shown in Figure 1.1. An 
equal sensitivity plus specificity logistic threshold is applied to produce the binary map. 

 

Binary maps representing modeled distributions for each of the three time steps (1971-2000; 
2040-2070; 2070-2100) may be overlaid to produce a “stoplight” map of range loss, gain, and 
stability (Figure 1.4). Though species’ differing abilities to adapt to climate change and the 
complexity of ecological processes that determine a species range (e.g., dispersal, specific soil 
requirements, species interactions, and population dynamics) caution against literal 
interpretation of modeled future distributions, the stoplight maps are instructive in that they 
highlight regions where a species is likely to be stressed by future climatic conditions versus 
regions that are comparatively stable, and therefore offer potential refugia for a species under 
climate change. As Section 2 will illustrate, systematically tracking potential climatic refugia 
through time for a large suite of species can provide insights into which regions will be 
important to provide the temporal connectivity that will accommodate shifting species ranges 
through time. 
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Figure 1.4: Example Output of Binary Maxent Species Distribution Model for Quercus lobata Using 
GFDL Climate Projections for Mid-century (2041–2070) under A2 Emissions Scenario at Two 

Different Horizontal Resolutions (A) 4 km; (B) 270 m. In all panels, Red = Present range lost by 
mid-century; Yellow = Novel range by mid-century; Green = Range retained in both time periods. 

 

1.2.3 Species Occurrence Data 
We used the California native and endemic plants database created at the University of 
California, Davis, to drive the species distribution models. The database contains point locality 
data from presence-only herbarium data and presence plus absence plot observation data. To 
minimize errors in point locality data, any points outside of known distribution by county or 
biological region were omitted. With these data points removed, species with more than 10 
documented point locality data points were chosen for statewide modeling. It is by this process 
that we arrived at the list of 2,235 native California plant species suitable for modeling current 
and future distributions. Many species on the list are endemic to California, but a species was 
not necessarily omitted from the list even if the majority of its documented range lies outside of 
California.  

1.2.4 Environmental Layers 
1.2.4.1 Bioclimatic Parameters 

In all species distribution models, eight bioclimatic variables calculated from monthly climatic 
data were used as predictor environmental layers. All bioclimatic parameters represent 30-year 
averages from the modeled time periods (1971–2000, 2040–2070, and 2070–2100). The 
bioclimatic parameters used in building species distribution models were:  

 Temperature Seasonality (bio_4) 
 Maximum Temperature of Warmest Month (bio_5) 
 Minimum Temperature of Coldest Month (bio_6) 
 Precipitation Seasonality (bio_15) 

A B 
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 Precipitation of Warmest Quarter (bio_18) 
 Precipitation of Coldest Quarter (bio_19) 
 Cumulative Growing Degree Days above 5°C (bio_20)1 
 Aridity Index (bio_24)2 – Aridity is defined as total annual precipitation/potential 

evapotranspiration  

This list of parameters was chosen in part by virtue of a principal component analysis (PCA) 
conducted over global Mediterranean climate regions. To capture a range of potential climatic 
predictor variables without appreciable correlation, we chose parameters that were likely to 
have readily identified, meaningful biological effects (e.g., Minimum Temperature of Coldest 
Month) and were less closely grouped on the PCA dendrogram (Figure 1.5). We also included 
Aridity Index because it combines climate variables with surface topology parameters (i.e., 
slope and aspect) that are expected to be important in determining species ranges at finer 
resolutions. Slope and aspect were calculated from digital elevation model (DEM) data at each 
scale using ArcGIS spatial tools. 

 

                                                      

1 Cumulative Growing Degree Days (GDD) are an accumulation of average temperature above a base 
temperature (5°C). 

 

where Tmin(i) and Tmax(i) are average minimum and maximum temperatures for month i and D is the 
number of days in month i. When Tmin(i) < 5C < Tmax(i) , we adjust the number of days in the month 
using D* = D(Tmax - 5) ⁄ (Tmax - Tmin). 

2 Aridity Index is a quotient of annual precipitation divided by potential evaporation. In this study the 
potential evaporation was calculated from received radiation and temperature using the methodology 
presented in Kay et al. (2008). Because we use slope and aspect to calculate received radiation, terrain 
affects Aridity Index. 
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Bio_1 = Annual Mean Temperature 
Bio_2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
Bio_3 = Isothermality (BIO2/BIO7) (* 100) 
Bio_4 = Temperature Seasonality (standard deviation *100) 
Bio_5 = Max Temperature of Warmest Month 
Bio_6 = Min Temperature of Coldest Month 
Bio_7 = Temperature Annual Range (BIO5-BIO6) 
Bio_8 = Mean Temperature of Wettest Quarter 
Bio_9 = Mean Temperature of Driest Quarter 
Bio_10 = Mean Temperature of Warmest Quarter 
Bio_11 = Mean Temperature of Coldest Quarter 
Bio_12 = Annual Precipitation 
Bio_13 = Precipitation of Wettest Month 
Bio_14 = Precipitation of Driest Month 
Bio_15 = Precipitation Seasonality (Coefficient of Variation) 
Bio_16 = Precipitation of Wettest Quarter 
Bio_17 = Precipitation of Driest Quarter 
Bio_18 = Precipitation of Warmest Quarter 
Bio_19 = Precipitation of Coldest Quarter 
Bio_20 = Cumulative Growing Degree Days above 5°C (41°F) 
Bio_22 = Precipitation as snow 
 

Figure 1.5: Dendrogram of Bioclimatic Parameters for Global Mediterranean Regions. Cluster 
analysis was used to generate the distances among the component loadings of each parameter 

from Principal Components Analysis. This analysis was then used to guide the selection of 
bioclimatic parameters used in species distribution models for California plant species. 
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1.2.4.2 Soil Parameters 

In addition to the bioclimatic parameters described above, we used the State Soil Geographic 
database (STATSGO2) data for soil parameters. We matched the database to polygons of 
generalized soil types to generate predictor environmental layers of available water capacity, 
pH, and soil depth. Soil-type data used to generate the species distribution models (SDM) is 
available from: 
(http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&awc&methods). 

Soil-type polygons were converted, in each case, to the resolution of the bioclimatic parameters 
used to create the climate projections. Soil parameters used in this analysis are uniform within 
each generalized polygon. The downscaling techniques used to produce fine-scale surfaces of 
the bioclimatic parameters do not similarly result in greater resolution of soil variation.  

1.3 Results 

1.3.1 SDM Database 
The result of this component of the analysis is an archived database of range distributions in 
present climate and range shifts under future climate scenarios. The entire database consists of 
more than 50,000 SDM that encompass over 2,000 native California plant species; 1971–2000, 
2040–2070, and 2070–2100 time periods; GFDL and PCM climate models; A2 (business-as-usual 
scenario) and B1 (assumes greenhouse gas abatement by mid-century) emissions scenarios as 
defined by the IPCC’s SRES 4. The climate projections used to develop the SDM are at scales of 
90 m, 270 m, 800 m, 4 km, and 16 km (Table 1.1). 

Researchers contributing to other papers in this series and to local conservation and climate 
change projects have already begun to use these outputs. The database is archived on storage 
resources provided by the Earth Research Institute at the University of California Santa Barbara. 
A web-based distribution portal that will allow users to query the dataset by species, GCM, 
emissions scenario, time period, and scale is in development. Please contact Lee Hannah at 
l.hannah@conservation.org for immediate access to any portion of the dataset.  

 

Table 1.1: Summary of SDMs Produced 

 
16 km 4 km 800 m 270 m 90 m 

GCMs GFDL 

 PCM 

GFDL 

 PCM 

GFDL 

 PCM 

GFDL 

 PCM 

GFDL 

 PCM 

No. Species 2,235 2,235 2,235 2,235 53 

Time Periods 1971–2000  

2040–2070  

2070–2100 

1971–2000  

2040–2070  

2070–2100 

1971–2000  

2040–2070  

2070–2100 

1971–2000  

2040–2070  

2070–2100 

1971–2000  

2040–2070  

2070–2100 

Total File Size 1.7GB 6.5GB 133GB 967GB 5GB 
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Potential studies that make use of this dataset are wide ranging across the fields of ecology, 
biogeography, botany, and conservation planning. Sections 2 and 3 in this paper demonstrate 
three such the applications of the dataset through the investigation of areas important for 
temporal connectivity of climatically suitable habitat under climate change and fine-scale 
modeling of climates associated with premium viticulture in California. Here, we present a brief 
analysis of the characteristics of the dataset, including the relative predictive contribution of 
bioclimatic and soil parameters, modeled species richness, and the effect of scale on the 
systematic projection of species range shifts under climate change. 

1.3.2 Relative Contribution of Environmental Layers 
The selection of environmental layers used in building the model has a significant impact on the 
projected species ranges, particularly for end-of-century projections. The relative contribution 
or importance of each environmental layer to the model is available as part of the full Maxent 
output. Parameter contribution is variable across species and individual model iteration, but 
general trends are apparent (Table 1.2). For example, the variables with consistently greatest 
mean model contribution across all scales were Cumulative Growing Degree Days above 5°C 
(bio_20), Precipitation seasonality (bio_15), and Aridity Index (bio_24). Conversely, the soil 
parameters included in the models offer consistently lesser mean contribution. 

 

Table 1.2: Mean Variable Contribution across all SDM by Scale. Values are percent contribution. 
Bio_4 = Temperature seasonality; bio_5 = Maximum temperature of warmest month; bio_6 = 

Minimum temperature of coldest month; bio_15 = Precipitation seasonality; bio_18 = Precipitation 
of warmest quarter; bio_19 = Precipitation of coldest quarter; bio_20 = Cumulative growing degree 

days above 5°C; bio_24 = Aridity index; ph = Soil pH; awc = Soil available water capacity; 
dep = Soil depth 

 bio_4 bio_5 bio_6 bio_15 bio_18 bio_19 bio_20 bio_24 ph awc dep 

270 m 10.22 4.93 7.99 12.48 9.14 7.83 16.08 12.32 6.05 6.07 6.73 

800 m 10.05 4.73 8.04 13.45 9.12 6.51 15.73 13.85 6.00 5.94 6.57 

4,000 m 10.42 4.91 8.31 13.12 8.50 6.43 15.60 13.40 6.73 7.05 5.53 

16,000 m 8.56 5.75 8.50 12.11 9.47 6.56 12.69 12.17 9.89 8.82 5.48 

All 
Scales 

9.82 5.08 8.21 12.79 9.06 6.84 15.04 12.94 7.15 6.96 6.08 

 

It is unexpected that Aridity Index (bio_24), which includes slope and aspect from DEM data, 
declines in contribution at the finest (270 m) scale, which would theoretically offer the greatest 
representation of the topo-climatic processes that are known to govern species distributions at 
local scales. Further investigation into the variable contribution by functional grouping (e.g., 
trees, shrubs) or habitat type (e.g., mixed conifer, oak woodland) would offer further insight 
into the relative predictive value of the bio-climatic parameters, and which parameters may be 
most important in refining a modeled distribution for a particular species. 
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1.3.3 Effect of Scale on Range Projections 
The fine-scale climate data used in this analysis allow the development of species models that 
capture topographic influences that control climate at biologically relevant scales. A primary 
motivation of creating the SDM products presented in this paper was to incorporate the 
progressive downscaled climate data with the aim of refining projections of future species 
distributions under climate change. The emergence of fine-scale climate data creates a tradeoff 
between theoretical accuracy gained through finer resolution and computational resources. It 
also raises the possibility that different scales may produce systematically different results in 
terms of the proportion of a species’ range that is projected to be lost, gained, or remain stable 
under climate change. This in fact would be expected if fine-scale models are superior in 
representing the microclimates that actually control plant distributions. 

Assessing the effect of scale is therefore an important application of the fine- to coarse-scale 
modeling conducted for this study. While the effect of scale has been addressed in the literature 
over various spatial domains, the few results available offer contradictory results (e.g., Randin 
et al. 2009; Trevidi et al. 2008). For studies specific to California plants, Seo et al. 2009 
demonstrated increased utility for SDMs downscaled to 1 km as coarser resolutions (>16 km) 
systematically over-predicted species ranges; and thus potentially misrepresent the proportion 
of a species range that is stable under climate change. This problem of over-prediction was 
particularly evident in species with intermediate range sizes. 

Here we present an overview of how binary range projections for this dataset vary according to 
the resolution (scale) of the climate data used to build the model. Figure 1.6 shows the mean 
ratio of current modeled area to projected future (2070–2099) area within California for each of 
the four scales available for the entire species list. Differences among the scales 270 m–4 km are 
generally within the 95 percent confidence interval. Models constructed with 16 km data do 
show a systematically lower current/future area. Figure 1.7, which illustrates the mean percent 
of current area lost for each scale, also shows remarkable consistency among scales 270 m–4 km, 
with 16 km again showing slightly more pronounced range shifts. It is important to note that 
the results presented in Figures 1.6 and 1.7 are aggregated across all 2,235 species. Model 
projections of an individual species may differ among scales in a manner that is significant for 
the continued management of that species. Preliminary research by a group at the University of 
California (UC) Santa Barbara and Arizona State University shows that these differences may be 
especially important for species with narrow ranges. 
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Figure 1.6: Plot of Mean Ratio of Current Area to Projected Future Area for All Modeled Species 
under PCM 2070–2099 A2 Climate Emissions Scenario. X-axis is horizontal grid cell size. Error 

bars are 95% confidence intervals. 
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Figure 1.7: Boxplot of Percent Current Range Lost for All Modeled Species under the  
PCM 2070–2099 A2 Climate Emissions Scenario. X-axis is horizontal grid cell size.  

To investigate whether the modeled distributions between SDMs created with 270 m and 800 m 
climate data show any systematic spatial pattern of disagreement, binary difference maps 
(where distribution agreement = 0; disagreement = 1) were created for all species in 270 m 
resolution. Summing the difference maps provides a total count of disagreement within each 
pixel. Figure 1.8 therefore shows the proportion of modeled species for which there is 
disagreement between the 270 m and 800 m models. In general, there is good agreement among 
the two scales, as the maximum disagreement values are around 5 to 10 percent of modeled 
species. With the exception of possible edge effects near the domain boundaries, Figure 1.8 
shows no discernible systematic spatial pattern to the disagreement between the two scales. 

 

 

Fig 1.8: Spatial Distribution of Disagreement between 800 m and 270 m Species Distribution 
Models for PRISM 1971–2000 Climate. High disagreement (deep blue on color ramp) represents 

disagreement of approximately 5%–10% of modeled species. 

 

1.3.4 Example Application: Modeled Native Species Richness 
One application of the suite of SDM produced for this paper is to use the binary range maps to 
model species richness of native plants in California. Species richness is the total count of species 
that are known to occur at a given site. In the case of the SDM dataset, it is the total count of 
species “presence” that occurs in each pixel of the model. As a simple metric of diversity, un-
weighted species richness does not take into account the relative abundance or evenness among 
the assemblage of species that is modeled to occur in each pixel and therefore has limited value 
in terms of priority setting for biodiversity conservation. However, modeling species richness 
through time can provide an overview of the systematic trends in the modeled species range 
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shifts under climate change. It can also serve to highlight regions of California that are more 
likely to lose species richness, as well as areas that could potentially gain species due to 
enhanced suitability in future climates.  
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Figures 1.9 through 1.11 depict the modeled shift of native species richness under climate 
change (A2 emissions scenario). Figure 1.9 shows species richness in current climate with the 
general pattern of species richness in montane regions and the comparatively species-poor 
desert and central valley, conforming to expectations. By the end of the twenty-first century 
(Figure 1.10), zones of greatest species richness have contracted upslope, with greatest richness 
confined to the highest ridges of the Sierra Nevada mountains. Regions of California that show 
the greatest decline of species richness by the end of the century include the Coast and 
Transverse ranges, as well as the transition zone between the Central Valley and the high Sierra. 
This aggregate spatial pattern of species range shifts is important to recognize in planning for 
conservation of species under climate change. Section 2 in this paper will more thoroughly 
investigate which regions will be important to ensure spatio-temporal connectivity of suitable 
climates for all 2,235 modeled species. Finally, as an alternate metric, Figure 1.12 shows species 
richness that is weighted by the inverse of the modeled range size, and in doing so highlights 
areas that harbor rare or narrowly distributed species. 
 

 

 

Figure 1.9: Modeled Native Species Richness as Determined by Summed 800 m Resolution Binary 
Range Maps Produced with PRISM 1971–2000 Climate Data 

 

 

 

Modeled Native 
Species Richness 

in Current Climate 



 

15 

 

 

Figure 1.10: Modeled Native Species Richness as Determined by Summed 800 m Resolution 
Binary Range Maps Produced under the A2 emissions scenario for 2071–2100. Panel A = GFDL; 

Panel B = PCM. 

 

 

Figure 1.11: Change in Modeled Species Richness from Current Climate to 2071–2100 A2 
emissions scenario. Light colors (Yellow to Orange) show decline in species richness and darker 

colors (Pink to Deep Blue) show an increase in modeled richness. Panel A = GFDL; 
Panel B = PCM. 

Modeled Native 
Species Richness 

2071-2100 

Change in Species 
Richness Current 

to 2071-2100 

A B 
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Figure 1.12: Range-size Rarity Weighted Species Richness. Each modeled binary distribution is 
given a weight that is the inverse of the modeled area (narrowly distributed species are given 

greater weight). Panel A = Current Climate (PRISM data); Panel B = 2071–2100 (PCM data; 
A2 emissions scenario). 

 

1.4 Discussion 

As with any modeling effort, the suite of SDM presented here rests upon a series of 
assumptions and decision points that shape the precise character of the modeled distributions 
(Wiens et al. 2009). The choice of SDM, climate data, soil data, species occurrence data, GCM 
projection, emissions scenario, binary thresholding method, spatial resolution, spatial domain, 
temporal resolution, and choice of predictor variables all contribute data quality considerations 
and uncertainty to the resulting model outputs (for a full discussion, see Franklin 2009). It has 
been demonstrated that the choice of model algorithm and predictor variables included in the 
model can produce radically disparate projections for the same species, even if the models are 
constructed with identical occurrence points (e.g., Pearson et al. 2006). Indeed, the spread in the 
projections produced by different SDM algorithms has been observed to be greater than the 
spread caused by GCM alone, rendering SDM methods a potentially greater source of 
uncertainty than climate projections (Araujo et al. 2005). 

Although improvements in SDM methodology and the emergence of models that incorporate 
machine learning (e.g., Maxent used here) have resulted in greater model performance (Elith et 
al. 2006), there remain important differences in the ways each model handles the data inputs 
that must be taken into account when interpreting model projections (Elith and Graham 2009). 
As a means of reducing uncertainty in SDM, there have been calls to produce consensus outputs 
averaged from an ensemble of several models (Araujo and New 2007) and improved metrics of 

Range-size 
Rarity Weighted 

Species 
Richness 

A B 
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predictor variable importance or ecological causal relationship (Araujo and Guisan 2006), and to 
further develop process-based models (e.g., Biomove, Midgley et al. 2010) or models that 
incorporate population dynamics (Keith et al. 2008). 

Although managers, policy makers, scientists, and other consumers of SDM data must be 
cognizant of the uncertainties of SDM, those uncertainties must be weighed against the option 
of operating in the absence of the best information available (Wiens et al. 2009). The SDM 
presented here have been developed with the most comprehensive occurrence data, fine-scale 
climate and soils data, and a high-functioning but widely available SDM algorithm; and with 
careful selection of predictor variables that drive the projections. This suite of SDM represents a 
valuable and comprehensive reference dataset for use in a variety of conservation planning 
applications (e.g., Biomove, Network Flow Analysis) and further investigation into the effects of 
scale or choice of bioclimatic parameters on species distribution. It may also be used as a basis 
on which future refinements of SDM may be evaluated. 

1.5 Conclusions 

The SDM dataset presented here represents the most extensive distribution modeling effort for 
California plants and represents the convergence of updated species occurrence data, recently 
developed fine-scale climate data, and cutting-edge SDM techniques. Analysis and application 
of this dataset has already commenced among several research groups, which will contribute 
substantially to our knowledge base and collective understanding of potential climate change 
impacts on native and endemic California plant species. 
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Section 2: 
A New Conservation Planning Tool for Identifying 
Landscape Connectivity for Climate Change 

2.1 Introduction 

California state climate change assessments have focused on models of vegetation types and 
individual species and their properties over a decade. This work has provided the raw material 
for improved conservation plans for climate change. Yet conservation planning tools 
themselves need to be updated for climate change, since most were created under the 
assumption of a stable climate.  

An urgent need is for conservation planning tools that allow identification of landscape 
connectivity to support species movements in response to climate change. This section describes 
the development of one such tool, and its application to California. The results of this work 
demonstrate the utility and functionality of this new tool. The spatial results of the analysis are 
preliminary and have been produced primarily as proof of concept for the new tool. Many 
refinements will be required before final spatial recommendations can be generated. However, 
these early results provide some indication of possible spatial priorities under climate change, 
and so may prove important in helping to generate conservation hypothesis that can be further 
tested. 

Traditional approaches to conservation are often less effective under climate change, due to 
potential shifts in species ranges. Mediterranean climates such as California are particularly 
vulnerable because of their large numbers of endemic and threatened species (Midgley et al. 
2002). Conservation planning under climate change faces the difficult problem that suitable 
climate space for species shifts through time, while species’ abilities to disperse may not be 
compatible with the velocity of shifting climates on the landscape (Loarie et al. 2009). 
Additionally, traditional conservation instruments ranging from strict reserves to conservation 
easements are static and are likely not positioned with changing climate in mind (Hannah 2005). 

Researchers have begun to examine how best to adapt resource management and conservation 
planning to projected climate change. This section explores the application of a Network Flow 
Analysis (NFA) as a means of addressing this problem. 

The NFA grows out of work on connectivity and climate change that resulted in new methods 
for prioritizing protected areas (Hannah et al. 2007) and connectivity (Williams et al. 2005). The 
connectivity approach is valid for identifying areas of connectivity on the periphery of existing 
protected areas or outside protected areas (for instance, through easements). Williams et al. 2005 
used projections of suitable habitat in ten-year time steps to identify “chains” of habitat 
connected in time. A simple illustration of a connectivity chains through three time steps is 
shown in Figure 2.1. A heuristic algorithm then selects areas to form chains of suitable habitat 
that meet a minimum suitable area target across a large number of species with minimum land 
area.  

Phillips et al. (2008) recognized that objective of Williams et al. 2005 could be posed as a general 
class of problem known as integer programming, which is quite well studied in the computer 
science community and for which there are a number of highly optimized and efficient 
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algorithms and software tools. Phillips et al. (2008) used integer programming software to solve 
the connectivity of suitable habitat through time as a network flow problem. This refined 
Williams et al. 2005 approach in that it was designed to provide a true optimal value (a more 
efficient solution in terms of additional protection required for the same conservation benefit), 
but at the cost of computational complexity and time (and a corresponding difficulty in 
applying the approach to large spatial domains). The NFA presented here is modeled after 
Phillips et al. 2008, but conducted with a widely available optimization software package, 
Gurobi Optimizer version 4.5 (Gurobi 2011). 

 

 

Figure 2.1: Illustration of Chains of Suitable Habitat. Regions shaded blue represent suitable 
habitat in each time step on a 3 x 3 grid. Grey arrows represent possible chains within a species 

dispersal capability necessary to retain suitable habitat in all time steps. 

 
The NFA optimizes spatial sharing of connected conservation parcels required to meet a 
specified minimum conserved area for all modeled plant species over the analytical time period. 
The resultant outputs represent the specific areas required to ensure spatial and temporal 
connectivity of suitable habitat through time, constrained by assumptions of a species ability to 
disperse. Essential connectivity chains identified by NFA that are not currently within either 
protected areas or developed lands represent potential focal areas for conservation action to 
adapt the state’s conservation portfolio to projected climate change. 

2.2 Methods 

To identify priority areas for the conservation that can accommodate shifting climatic suitability 
of native California plant species under climate change, we adapted the NFA of Phillips et al. 
(2008). In this approach, the modeled range of a single species through time is treated as a 
directed network, with nodes representing pixels of suitable habitat and edges connecting 
nodes at one time step with nodes in the next time step that are within a defined dispersal 
range. A connectivity chain is formed by a continuous path or a set of pixels in which a species 
can disperse from currently suitable habitat through all time steps to future suitable habitat.  

Despite guidance from previous work on this topic, the scope of the problem we set out to solve 
is large and complex, and so we took several approaches to making the problem tractable. First, 
we conducted our analysis with modeled ranges of 2,235 native California plant species at 
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~4 km grid cell resolution (see Section 1 for detailed methods). This relatively coarse resolution 
was necessary to solve the problem for all species over the statewide domain within a 
reasonable timeframe to test and refine the methodology. Second, we pre-screened and 
excluded all species that were able to satisfy their required number of chains using existing 
protected areas alone. Third, we iteratively performed multiple optimizations, beginning with a 
few rare species, and gradually added more common species, checking at each step which 
species satisfied their requirements with the current solution and included only those that did 
not. Finally, we terminated the optimizations early, such that our solutions were not guaranteed 
to be globally optimal, but were within some quantifiable error from the true global optimum. 

We utilized species distribution maps at decadal time steps based on two climate model outputs 
(PCM and GFDL under the A2 emissions scenario), two time periods (2000–2050 and 2000–
2080), two minimum areas of suitable habitat requirements for all species in each time step 
(100 and 1000 square kilometers [km2]), and three dispersal radii (0, 6.3, and 10.5 km/time step). 
The 100 km2 target is an International Union for Conservation of Nature (IUCN) threshold for 
species endangerment. The 1,000 km2 target is an arbitrary order-of-magnitude increase in that 
target and is useful for visualization of important regions for statewide temporal connectivity. 
The three dispersal assumptions that were modeled included no dispersal, limited dispersal of 
1.5 grid cells (the 8-neighbor rule), and intermediate dispersal of 2.5 grid cells (the 25-neighbor 
rule). Dispersal assumptions were universally applied across all species in a scenario. 

Distribution models for native species (as designated by Calflora 2009) with >10 pixels 
containing known occurrences were generated for each decadal time step in Maxent. Pixels that 
were classified as developed in the National Land Cover Dataset 2001 (Homer et al. 2004) were 
considered as never suitable for any species, and were thus excluded from forming chains of 
suitability in this analysis. We defined existing protected areas as pixels comprising more than 
two-thirds of protected areas with a GAP3 status of 1 or 2, in either the Conservation Biology 
Institute or the USGS version of the Protected Areas Database (CBI 2010; USGS 2011). These 
existing protection pixels are considered protected in perpetuity (i.e., chains can use these pixels 
without increasing the number of additional protected pixels needed). 

To identify potential priority areas for temporal connectivity, we employed two methods. First 
we highlighted pixels that were selected for additional protection under both the 100 km2 and 
the 1,000 km2 suitable habitat requirements (see Figures 2.4 through 2.7). Second, we identified 
chains that were essential to the solution across all model scenarios (see Figures 2.8 and 2.9). 

2.3 Results 

Nearly 70 percent of modeled species were able to form connectivity chains within existing 
protected areas. Additionally, 5 to 10 percent of species (depending on GCM and dispersal 
assumption) were not able to form the minimum required number of chains. As expected, 
greater assumed dispersal distance resulted in fewer species that were not able to attain suitable 
habitat requirements in all time steps (Figure 2.2). Additionally, models with PCM climate data, 
which shows less dramatic temperature increases and greater precipitation than GFDL within 
California, allows for more species to attain suitable habitat requirements (Figure 2.3). 

                                                      

3 U.S. Geological Survey, Gap Analysis Program (GAP). 
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Figure 2.2: Number of Species That Fail Suitable Habitat Requirements (Left Panel) and Total Sites 
Selected for Additional Protection (Right Panel) by Dispersal Distance Assumption. Each series 

represents a GCM (PCM or GFDL), time period (through 2050 or 2080), and suitable habitat 
requirement (100 km2 or 1,000 km2) combination. 

 

Figure 2.3: Number of Species That Fail Suitable Habitat Requirements (Left Panel) and Total Sites 
Selected for Additional Protection (Right Panel) by GCM. Each series represents a dispersal 

assumption (0, 1.5, or 2.5 pixels), time period (through 2050 or 2080), and suitable habitat 
requirement (100 km2 or 1,000 km2) combination. 
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Species that are able to form chains and meet the suitable habitat requirement in areas that are 
outside of existing protection account for the “additional protection needed” results. The 
Figures 2.3 through 2.7 below represent the NFA results under different GCMs and model 
timeframes. All scenarios presented are for 2.5 cell dispersal per time step and A2 emissions 
scenario. In each figure, two targets for connectivity are represented, 1,000 km2 (57 chains) and 
100 km2 (6 chains). A majority of the pixels selected for the 100 km2 solution are also included in 
the 1,000km2 solution. Such pixels selected for both solutions are shown in red. In the rare case a 
pixel is selected for only the 100 km2, it is shown in magenta. Due to the small total number of 
100 km2, it may be difficult to distinguish in the statewide views shown below. 

Broad areas in several parts of the state are highlighted in yellow and pink, indicating that they 
are conservation priorities to maintain connectivity for plants as climate changes. Many of these 
areas are adjacent to existing protected areas, as the algorithm preferentially selects areas that 
can make use of connectivity within existing protected areas. Land tenure in these priority areas 
may be private or public. On public multiple-use lands, zonation for biodiversity protection in 
these priority areas may be appropriate. Private lands may be conserved with conservation 
easements or through acquisition. 

 

Figure 2.4: Depiction of Areas Required to Form Chains of Protection through 2050 – GFDL, A2 
Emissions Scenario; 2.5 Cell/Decade Dispersal Assumption 
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Figure 2.5: Depiction of Areas Required to Form Chains of Protection through 2080 – GFDL, A2 
Emissions Scenario; 2.5 Cell/Decade Dispersal Assumption 

  

Figure 2.6: Depiction of Areas Required to Form Chains of Protection through 2050 – PCM, A2 
Emissions Scenario; 2.5 Cell/Decade Dispersal Assumption 
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Figure 2.7: Depiction of Areas Required to Form Chains of Protection through 2080 – PCM, A2 
Emissions Scenario; 2.5 Cell/Decade Dispersal Assumption 

 

Specific pixels selected for additional protection varied according to GCM and dispersal 
assumption, but certain regions were consistently selected in each simulation. Stacking the 
chains required to meet the minimum area target for all species in all model simulations reveals 
focal areas that deserve consideration for future conservation. 

Not all species are able to achieve enough chains to meet the suitable habitat target. The areas 
which do harbor these species in all time steps represent potential core areas of temporal 
connectivity. These select areas tend to nest within the yellow 1,000 km2 (57 chain) priorities. 
Chains formed by these species are represented in Figure 2.8. They are “required chains” in the 
sense that because the species fails to meet the habitat suitability target, anywhere the species 
does have a chain is required in the conservation solution. The NFA outputs may be queried to 
identify species that are contributing to clusters of “required chains”. This analysis can therefore 
help to establish species priorities that are linked to spatial priorities. This is illustrated in 
Figure 2.9, in which several of the “required chains” rare and/or vulnerable species areas are 
identified. The accompanying Table 2.1 then lists the species that form the required chains 
within these illustrative areas. The NFA output can be queried to establish species lists for any 
defined focal areas or to show the chains formed by individual species. As an example, Figure 
2.9 depicts the required chains of Purple Sage (Salvia leucophylla), which are modeled to be 
concentrated in Santa Barbara and Ventura counties.  
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Figure 2.8: Illustrative Focal Areas for Climate Change Connectivity. Regions in blue are polygons 
enclosing clusters of connectivity chains presented in Figure 2.8. Lists of species responsible for 

the required chains in each focal area are presented in Table 2.1. 
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Table 2.1: List of Species Contributing to Required Chains in Illustrative Focal Areas 

Focal Area 1 Focal Area 2 Focal Area 3 Focal Area 4 

Corylus cornuta Calamagrostis 
nutkaensis 

Ambrosia chamissonis Bouteloua eriopoda 

Cyperus eragrostis Calystegia subacaulis 
subacaulis 

Atriplex lentiformis Brickellia desertorum 

Euthamia occidentalis Campanula californica Calochortus catalinae Mirabilis multiflora 

Helenium puberulum Cardionema 
ramosissimum 

Ceanothus megacarpus Muhlenbergia porteri 

Salix lucida Cirsium brevistylum Ceanothus spinosus Pleurocoronis pluriseta 

Satureja douglasii Cirsium quercetorum Chaenactis glabriuscula 
orcuttiana 

 Grindelia stricta Chorizanthe breweri  

 Helenium puberulum Encelia californica  

 Lotus wrangelianus Eriogonum crocatum  

 Lupinus arboreus Lepechinia fragrans  

 Lupinus chamissonis Lomatium lucidum  

 Potentilla anserina Lupinus longifolius  

 Ribes menziesii Opuntia littoralis  

 Trifolium willdenovii Opuntia oricola  

  Oxalis albicans  

  Populus fremontii  

  Salvia leucophylla  

  Sanicula arguta  

  Typha latifolia  

  Venegasia carpesioides  

  Viola pedunculata  
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Figure 2.9: Required Chains of Salvia Leucophylla (Blue) Overlaid on All Connectivity Chains 
Formed Under GFDL Climate Projections Through 2080. Model outputs shown assume 1.5 pixel 

dispersal distance and 1,000km2 suitable habitat (57 chains) requirement. 

2.4 Discussion  

The results presented in this paper represent a successful demonstration of NFA to address the 
problem of spatio-temporal connectivity of suitable habitat under climate change for a large 
number of species and a spatial domain the size of California. Successful testing and 
implementation of the methodology involved several simplifying assumptions that contribute 
to limitations of these demonstration results. As described earlier, relatively coarse grid sizes 
(~4 km) were required to optimize the solution for the entire species dataset at a statewide 
modeling domain. Habitat suitability models at this resolution may not accurately account for 
topo-climatic processes that control suitability at biologically relevant scales, and therefore may 
miss pockets of suitability (i.e., micro-refugia) that may exist within a fractional portion of a 
~4 km grid cell. The effect conducting NFA at this scale is potentially a greater issue for 
narrowly distributed species or habitat specialists (e.g., riparian species). Additionally, although 
the habitat suitability models are constructed with soil parameters as a predictor variable (see 
methods in Section 1), the variability of soils within a grid cell will not be captured at this 
resolution. This may lead to spurious results for species whose distributions are governed by 
specific soil requirements such as serpentine specialists. The implementation of NFA at finer 
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resolutions over smaller spatial domains and/or shortened species lists is an important next 
step in the refinement and applicability of the methodology. 

The universal assumption of a constant dispersal rate for all species is another major 
qualification of the results of this demonstration. Clearly, species vary in their capacity to 
disperse—and viable dispersal distances for an individual species will vary in different 
landscapes. Variable life history among species represents additional modeling challenges. 
Slow-to-mature species may not be able to produce reproductive offspring within the decadal 
time step, therefore limiting a species to keep pace with shifting suitability even if suitable 
habitat is within measured dispersal distances for mature adults. Similarly, for long-lived 
species, the pixels they occupy may become unsuitable for recruitment but retain reproducing 
and dispersing mature individuals. Inclusion of variable dispersal distances or time step 
frequency within the NFA algorithm is not infeasible, but will likely require abbreviated species 
lists and regional focus. These refinements to the model initialization are research priorities 
moving forward. 

2.5 Conclusions 

The NFA has been successfully demonstrated as a viable means for optimizing spatio-temporal 
connectivity for large groups of species in California. Unprotected areas that are identified by 
NFA potentially represent important areas for the adaptation of statewide conservation strategy 
to climate change and such identification will help to ensure continued protection for all species 
under shifting climates. This initial demonstration has several limitations, including relatively 
coarse grid size and universal dispersal assumptions, but ongoing refinements to the 
methodology point to a promising tool to evaluate connectivity of shifting California species 
ranges in a changing climate.  
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Section 3: Impacts on Plant Communities of Changes 
in Viticulture 

3.1 Introduction 

3.1.1 Background 
Conservationists are increasingly aware that there are both direct and indirect impacts of 
climate change on natural systems. The last two decades of study have focused on the direct 
impacts on species and ecosystems (reviewed by Heller and Zavaleta 2009 and Mawdsley et al. 
2009). Recent literature has begun to focus on indirect impacts due to human translocation and 
shifts in agriculture due to climate change (Turner et al. 2010). To capture first insights into 
indirect impacts on conservation, this study chose one agricultural commodity to assess for the 
impacts that climate-driven change in agriculture might have on ecosystems. The commodity 
we chose to focus on is grapes grown for wine production, which is famously sensitive to 
climate change, as well as being an industry with a history of environmental awareness and 
stewardship. Here we focus on viticulture in California, a state which accounts for over 
90 percent of U.S. wine production and is the fourth largest wine producer in the world behind 
France, Italy, and Spain. 

Global context is as important as local impact, as we have learned in previous assessments of 
climate change impact, such as the soon-to-be-published analysis of climate change impacts on 
timberlands in California (Hannah et al. 2011). Climate change-driven global production 
changes can alter prices in ways that can overwhelm local changes in production. For this 
reason, we have conducted both global and statewide assessment of changes in viticulture 
suitability and the possible resultant consequences for conservation.  

The practice of premium viticulture has long been tied to an ideal combination of climate, 
geography, and culture often referred to as terroir (Vaudour 2002). The world’s most famous 
wine grape growing regions are romanticized for the climatic attributes that contribute to each 
region’s particular style of wine produced, as well as for the assemblage of varietals that thrive 
in the setting. Individual vintages are heralded as the precise combination and timing of 
climatic events within a particular growing season. Furthermore, there is evidence that the 
spatial distribution of viticulture has tracked broad trend in global climate; shifting northward 
during the Medieval warm period of the thirteenth and fourteenth centuries and retracting to 
the south during subsequent cooler period leading up to the Little Ice Age of the nineteenth 
century (Pfister 1988). Establishment of major viticulture areas outside of continental Europe 
has primarily occurred in locations that mimic the climates of proven European areas of 
production. As a result, areas with Mediterranean climate regimes such as Chile, South Africa, 
Australia, and California have emerged as globally significant sources of viticulture for 
premium wine production. Given the importance of climate in determining the global 
distribution of wine grape growing regions and the sensitivity of wine quality to the local-scale 
climate events of a given growing season, it is anticipated that twenty-first century climate 
change will have an appreciable impact on the wine industry within California and worldwide. 

3.1.2 Previous Work Linking Climate to Viticulture 
Several previous research efforts have laid the groundwork for establishing the link between 
climate and suitability for viticulture. Seminal publications such as Winkler et al.’s General 
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Viticulture (1974) and Gladstones’ Viticulture and Environment (1992), as well as his newly 
released Wine, Terroir and Climate Change (2011) have extensively characterized the climatic and 
geomorphological settings of global wine grape growing regions. These publications emphasize 
mean annual temperature and annual heat summation (as measured by mean daily temperature 
above a defined threshold) as principal determinants of general viticulture suitability, as well as 
optimal varietal composition for a given region. Several subsequent studies have built on this 
work to assess viticulture suitability in terms of mean annual temperature and heat summation 
under climate change (e.g., Nemani et al. 2002; Jones et al. 2005; Hayhoe et al. 2004; White et al. 
2006).  

In addition to long-term average climate, other studies have examined the impact of the 
changing frequency of extreme events (heat or cold) on long- term viability of viticulture under 
climate change (e.g., White et al. 2006; Diffenbaugh et al. 2011). Yet others have fine-tuned 
suitability models to link the effects that yearly climate has on yields (Lobell et al. 2007) or 
quality (Jones et al. 2005; Nemani et al. 2002) of wine produced in a given location. For 
California, a majority of recent studies project a redistribution of optimal viticulture climate in 
the coming decades that will likely engender adaptive responses from the viticulture industry. 

3.1.3 Novel Aspects of this Study 
This study takes advantage of newly produced fine-scale climate data to model optimal 
climates for viticulture within California at 270 m horizontal resolution. Modeling at this 
resolution will better capture local-scale processes that help to control climatic suitability. The 
model results presented in this section are the consensus among three previously published 
methods used to determine viticulture suitability. A viticulture occurrence dataset (see 
Methods) that samples California vineyard locations on the basis of American Viticulture Area 
(AVA) boundaries was produced for this study to correlate existing climate conditions with 
vineyard locations. This study was conducted in parallel with a larger effort that models global 
viticulture suitability. This allows us to place the climate change impacts on California 
viticulture in context with what is happening on a global scale. Finally, this study assesses the 
potential intersection of shifting viticulture climates with land and freshwater conservation 
interests in California, representing the first such statewide analysis. 

3.2 Methods 

3.2.1 Viticulture Suitability Models 
We used three viticulture suitability models, representing each of three broad classes of 
suitability models that have been proposed based on (1) average or extreme growing season 
temperatures, (2) phenology, and (3) multiple variables. For the temperature approach, we 
chose average temperature during the growing season—the most commonly applied 
temperature model. From the phenological approaches previously published, we selected 
growing degree day accumulation, the most often utilized of this category. We used Maxent, a 
widely used climate-distribution model (also known as species distribution model, niche model, 
or bioclimatic envelope model) to represent multiple variable models, because of its broad 
acceptance and ease of application. Our implementation of each of these three models is 
described below. 
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3.2.1.1 Temperature - Average Growing Season Temperature 

Optimal average growing season temperatures for twenty-one common varietals of wine-
producing V. vinifera were approximated from global distributions and viticulture regional 
climates in Jones et al. 2005. Taken together, the optimal range for common wine varietals spans 
average growing-season temperatures from 13.1°C–20.9°C (55.6°F–69.6°F). In modeling current 
and projected suitability with average growing season, areas falling within this optimal range 
were considered suitable. Growing season was defined as April 1–October 31 in the Northern 
Hemisphere and October 1–April 30 for the Southern Hemisphere.  

3.2.1.2 Phenology – Growing Degree Day Maturity Groupings 

The phenological method is adapted from Hayhoe et al. (2004), in which viticulture suitability 
in California is determined by biophysical response of grapevines as ripening progresses. 
Gladstones (1992), assembled common wine grape varietals into eight distinct maturity 
groupings, depending on the heat summation required for fruit maturity and ripening. The 
timing of ripening for each grouping is determined by summing the biologically active growing 
degree days (GDD) above 10°C (50°F). For example, cooler weather varietals such as Pinot Gris 
require 1,100 GDD for ripening; whereas, Grenache ripens after 1,350 accumulated GDD. In this 
analysis, the month in which the required GDD summation is reached is used to determine 
suitability for viticulture. Average ripening month temperatures in the range 15°C–22°C (59°F–
72°F) are considered optimal, 22°C–24°C (59°F–75°F) is marginal and > 24°C (> 75°F) impaired 
(after Gladstones 1992; Hayhoe et al. 2004). A location was deemed suitable for viticulture if 
average ripening month temperature is optimal for any of the eight maturity groupings.  

3.2.1.3 Multiple Variables - Maxent 

The Maxent climate-distribution model takes as input a set of layers or environmental variables 
(e.g., elevation, precipitation), as well as a set of occurrence locations, and produces a model of 
climatic suitability for a species. We used this approach to model suitable climate space for 
cultivation of V. Vinifera. The bioclimatic predictor variables used in Maxent modeling were: 

 Average temperature in growing season 
 Total precipitation in growing season 
 Precipitation seasonality (C of V) 
 Total GDD in growing season 
 Mean maximum temperature of the warmest month during growing season 
 Mean minimum temperature of the coldest month during growing season 
 Mean diurnal range (mean monthly max-min) 
 Mean minimum temperature of the coldest month 
 Annual precipitation 
 Aridity Index (annual precipitation/potential evapotranspiration) 

 
3.2.1.4 Minimum Temperature and Precipitation Constraints 

At the northern boundaries of wine-growing regions, chilling stress during growing season and 
overwinter minimum temperatures are limiting factors in determining viticulture suitability. 
Overwinter cold hardiness of V. vinifera varies according to age of the vine, varietal, and 
seasonal timing of annual minimum temperatures. However, temperatures below -12°C (10°F) 
begin to impart tissue damage that can impair production, and temperatures below -25°C 
(-13°F) are lethal to most varietals. To create a conservative threshold for excess risk of frost 
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damage, areas with mean minimum temperature of the coldest month < -15°C (< 5°F) were 
classified as unsuitable for viticulture.  

Too much or too little precipitation can make a region unsuitable for growing high-quality wine 
grapes. We compiled annual precipitation data for global wine regions (n = 135) from 
Gladstones 1992 and Johnson and Robinson 2007. We assumed mean annual precipitation of 
these regions plus or minus two standard deviations as upper and lower bounds of annual 
precipitation in determining wine-growing suitability. As such, areas with > 1,226 mm and 
< 200 mm of precipitation were used as constraints defining areas as unsuitable for viticulture. 

Minimum temperature and precipitation constraints were applied to the average temperature 
and phenology models. The constraints were not applied to Maxent multifactor modeling 
results, as minimum annual temperature and annual precipitation were included as predictor 
variables.  

3.2.2 Climate Data  
3.2.2.1 California Modeling 

Climate data used to model the distribution of viticulture climates within the State of California 
was the same downscaled climatology used to produce the 270 m species distribution models 
described in Section 1. In all cases, viticulture suitability models in California were built on 
30-year averages of the relevant bioclimatic parameter. Viticulture suitability was modeled for 
current climate and future climates covering the time periods 2040–2070 and 2070–2100. For the 
California domain, GFDL and PCM projections were modeled individually. 

3.2.2.2 Global Modeling 

Current climate (mean monthly maximum temperature of the warmest month, mean minimum 
temperature of the coldest month, and total precipitation on a 30-year average) and elevation 
data (derived from DEM) on 2.5 arc minute grids (approximately 5 km) were downloaded from 
the Worldclim website (http://www.worldclim.org). Data were originally downloaded on 
March 29, 2010 (Hijmans et al. 2005). 

Future global climatologies representing twenty-year normals for the time periods 2041–2060 
and 2081–2100 were downscaled from five general circulation models to a 2.5 arc minute grid, 
as described by Tabor and Williams 2010. The GCMs used in the global analysis were: 

 CCSR/NIES/FRCGC, Japan, MIROC3.2, medium resolution 
 CSIRO Atmospheric Research, Australia, Mk3.5 Model  
 Bjerknes Centre for Climate Research, Norway, BCM2.0 Model  
 National Center for Atmospheric Research, United States, CCSM3.0  
 Institute for Numerical Mathematics, Russia, INMCM3.0 Model 

 
The globally downscaled climate data were obtained from the Conservation International 
climate data portal (http://futureclimates.conservation.org/index.html).  

To limit the uncertainty introduced by the projections of an individual GCM, we modeled 
suitability as an ensemble average of the five GCMs for each climate/emissions scenario and 
suitability model. Viticulture suitability in each scenario was defined as consensus agreement 
among all three suitability models.  
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3.2.3 Viticulture Occurrence Points 
3.2.3.1 California Modeling 

A dataset of occurrence points for viticulture within California was built for the multifactor 
Maxent modeling component of this analysis. Occurrence points in the dataset (n = 225) 
represent a quasi-random sampling of vineyards within California American Viticulture Areas 
(AVAs) that were visually identifiable in 2010 satellite imagery as accessed through Google 
Earth. Active viticulture at an occurrence point was verified by publicly available information 
regarding the nearest vineyard or winery, as indicated by a Google Maps search of each 
candidate occurrence point. Vineyards were selected for the dataset so as to represent the 
geographic extent and topographical diversity of each primary AVA. The strategy of surveying 
vineyards within each AVA was used to focus the search for visually identifiable vineyards. 
Also, as AVAs are established by vintner petition partly on the premise of distinct growing 
conditions, this strategy captures the full range of climates and soil types currently under vine 
in California. As petitioning for the designation of an AVA may be motivated by marketing 
strategy and/or product differentiation, AVAs—and thus occurrence points—are in greater 
density within regions internationally recognized for consistently producing high-quality 
wines. The density of occurrence points therefore does not necessarily correlate with county 
statistics of vineyard acreage (NASS 2010), and prolific grape-producing counties in the 
comparatively large Central Valley AVA are not as well represented as the more 
topographically diverse Napa, Sonoma, and Mendocino counties. 

3.2.3.2 Global Modeling 

Occurrence points (n = 1129) for viticulture were taken from a geo-referenced global dataset. 
Location points within the dataset were established primarily from publicly available national 
viticulture jurisdiction boundaries, supplemented with expert input from the wine industry 
where this information was unavailable or not able to be verified. 

3.2.4 Protected Area Mask 
Protected area locations and extents are taken from the 2011 California Protected Area Database 
(CPAD 2011). Polygons of the CPAD were converted to match the 270 m grid cell size of the 
viticulture suitability layers. A grid cell was classified as “protected” if > 50 percent intersected 
with a protected area polygon. Protected areas of all IUCN categories I–VI were then masked 
out of the viticulture suitability maps for both current and future climates, under the 
assumption that viticulture will continue to be an excluded activity on protected lands. All 
results presented here have omitted any current or future climatic suitability that occurs with 
existing protected areas.  

3.2.5 Soils and Topography 
In addition to climate, a suitable growing substrate is essential for premium viticulture. The 
specific mineral make-up, nutrient content, depth, and water-holding capacity of a particular 
vineyard’s soil profile are important variables in the health and productivity of the resident 
vines. Vineyard-scale variation in soil attributes may dramatically affect the yield and 
composition of grapes within a vineyard block. As the favored style of a particular vintner may 
command specific soil requirements, local soil composition is indeed an important variable in 
vineyard siting decisions. However, the specific soil requirements of high quality wine are often 
over-emphasized, as evidenced by the fact that premium wines are produced from a broad 
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spectrum of soil types. The overarching influence of climate is succinctly articulated in Winkler 
et al.’s General Viticulture  

“Even in the renowned wine-producing areas of Europe, with their varied 
soils, heat summation must be accepted as the principal factor in the 
control of quality: their vintage years always coincide with abundance of 
heat, and such years occur uniformly across all soil types.”  

Additionally, ambient soils are often actively managed to compensate for nutrient deficiencies 
or to strategically stress the vines to enhance sugar content of the grape cluster. As a result, with 
the exceptions of sufficient rooting depth and toxicity resulting from salinity or ultra-mafic 
minerals, the limiting factors of soil for viticulture suitability are difficult to generalize. 

To account for soil type variation within California, we used STATSGO2 data for soil 
parameters within the Maxent multifactor modeling. We used a database based on soil types to 
generate low-level available water capacity, pH, and soil depth from 
http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&awc&methods. 

Attributes of the soil type polygons were converted to the 270 m resolution of the climate data 
used in generating suitability models. It should be noted that the soil parameters used in this 
analysis are uniform within each polygon and that finer scales do not result in greater 
resolution of fine-scale soil variation. Our modeled suitability results demonstrate where the 
potential for successful cultivation of V. vinifera is likely, due to favorable average climatic 
conditions and soil type. Specific vineyard siting decisions within each 270 m grid cell and sub-
vineyard scale “precision viticulture” management recommendations are important priorities 
for research into more precise local impacts of climate change. 

3.3 Results 

3.3.1 Future Projections of Optimal Viticulture Climates within California 
 3.3.1.1 California Occurrence Points 

Applying the suitability models described above, including topo-climate and soil parameters on 
projections of climate change for mid-century (2040–2070) and end of century (2070–2100) time 
periods, results in a significant spatial relocation and an overall reduction of optimal viticulture 
climates within California (Figure 3.1). As with other species models presented in Section 1, the 
general trend is for viticulture climates to shift northward, coastward, and upslope as mean 
growing season temperatures increase. The degree of shift varies by GCM projections and 
emissions scenario, with the comparatively hotter and drier GFDL resulting in a more 
pronounced shift and steeper decline of optimal climates than PCM projections over the same 
time period. Likewise, the business-as-usual A2 emissions scenario with unabated emissions 
has greater impact than the B1 scenario, particularly for end-of-century projections. 

The ratio of modeled suitable acreage in future scenarios to current modeled suitability is 
shown in Table 3.1 for counties with the top currently suitable acreage. Viticulture areas in 
counties on the eastern and southern edges of the band of modeled current suitability (e.g., 
Napa, San Benito, Ventura counties) show appreciable declines in total suitable acreage by mid-
century and, in some cases, total displacement of optimal climates by end of century. More 
coastal or northerly counties (e.g., Marin, Mendocino, Monterey) at times show marginal 
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increase in total suitable acreage by mid-century and less precipitous declines in end-of-century 
projections. 

It is important to view these results as a representation of impacts on viticulture as it is 
currently practiced and absent any adaptive or mitigation responses available to wine grape 
growers. Areas that show projected declines of optimal climates for viticulture are best 
interpreted as areas that will require some adaptive response on the part of wine grape growers 
or consumers to continue the practice of viticulture in that location. The results are consistent 
with those presented in White et al. 2006, Diffenbaugh et al. 2011 and Chaplin-Kramer (this 
paper series 2012) in that total area optimal for viticulture is expected to decline substantially 
with a shift toward marginal and impaired growing conditions under twenty-first century 
warming. 

It is possible that projected warming may result in short-term gains in either yield or quality for 
select growing regions, as suggested by Nemani et al. 2001, but the overall redistribution of 
optimal viticulture climates indicates the necessity of adaptation by the California viticulture 
industry in the coming decades. Adaptation measures available to wine grape growers include 
vineyard relocation to more suitable climates, enhanced water development for irrigation or 
vine cooling, adoption of more heat tolerant varietals, and vine orientation or trellising 
techniques to manage shading of the grape clusters. The adaptation measures vary in their 
economic feasibility and barriers to implementation. For a discussion of the relative merits and 
ease of implementation among adaptation measures, see Diffenbaugh et al. 2011. Adaptation 
measures that will potentially have the most direct impacts on conservation—the relocation of 
vineyards to more suitable climates on currently undeveloped land and enhanced water 
development—will be explored later in this section. 

 

 

PCM A2  GFDL A2  
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Figure 3.1: Modeled Distributions of Suitable Climates for Viticulture under the A2 Emissions 
Scenario for Three Time Periods: 1971–2000 (Red); 2040–2070 (Orange); 2070–2100 (Blue). Light 

Green shows suitablity retained through 2070, and Dark Green denotes suitability retained 
through 2100. Distributions in each time period represent a consensus agreement of three 

suitability models: (1) mean growing season temperature, (2) maturity grouping heat summation, 
and (3) Maxent. The Maxent models used in this scenario are built on California viticulture 

occurrence points and topoclimate + soil predictor variables.  

 

Table 3.1: Change in Climates Currently Associated with Viticulture in California. Negative values 
of change can be interpreted as the percent of currently suitable land that will require adaptation 

measures for continued viticulture. 

County GFDL Mid-
Century 

(% change) 

GFDL End-
Century 

(% change) 

PCM Mid-
Century 

(% change) 

PCM End-
Century 

(% change) 

Napa – Sonoma – 
Mendocino 

-44 -86 -29 -60 

Monterrey – San 
Luis Obispo – 
Santa Barbara 

-54 -97 -34 -82 

California Total -54 -93 -34 -72 

 

3.3.1.2 Global Viticulture Climates Projected onto California 

When the Maxent distribution model constructed with global viticulture occurrence points is 
projected on California, the broader spectrum of optimal viticulture climates (encompassing 
both warmer and cooler climates than those associated with existing California viticulture) 
opens subtantially more potentially suitable area than viticulture models built on California 
occurrence points alone—nearly double the modeled current acreage (Figure 3.2). Declines in 
total optimal area within California are muted compared to California-only viticulture, and 
significantly more novel area is projected for northern coastal areas and somewhat 
unconventional areas of the northern interior (Figure 3.2; Table 3.2). 
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Figure 3.2: Modeled Distributions of Suitable Climates for Viticulture under the A2 Emissions 
Scenario for Three Time Periods Using Global Viticulture Occurrence Points: 1971–2000 (Red); 
2040–2070 (Orange); 2070–2100 (Blue). Light Green shows suitablity retained through 2070 and 

Dark Green denotes suitability retained through 2100. Distributions in each time period represent 
a consensus agreement of three suitability models: (1) mean growing season temperature, 

(2) maturity grouping heat summating, and (3) Maxent. The Maxent models used in this scenario 
are built on global viticulture occurrence points and topoclimate-only predictor variables. 

 

Table 3.2: Change in Climates Currently Associated with Viticulture by County Using Global 
Viticulture Occurrence Points and A2 Emissions Scenario. Negative values of change can be 
interpreted as the percent of currently suitable land that will require adaptation measures for 

continued viticulture. 

County 
GFDL Mid-

Century 
(% change) 

GFDL End-
Century 

(% change) 

PCM Mid-
Century 

(% change) 

PCM End-
Century 

(% change) 

Napa – Sonoma 
– Mendocino 

-42 -78 -33 -59 

Monterrey – San 
Luis Obispo – 
Santa Barbara 

-58 -86 -46 -69 

California Total -32 -69 -23 -45 

PCM A2  GFDL A2  
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3.3.2 Global Context 
The same processes that will affect viticulture within California under climate change will also 
affect viticulture worldwide. To fully understand the impact of climate change on California 
viticulture, it needs to be put into context with what is occuring on a global scale. To place 
California in the appropriate context, we compare the impact of climate change on California 
viticulture to those projected in other prominent wine-producing regions. Additionally, we 
build an alternate model of viticulture suitability within California that incorporates global 
viticulture occurrence points to better capture the full spectrum of climates where viticulture is 
currently practiced worldwide. 

Figure 3.3 illustrates the projected impacts of climate change on the global distribution of 
optimal viticulture climates under the A2 emissions scneario. As in California, increasing 
temperature casues the global patterns of viticulture climates to shift northward, coastward, 
and upslope of many existing viticulture areas (Figure 3.3). Several high-profile wine grape 
growing (e.g., Mediterranean Basin, South Africa, Australia) regions show significant loss of 
existing optimal wine grape growing climates by mid-century and further declines by end of 
century (Table 3.3). Mediterranean systems are particularly affected, with many losing over 90 
percent of existing optimal areas. The transolcation of optimal climates opens novel areas of 
potential viticulture suitability, particlularly in northern Europe, interior regions of western 
North America, and the southern islands of Tasmania and New Zealand. Globally, the loss of 
existing suitability and the gain of novel suitable areas is almost perfectly balanced by mid 
century under the A2 scenario. However, by end of century the global stock of climatically 
optimal area is only 63 percent of total current area. 

Although California does experience a significant translocation and decline of existing optimal 
climates, when the balance of total suitable area is considered, California fares better that all 
other wine-producing regions in Mediterranean systems (Table 3.3) in both mid-century and 
end-of-century projections. Also, the ratio of current to future suitable area within California is 
roughly 20 percent lower than the global total. This is substantially lower, though not 
catastrophically so, as is the case in other Mediterranean systems. Therefore, although 
California viticulture will certainly be affected by twenty-first century climate change, the 
impacts are likely to be muted, as compared to many other major wine-producing regions. 
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Figure 3.3: Climate Change Impacts on Viticulture Suitability Are Illustrated for Three Time 
Periods (Present, 2050, and 2090) Based on a Consensus Approach Using Multiple Suitability 
Models and an Ensemble Projection of Future Climate under the A2 Emissions Scenario (IPCC 

AR4). Broad areas of current suitability are lost by 2050 in all major wine-producing regions (red). 
Large areas of new suitability (2050 orange; 2090 blue) open in Northern Europe and North 

America. Insets A–E show regional detail. Areas where viticulture is retained through mid-century 
and through all three time periods are shown as light green and dark green, respectively.  
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Table 3.3: Projected Loss of Currently Suitable Area and the Ratio of Total Future Suitability to 
Current Suitability in Select Wine-Producing Regions – A2 Emissions Scenario 

 % Current 
Suitability 
Lost 2050 

% Current 
Suitability Lost 

2090 

Total Area 
2050/Current 

Total Area 
2090/Current 

Globe 73.6 96.1 .995 .628 

Mediterranean Systems  

Mediterranean Basin 61.7 92.4 .383 .076 

California Floristic 
Province 

60.3 93.1 .744 .469 

Central Chile 46.1 95.4 .736 .215 

SW Australia 75.5 97.3 .255 .027 

Cape (South Africa) 47.8 87.2 .564 .174 

Non-Mediterranean Systems  

Northern Europe 90.2 99.6 2.053 1.656 

Eastern North America 33.0 99.1 .929 .430 

Western North America 64.3 100 17.621 16.366 

New Zealand 5.6 45.2 2.417 3.594 

SE Australia 48.4 86.7 .626 .261 

 

3.4 Potential Conservation Impacts 

Adaptive responses of the viticulture industry that involve vineyard relocation to more suitable 
climates, expansion into novel areas, or enhanced water development will have potential 
impacts on terrestrial and freshwater conservation. The conservation impacts are possible both 
in areas of existing viticulture that experience declining suitability as well as novel areas. 

 It has been demonstrated that expansion of viticulture over the past two decades has resulted 
in conversion and fragmentation of oak woodland habitats (Merenlender 2000), the 
displacement of native carnivore ranges (Hilty and Merenlender 2004; Hilty et al. 2006), and the 
degradation of in stream spawning sites due to altered runoff and sediment loading (Lohse et 
al. 2008). Even the relocation of vineyards locally upslope adjacent to major viticulture areas has 
the potential to develop or degrade remaining interstitial natural areas surrounding vineyards. 
In novel areas, the pressure to convert remaining natural lands will increase as suitability 
declines in traditional wine grape growing regions, both within California and worldwide. 
Although many conscientious vintners within California incorporate principles of sustainability 
into their vineyard management, the conversion of natural lands to vineyards and the 
associated wine production and tourism infrastructure will likely result in additional 
fragmentation and degradation of remaining habitat (Merenlender 2000). 
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In areas of existing viticulture that are experiencing declining suitability, adaptation measures 
such as cooling vines through overhead sprinklers or additional irrigation may add further 
strain to already stressed water resources and associated freshwater ecosystems. Withdrawals 
for frost abatement within viticulture areas have been shown to result in up to 96 percent 
reduction of in-stream flows during cold-weather events (Dietch et al. 2009). An increase of 
withdrawals for extreme heat mitigation during dry summer months would also affect regional 
water resource management and planning.  

The issue of shifting suitability for viticulture climates and the possible competition with 
conservation interests become amplified in the context of climate change—with both freshwater 
ecosystems and important areas for accommodating species range shifts potentially at odds 
with viticulture relocation or in situ adaptation measures. Unprotected natural areas with 
suitable climates for viticulture in future projections are at potential risk of conversion, 
especially considering the loss of optimal climates in many existing prime viticulture areas.  

 

 
Figure 3.4: Potential Conflict of Natural Areas and Optimal Viticulture Climates. Areas where 

optimal viticulture climate modeled for all periods (Current, 2041–2070, and 2071–2100) intersects 
with National Land Cover Dataset (NLCD) 2001 undeveloped land shown in black. Suitable areas 
for viticulture that do not intersect with natural areas are shown as Current = Red; 2041–2070 = 

Orange; 2071–2100 = Blue. The left panel is the San Francisco Bay Area north to Humboldt 
County, and the right panel is the Bay Area south to Ventura County. 
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As optimal climates for viticulture shift under climate change, the total area that is climatically 
suitable within developed or non-natural lands (i.e., area with minimal conservation conflict) 
diminishes through time (Table 3.4). Additionally, for projections constructed on California-
only occurrence points, the ratio of total optimal climate space that intersects with natural lands 
to climate space in non-natural lands increases from 2.3 in current climates to 5.8 by the end of 
the century.  

 

Table 3.4: Summary of Climate Change Effects on the Total Optimal Viticulture Area in Non-natural 
Lands and the Ratio of Viticulture Climates in Natural to Non-natural Lands 

 
Viticulture 
Climate in 

Natural 
Areas 
Mid-

century     
(% of 

present) 

Viticulture 
Climate in 

Non-natural 
Areas Mid-

century      
(% of 

present) 

Viticulture 
Climate in 

Natural 
Areas 
End-

century    
(% of 

present) 

Viticulture 
Climate in 

Non-natural 
Areas End-

century      
(% of 

present) 

Ratio of 
Viticulture 
Climates in 
Natural to 

Non-natural 
Mid-century 

Ratio of 
Viticulture 
Climates in 
Natural to 

Non-natural 
End-century 

CA Points 
PCM A2 

73.8 47.4 34.4 14.2 3.6 5.6 

CA Points 
GFDL A2 

48.9 39.6 9.1 3.6 2.9 5.8 

Global 
Points 

PCM A2 
118.6 93.2 79.4 77.1 2.2 1.8 

Global 
Points 

GFDL A2 
60.0 89.5 28.5 36.3 1.9 2.3 

 

3.5 Conclusions 

With significant areas of potential conflict between natural lands and the future distribution of 
optimal climates for viticulture, focused application of adaptation measures that limit 
additional water development and vineyard relocation will be important in mitigating stress on 
remaining natural lands. Several of these adaptation measures, such as vine orientation, 
trellising strategies to alter grape cluster insolation, and cooling through low-flow micro-
misting technology are already being implemented. Furthermore, planning and management 
that recognizes this potential resource conflict under climate change will be essential to 
maximize the continued vitality of both California viticulture and natural ecosystems. 
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Glossary  

A2 business-as-usual scenario 
AVA American Viticulture Area  
B1 assumes greenhouse gas abatement by mid-century 
Bio_1  Annual Mean Temperature 
Bio_10  Mean Temperature of Warmest Quarter 
Bio_11  Mean Temperature of Coldest Quarter 
Bio_12  Annual Precipitation 
Bio_13  Precipitation of Wettest Month 
Bio_14  Precipitation of Driest Month 
Bio_15  Precipitation Seasonality (Coefficient of Variation) 
Bio_16  Precipitation of Wettest Quarter 
Bio_17  Precipitation of Driest Quarter 
Bio_18  Precipitation of Warmest Quarter 
Bio_19  Precipitation of Coldest Quarter 
Bio_2  Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
Bio_20  Cumulative Growing Degree Days above 5°C 
Bio_22  Precipitation as snow 
Bio_3  Isothermality (BIO2/BIO7) (* 100) 
Bio_4  Temperature Seasonality (standard deviation *100) 
Bio_5  Max Temperature of Warmest Month 
Bio_6  Min Temperature of Coldest Month 
Bio_7  Temperature Annual Range (BIO5-BIO6) 
Bio_8  Mean Temperature of Wettest Quarter 
Bio_9  Mean Temperature of Driest Quarter 
°C Celsius 
CBI The Conservation Biology Institute 
CPAD  California Protected Area Database  
DEM digital elevation model   
°F Fahrenheit 
GAP U.S. Geological Survey’s Gap Analysis Program  
GCM general circulation model  
GDD growing degree days 
GFDL Geophysical Fluid Dynamics Laboratory  
IPCC Intergovernmental Panel on Climate Change 
IUCN International Union for Conservation of Nature  
km kilometers   
m  meters  
mm millimeters  
NASS National Agricultural Statistics Service 
NFA Network Flow Analysis  
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PADUS Protected Areas Database of the United States 
PCA principal component analysis 
PCM Parallel Climate Model  
PIER Public Interest Energy Research  
PRISM Parameter-elevation Regressions on Independent Slopes Model 
RD&D research, development, and demonstration  
SDM species distribution models  
SRES Emissions Scenarios  
STATSGO2 State Soil Geographic database  
UC University of California  
USGS United States Geological Survey  

  


