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Preface 

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives 
to conduct the most promising public interest energy research by partnering with RD&D 
entities, including individuals, businesses, utilities, and public or private research institutions. 

PIER funding efforts focus on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Energy-Related Environmental Research 
• Energy Systems Integration  
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 
• Transportation 

In 2003, the California Energy Commission’s PIER Program established the California Climate 
Change Center to document climate change research relevant to the states. This center is a 
virtual organization with core research activities at Scripps Institution of Oceanography and the 
University of California, Berkeley, complemented by efforts at other research institutions. 
Priority research areas defined in PIER’s five-year Climate Change Research Plan are: 
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas 
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the 
economic consequences of both climate change impacts and the efforts designed to reduce 
emissions. 

The California Climate Change Center Report Series details ongoing center-sponsored 
research. As interim project results, the information contained in these reports may change; 
authors should be contacted for the most recent project results. By providing ready access to 
this timely research, the center seeks to inform the public and expand dissemination of climate 
change information, thereby leveraging collaborative efforts and increasing the benefits of this 
research to California’s citizens, environment, and economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
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Abstract 

 

In the next few decades, it is likely that California must face the challenge of coping with 
increased impacts from extreme events such as heat waves, wildfires, droughts, and floods. 
Such events can cause significant damages and are responsible for a large fraction of near-term 
climate-related impacts every year. Some extreme events have already very likely changed in 
frequency and intensity over the past several decades, and these changes are expected to 
continue with relatively small changes in average conditions. This study synthesized existing 
research to characterize current understanding of the direct impacts of extreme events across 
sectors, as well as the interactions between sectors as they are affected by extreme events. It also 
produced new projections of changes in the frequency and intensity of extreme events in the 
future across climate models, emissions scenarios, and downscaling methods for producing 
regional climate information, for each California county. This research evaluated historical and 
projected changes for a suite of temperature and precipitation-based climate indicators and 
conducted a return level analysis to investigate projected changes in extreme temperatures. A 
final analysis discusses the future likelihood of events similar in magnitude to specific historical 
events, such as the July 2006 heat wave.  

Consistent with other projections, this study found significant increases in the frequency and 
magnitude of both maximum and minimum temperature extremes in many areas, with the 
magnitude of change dependent on the magnitude of projected emissions and overall 
temperature increase. For example, in many regions of California, at least a ten-fold increase in 
frequency is projected for extreme temperatures currently estimated to occur once every 100 
years, even under a moderate emissions scenario (the Special Report on Emissions Scenarios B1 
scenario). Under a higher emissions scenario (the Special Report on Emissions Scenarios A2 
scenario), these temperatures are projected to occur close to annually in most regions. Also 
consistent with other projections, changes in precipitation extremes are more varied, and are 
sensitive to choice of climate model and downscaling methodology. 

Lastly, a comparison of current and future expected frequencies of events comparable to 
recently observed extremes (the July 2006 heat wave and December 1998 freezing spell) suggest 
significant changes: heat waves similar in length and intensity to that experienced in 2006 will 
become more frequent all across the state, with some simulations suggesting that they will be an 
annual event by the end of this century under a higher emissions scenario. Freezing spells, on 
the other end, are robustly projected to become less frequent all across the state, even in 
locations where now they are a yearly event, becoming as rare as a one in ten-year event or less 
in a large fraction of California.  

 

Keywords: Extreme events, climate change impacts, heat waves, climate model projections, 
return period analysis 

 



1 

1.0 What Are Extremes? 

1.1. Motivation 
Extreme weather events, such as heat waves, wildfires, droughts, and floods can cause 
significant damages every year and are responsible for a large fraction of climate-related 
impacts (Kunkel et al. 1999; Easterling et al. 2000; Meehl et al. 2000; Tebaldi et al. 2006). Meehl et 
al. (2007) contend that “the type, frequency and intensity of extreme events are expected to 
change as Earth’s climate changes, and these changes could occur with relatively small mean 
climate changes” (p. 783). Thus, changes in extreme events are very likely to be some of the 
earliest impacts experienced from anthropogenic climate change. Indeed, Trenberth et al. (2007) 
find that some extreme events have already changed in frequency and intensity over past 
decades, with a confidence ranging from likely to very likely. Moreover, adaptation to extreme 
events can be more challenging than adaptation to gradual changes in mean climate states, and 
can disproportionately affect vulnerable populations that experience higher exposure (e.g., 
extreme heat and low-income populations without access to air conditioning or individuals 
living in flood-prone areas) or higher susceptibility (e.g., extreme heat and elderly individuals) 
to such events. Changes in climate may not only change the frequency and magnitude of 
individual extreme events, but may also change the likelihood of extreme climate events 
occurring concurrently. Vulnerability to and impacts of repeated and coincident extreme events 
are generally expected to be higher than similar events occurring individually (e.g., Hallegatte 
et al. 2007).  

For these reasons, investigations of extreme events uniquely contribute to impact assessments 
and adaptation planning. Extreme events are also particularly of interest because they provide 
near-term, direct concrete experiences of potential future conditions and impacts related to 
climate change. 

1.2. Climate Change and Extremes 
How might extreme events change with changes in climate? Changes in climate extremes can be 
due to changes in mean climate state, changes in distribution of climate states, or a combination 
of both. See Figure 1 for a graphical depiction of how changes in mean and distribution affect 
the frequency of climate extremes. Due to the potential for changes in variance, the sensitivity of 
extremes to changes in mean climate may be greater than one would assume from a changed 
mean alone (Mearns et al. 1984; Katz and Brown 1994; Tebaldi et al. 2006). Observations confirm 
that changes in extremes are not always proportional to changes in the mean, such as greater 
changes in minimum than maximum temperatures (Trenberth et al. 2007). Thus, projections of 
extremes are sensitive to both changes in mean and distribution of climate variables in future 
climate projections. Observed changes in extremes and projected impacts from future changes 
in extremes are summarized in (Trenberth et al. 2007; Parry et al. 2007). 
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Figure 1. Schematic showing the effect on extreme temperatures.  

When (a) the mean temperature increases, (b) the variance increases, and (c) 
when both the mean and variance increase for a normal distribution of 
temperature. Figure 2.32 from Folland et al. (2001) 

1.3. Defining Extreme Events 
The exact definition of an extreme event varies widely in the literature. The Intergovernmental 
Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) focused on six types of 
extreme events in discussions of observed changes in extreme events and projections of future 
changes: (1) daily maximum and minimum temperatures; (2) heat waves; (3) heavy 
precipitation events; (4) droughts; (5) intense tropical cyclone activity; and (6) incidents of 
extreme high sea levels (Solomon et al. 2007; Parry et al. 2007). The term also is used often to 
refer to floods and wildfires. The IPCC states, “Extremes refer to rare events based on a 
statistical model of particular weather elements, and changes in extremes may relate to changes 
in the mean and variance in complicated ways. Changes in extremes are assessed at a range of 
temporal and spatial scales” (Trenberth et al. 2007, 299). Extreme is generally defined as events 
occurring between 1% to 10% of the time at a particular location in a particular reference period 
(Trenberth et al. 2007).  
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Core to the definition of extreme events is the question: extreme with respect to what?  

First, extreme events must be defined temporally. Extreme events encompass variations in 
physical, weather-related parameters such as temperature or precipitation over days (e.g., heat 
waves, heavy precipitation) or months to years (e.g., drought).  

Second, extremes events must also be defined spatially. Heat waves, for example, can vary 
widely in their spatial extent, affecting the magnitude and nature of impacts. Spatial resolution 
should be chosen based on the desired output and impacts of interest. However, the resolution 
of the relevant observations or projections provides a fundamental constraint.  

Third, the thresholds used to define what is extreme must be defined. We contend that it is 
important to make a distinction between extreme climate events and extreme impact events. 
Extreme climate events are defined purely by their statistical relationship to past climate 
conditions and may or may not have direct ties to impacts. Extreme impact events, in contrast, 
are defined directly by having nonlinear impacts on social and biological systems. For example, 
isolated days with temperatures above the 95th percentile for that calendar day do not 
necessarily cause significant impacts to natural and human systems. Some extreme impact 
events are sensitive to the timing of extreme climate conditions, such as temperature extremes 
during the flowering of rice plants reducing yield (Jagadish et al. 2007). Moreover, extreme 
impact events can be caused by a combination of non-extreme physical conditions, such as 
damage due to flooding caused by a combination of precipitation and frozen ground. 

Extreme climate conditions affect components, or sectors, of biological and social systems. It is 
important to understand the relationships between physical conditions and particular metrics of 
interest in these sectors. These relationships, expressed in quantifiable terms, can be called 
transfer functions. While one can imagine a large number of sectors being affected by extreme 
events, we focus on those California sectors that have been identified as particularly susceptible 
to extreme climate events in the literature. Table 1 lists the sectors most sensitive to negative 
impacts from extreme climate events, and we also provide examples of metrics (quantifiable 
units) that can be used to measure the magnitude of extreme impact events in these sectors. 

Ideally, the definition of extreme impact events and subsequent transfer functions would be 
arrived at by a bottom-up approach: characterize climate conditions that generate extreme 
impact events through an assessment involving each sector’s stakeholders and analysts to 
identify thresholds of particular concern for on-the-ground planning. A study of such bottom-
up definitions, however, does not exist, to our knowledge. We see this study as setting the stage 
for more formal research in this direction, building from the extensive body of literature on the 
impacts of climate change in California. 
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Table 1. California sectors most sensitive to negative impacts from extreme climate 
events 

Sector Sector Description Example metrics 
Air Quality Addresses U.S. Environmental Protection 

Agency (EPA) criteria pollutants and other 
air pollution.  

Concentration of ozone and particulate 
matter. 

Agriculture Production of crops, animal products, 
produce. 

Farmland loss. Crop, meat, dairy, egg 
production and yields. Animal deaths. 

Ecosystems Natural biomes. Forests and marine/coastal 
ecosystems treated separately. 

Loss of habitat, biodiversity, pollination 
services, etc. 

Forestry Includes forest, woodland, scrubland, and 
grassland ecosystems. Also includes lumber 
industry, recreation, and other human uses.  

Loss of habitat and natural resources 
due to wildfire. Financial losses to 

lumber and other businesses. Loss of 
homes and infrastructure. 

Energy Electrical generation and transmission 
capacity. 

Peak and baseload electrical demand. 
Frequency, duration, and spatial extent 

of blackouts and brownouts. 
Marine/Coastal Includes marine, estuary, river delta, 

brackish wetland, beach, and coastal bluff 
ecosystems. Also includes fishing and 

tourism, recreation, and other human uses. 

Beach and coastal bluff erosion. 
Sewage overflow events. Damage to 
coastal infrastructure, interruption of 

coastal economic activities. 
Public Health Includes issues relating to human existence 

and welfare. 
Incidences of death, illness, and 

interruption of activities due to illness or 
injury. 

Water Includes the quality, transportation, and 
management of freshwater supply. Includes 

flood control and sewage processing. 

Flood frequency and consequent 
financial losses. Level of needed water 

conservation or rationing. 
 

In the discussion that follows, we discuss two types of transfer functions that can be used to 
estimate the impacts of extreme climate events on sectors of interest. First, inter-system transfer 
functions quantify the relationship between changes in physical system conditions and resulting 
sectoral impacts, such as how heat wave conditions impact heat-related mortality. Multiple 
sectors are affected by the same climatic changes; for example, drought conditions affect water 
supply for urban and agricultural uses as well as for hydropower. Additionally, impacts in one 
sector can affect other sectors. Thus, there are also inter-sector transfer functions that quantify the 
relationship between changes in one sector and the resulting impacts on a different sector. 
These relationships are diagramed conceptually in Figure 2.  



5 

 

Figure 2. Interactions among physical, biological, and social systems 
 

As used here, a transfer function does not refer only to a simple equation expressing a given 
impact metric as a function of one or more driving climatic variables. More broadly, a transfer 
function can also represent the output of models designed to calculate the impacts of changing 
climatic conditions on specific sectors, such as hydrologic models used to project changes in 
future water supply and stream flow. We document these transfer functions, where available, in 
Section 2. In many cases, qualitative relationships have been identified, but quantitative transfer 
functions have not been defined. 

2.0  Current Understanding 

2.1. Impacts of Extreme Events in California 
This paper builds from a firm foundation of existing research on the impacts of climate change 
on California. In this section we summarize this work in a new synthetic framework to illustrate 
the potential impacts of extreme events on seven key impact sectors in California, as well as the 
interconnections between sectors affected by extreme events. These sectors and relationships are 
summarized in Figure 3. Examples of sector components affected by extreme events are 
displayed in each bubble. Direct influences of climate on specific sectors are represented by 
color-coded arrows—red for temperature, blue for precipitation, and green for “surges”—
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representing other variables such as wind and storm surges. Black lines represent influences 
between sectors, with illustrative examples of such connections provided. We note that Figure 3 
does not distinguish between influences occurring on different spatial or temporal scales, 
which, as discussed above, can vary widely depending on the extreme event under 
consideration. The figure also does not distinguish between influences that differ in strength. 
And finally, the interactions displayed are specific to extreme events and their impacts in 
California. Climate change can have many other impacts on these sectors, and there are many 
other interactions between sectors that do not specifically involve extreme events and their 
impacts. Furthermore, there are many other drivers, such as land use change, that interact with 
climate change and influence impacts, and we explicitly do not attempt to catalog these other 
drivers. 

 

Figure 3. Extreme climate drivers and inter-sector interactions 

Potential impacts of extreme events on seven key impact sectors (and components) in California and 
the interconnections between impact sectors. Colored arrows represent extreme climate events (see 
legend) directly impacting specific sectors. Black arrows between driving sectors and affected sectors 
represent inter-sector interactions, with illustrative examples listed below the arrow. 
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We discuss each sector and relevant interactions below. For each sector, these are summarized 
in text and tabular form, including quantified transfer functions where available from the 
literature. The first column in each of these tables contains a brief description of what can 
constitute an extreme impact within the sector. The next two columns describe driving forces 
from physical systems (e.g., climate and weather systems) and document inter-system transfer 
functions mapping these physical system variables to sectoral metrics that can be used to 
characterize extreme impact events. The final two columns list driving forces that originate in 
other sectors and the related inter-sector transfer functions, when available. 

2.1.1.  Water 
The main impacts of extreme events in the water sector are on water resource management and 
flood control capability (Medellin-Azuara et al. 2008; Van Rheenen et al. 2004), with potential 
additional impacts on water transport and quality (Kiparsky et al., forthcoming). Water 
managers must balance between competing management demands, such as holding supply 
reserves, maintaining flood control capacity, and providing electricity through hydropower 
generation (Medellin-Azuara et al. 2008; Van Rheenen et al. 2004). Many of the relevant 
parameters for water resource management relate to extremes at the scale of multi-year 
accumulations and are sensitive to the balance between accumulation, runoff, snowpack 
melting, and evapotranspiration (Medellin-Azuara et al. 2008; Kiparsky et al., forthcoming). 
Researchers have investigated impacts on this complex system by developing detailed 
hydrological and engineering-economic models of California’s water supply system (see Draper 
et al. 2004; Medellin et al. 2006; Vicuna et al. 2007). When the use of complicated water system 
models was not possible, researchers have focused on dry days as a proxy, recognizing that 
they are not the same as drought indicators (Hayhoe et al. 2004; Roos 2005; Cayan et al. 2006a; 
Medellin et al. 2006). Water resource management is also very sensitive to urban and 
agricultural water demand, which will increase during extreme heat events (Medellin-Azuara et 
al. 2008).  

Precipitation frequency and intensity are the key parameters influencing flood control 
capability, but this capability is also sensitive to timing of runoff and snowpack melting 
(Medellin-Azuara et al. 2008). Water quality can be affected by salinity intrusions from sea level 
spikes, by contamination during floods, and by temperature-induced changes in water 
chemistry. Flood control capability and water quality can also be affected indirectly by wildfires 
and other damage to forests that increase runoff during heavy precipitation events and reduce 
filtration of water entering groundwater. 

Table 2 summarizes some extreme impact events within the Water sector and notes driving 
conditions from climate events or from other events in other sectors, along with associated 
transfer functions, where known. 
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Table 2. Water sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Extreme Climate 
Drivers 

Inter-System Transfer 
Functions 

Drivers from 
Other Sectors 

Inter-
Sector 

Transfer 
Functions 

Storage 
below 

minimum 
standards 

High temperatures may 
cause an exceptionally 

early snowmelt, causing a 
shift in maximum water 
storage to earlier in the 

spring. If accompanied by 
an exceptionally low 

precipitation year, the 
result will be dramatically 

lower water storage 
levels for use during the 

summer dry months. 

Trends are noted in the 
SWE/P (snow water 

equivalent, normalized to 
precipitation) and CT 

(riverflow Center of Timing; 
i.e., date for which half of 

river flow occurs before and 
half after). Both of these 

measures are declining in 
most of California. (Barnett 

et al. 2008) 
 

Projections (2085 climate 
model, 2050 water 

demands & land use) with 
CALVIN hydrologic model: 
water availability and use. 

(Medellin et al. 2006) 
 

Projections [climate models 
(until 2100)], WEAP 

hydrologic model: inflows 
to, and drought frequency 

and persistence in, the 
Sacramento River Basin. 

(Joyce et al. 2006) 

Agriculture: 
excessive 
irrigation 

demands may be 
induced by the 
same climate 
drivers that 

directly impact 
water 

management. 

Projections 
[climate 

model (  
2100)], 
WEAP 

hydrologic 
model: 

agricultural 
demand for 
water in the 

Sacra-
mento 
Valley. 

(Joyce et 
al. 2006) 
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Table 2 (cont.). Water sector extreme impact events and drivers  

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System Transfer 
Functions 

Drivers from 
Other Sectors 

Inter-
Sector 

Transfer 
Functions 

Flood 
control 

capability 

High temperatures may 
cause an exceptionally 

early snowmelt, causing a 
shift in maximum water 
storage to earlier in the 

spring. If combined with a 
high precipitation event, 
this could cause flooding 
if storage capacities are 

exceeded. 
High winds from severe 
storms can cause high 

waves and storm surges, 
creating the potential for 

levee failures in estuaries 
and river deltas, 

especially if occurring 
during a high tide period. 

This effect will be 
compounded by gradually 

rising sea levels. It will 
also be compounded if 

accompanied by the high 
temperature and high 
precipitation events 
mentioned above. 

Historical tide range 
damping between Golden 

Gate and Sacramento. 
Historical frequency of 
Sacramento river and 

delta levee breaks. 
(Cayan et al. 2006b) 

 
Projection (until 2100) 

(climate models & 
historical data): 

increasing sea level 
trend, # of exceedances 
of 99.99 percentile sea 

level, and coincidence of 
high Sea Level Height 

(SLH) and low Sea Level 
Pressure (SLP) (as an 

indicator for storms), for 
California. (Cayan et al. 

2008a) 

Ecosystems: major 
wildfires may lead 

to increased run-off 
from high 

precipitation 
events, 

exacerbating the 
problem of flood 

control. 

(none 
identified at 
this time) 

Quality 
below 

minimum 
standards 

Flooding and runoff 
during severe storms can 
lead to contamination of 

water supplies. 
High temperatures can 

affect water chemistry, as 
well as algal and 

microbial growth, and 
thus water quality. 

(none identified at this 
time) 

Ecosystems/ 
Forestry: end-user 
water quality could 
be compromised 
through reduced 

filtering of 
groundwater due to 

loss of forests 
through wildfire 
(short-term) or 
increased pest 

activity (long-term). 

(none 
identified at 
this time) 
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2.1.2. Public Health 
Extreme events affect public health in California primarily through heat-related morbidity and 
mortality and impacts on air quality (Drechsler et al. 2006). Jacobson (2008) found that 
additional deaths from air pollution induced by climate change were due to increased ozone 
levels and increases in particulate matter (PM) from enhanced stability, humidity, and biogenic 
particle mass. The relationships developed between heat and morbidity/mortality are location 
specific, and most public health studies are conducted at an individual city scale (Hayhoe et al. 
2004; Ebi et al. 2006; Patz et al. 2005). Such specificity allows the construction of quantitative 
relationships with temperature parameters (Drechsler et al. 2006; Hayhoe et al. 2004). Heat-
related morbidity/mortality can also be exacerbated by electrical outages that prevent air 
conditioning, and by decreased air quality during extreme heat events (Drechsler et al. 2006). 
Flooding and severe storms often cause direct casualties and can decrease water quality 
through contamination such as discharges of untreated sewage (Drechsler et al. 2006). Wildfires 
can cause direct casualties as well as increasing medical problems through deteriorating air 
quality.  

Table 3 summarizes some extreme impact events within the Public Health sector and notes 
driving conditions from climate events or from other events in other sectors, along with 
associated transfer functions, where known. 
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Table 3. Public health sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System 
Transfer Functions 

Drivers from Other 
Sectors 

Inter-Sector 
Transfer 

Functions 

Excessive 
incidence 
of death/ 

emergency 
room (ER) 
visits from 

health-
related 
issues. 

High temperatures can 
cause heat exhaustion 
and heatstroke, as well 

as increasing the 
probability of 

cardiovascular problems. 

Analytic function: 
Based upon historical 

modeling and 
depending on 

particular 
metropolitan area, 

mortality is shown as 
linear functions of 

apparent temperature 
(AT), day position 
(CD), afternoon 

temperature (Tx), 
days in sequence 
(DIS), and/or days 
after May 1 (TS).  
(Drechsler et al. 

2006; Hayhoe et al. 
2004) 

 
Statistical modeling: 

Correlation of 
temperature to 
mortality and 

hospitalizations, 
particularly identifying 
affected groups. Also 
compares heat wave 

incidence rates to 
non-heat wave rates. 

(Basu and Ostro 
2008) 

Air Quality: Increased 
ozone and PM levels 
are associated with 
higher incidences of 
cardiovascular and 

respiratory ailments, 
including higher 

numbers of deaths 
and ER visits. 

Energy: Electrical 
blackout/brownouts 

from the energy 
sector would impact 
the ability to run air 

conditioning, 
especially during heat 

waves, when it is 
needed most to 

forestall the health 
issues discussed 

under climate drivers. 
Water: Failure of 

sewage treatment 
facilities because of 
flooding/excessive 
run-off may cause 
untreated sewage 

discharges into 
waterways used for 
freshwater supplies 
and recreation. This 
may lead to increase 

health incidences. 

Analytic 
function: 

differential 
increases in 

cancer 
mortality/ 

hospital visits 
as a function 
of ozone/PM 

concen- 
tration, 

fractional 
increased 
risk per  
unit of 

concentration 
change, 
baseline 

health effect 
rate, and 

population 
exposed to  

 min 
threshold. 

(Ostro et al. 
2006) 

 

 



12 

Table 3 (cont.). Public health sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System 
Transfer Functions 

Drivers from Other 
Sectors 

Inter-Sector 
Transfer 

Functions 

Flood 
casualties 

Excessive stream flows 
can result from: (1) High 
temperatures creating 
rapid snow melt in the 

mountains, and (2) high 
precipitation levels from 

severe storms. 
High winds from severe 
storms can cause high 

waves and storm surges 
creating flooding and 

erosion in coastal areas, 
especially if occurring 
during a period of high 
tides. This effect will be 

compounded by gradually 
rising sea levels. In 

estuaries and river deltas 
it will also be 

compounded if 
accompanied by the high 

temperature and high 
precipitation events 
mentioned above. 

Historical tide range 
damping between 
Golden Gate and 

Sacramento. (Cayan 
et al. 2006b) 

 
Projection (  2100) 
(climate models & 

historical data): 
increasing sea level 

trend, # of 
exceedances of 

99.99 percentile sea 
level, and 

coincidence of high 
SLH and low SLP (as 

an indicator for 
storms), for 

California. (Cayan et 
al. 2008a) 

Water: levee failure 
always leads to 

flooding. The degree 
of this flooding will 
depend, to some 

extent, on the climate 
factors affecting this 

sector. 

Historical 
frequency of 
Sacramento 

river and 
delta levee 

breaks. 
(Cayan et al. 

2006b) 

 

2.1.3.  Air Quality 
Extreme events impact air quality primarily through influences on ozone and PM levels (Cayan 
et al. 2006a; Drechsler et al. 2006; Medina-Roma and Schwartz 2007). Extreme heat events 
promote ozone formation. Jacobson (2008) found that increased water vapor and temperatures 
separately increase ozone, more so at locations with higher background ozone levels. Wildfires 
also release PM that can be broadly transported by prevailing winds. Increased energy demand 
also requires utilization of additional energy generation, increasing emissions of pollutants to 
the extent that additional energy generation involves additional fossil fuel use. 

Table 4 summarizes some extreme impact events within the Air Quality sector and notes 
driving conditions from climate events or from events in other sectors, along with associated 
transfer functions, where known. 
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Table 4. Air Quality Sector Extreme Impact Events and Drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System Transfer 
Functions 

Drivers from 
Other Sectors 

Inter-Sector 
Transfer 

Functions 

Excessive 
ozone 
levels 

High temperatures 
enhance the formation of 

ozone. 

Analytic function: 
differential increase in 

ozone with temperature 
fit to polynomial 

function of ozone 
concentration. 

(Jacobson 2008) 
Projection (  2100): 
increasing trend in 

days/yr that ozone 1-hr 
avg. exceeds 90ppb in 

selected areas. 
(Drechsler et al. 2006) 

Drivers from 
other sectors of 

marginal 
consequence in 
the context of 

extreme events. 

(none identified 
at this time) 

Excessive 
PM levels 

High temperatures 
enhance the formation of 

ozone, which, in turn, 
increases the formation of 

nitrogen-based 
particulates. 

Perturbation analysis 
models of historical 

data: expected 
increases in 

background ozone 
cause increased PM2.5 

in most cases. 

Forestry: smoke 
from wildfires;  

Energy: 
excessive 

emissions if peak 
energy demands 
must be met with 

fossil fuel 
generation. 

(none identified 
at this time) 

 

2.1.4.  Agriculture 
Changes in temperature, precipitation, carbon dioxide (CO2) concentrations, pests, and weeds 
all can affect agriculture (Cavagnaro et al. 2006; Baldocchi and Wong 2006; Cayan et al. 2006a). 
Pastures in California are potentially more sensitive to local precipitation changes because they 
are rain-fed, as compared to croplands that are mostly irrigated. 

However, major damages to crop and livestock industries are possible with extreme events, 
with costs of insurance claims from specific extreme events reaching into the hundreds of 
millions (Lobell et al. 2009a). Specific crops are sensitive to extremes during specific stages in 
their development (extreme heat during fruit ripening, e.g.). Though monthly averages do not 
explicitly identify the impacts of extreme events, (Lobell et al. 2007a, Lobell et al. 2007b, Lobell 
et al. 2006) identified correlations between yields of specific crops and climate variables such as 
monthly averaged min/max temperature and precipitation. Schlenker et al. (2006, 2007) use a 
fine-scale data set to identify a highly non-linear and asymmetric relationship between 
temperature (in degree days) and yield in historical data for corn, soybeans, and cotton, 
supporting the importance of considering extreme events in addition to mean changes. Hayhoe 
et al. (2004) also identified specific temperature thresholds for impacts to certain industries, 
such as wine grapes and dairy production. Irrigated agriculture is affected by water availability 
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during multi-year drought conditions and can be affected by short-term disruption of water 
supply during periods of extreme heat (discussed above), as well as increased water needs due 
to increased evapotranspiration (Anderson et al. 2008). 

Table 5 summarizes some extreme impact events within the Agricultural sector and notes 
driving conditions from climate events or from events in other sectors, along with associated 
transfer functions, where known. 
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Table 5. Agriculture sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System Transfer 
Functions 

Drivers from 
Other Sectors 

Inter-Sector 
Transfer 

Functions 

Drastic 
reduction in 

crop 
production 

High temperatures above 
tolerance range of plants, 
low precipitation in non- 
irrigated areas, flooding 
during severe storms, all 
can decrease crop yield. 

Historical (1993–2008) 
breakdown of California 

crop insurance and 
disaster payments, 

especially by temperature 
and precipitation extreme 

events. (Lobell et al. 
2009a) 

 
Projection (  2050) 

(climate and crop models 
& historical data): 

likelihood of impacts on 
the yields of California's 
top 20 perennial crops. 

(Lobell et al. 2008b) 
 

Projection (  2100) 
(climate models & 

historical data): trends on 
winter chill duration in 

California's Central 
Valley. (Baldocchi and 

Wong 2008) 
 

Regression models of 
influence of various 

temperature and 
precipitation variables on 

yields for 12 major 
California crops. (Lobell 

et al. 2006) 

Ecosystem: 
decreasing 
pollination 

services for those 
crops not wind-

pollinated 
because of 

climate-induced 
changes in 
pollinator 
habitats; 

Water: decreased 
ability to supply 

irrigation water in 
either the short or 

long-term. 
Air Quality: 

Increased ozone 
concentrations 

can damage crop 
development and 

yields. 

Projections 
[climate 

model (  
2100)], 
WEAP 

hydrologic 
model: 

surface and 
groundwater 
deliveries in 

the 
Sacramento 
Valley, with 
and without 

cropping 
pattern 

adaptation. 
(Joyce et al. 

2006) 

Drastic 
reduction in 

meat/ 
dairy/egg 

production 

High temperatures 
increase death of farm 

animals or cause 
dramatic decrease in 
dairy/egg production. 

Analytic function: linear 
decline in milk production 
(per degree over 32°C). 

(Hayhoe et al. 2004) 

Energy: Outages 
would impact air 

conditioning, 
especially during 

heat waves, 
when it is needed 

to forestall the 
issues under 

climate drivers. 

(none 
identified at 
this time) 
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Table 5 (cont.). Agriculture sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System Transfer 
Functions 

Drivers from 
Other Sectors 

Inter-Sector 
Transfer 

Functions 

Flooding of 
farmlands 

 
 
 

Excessive stream flows 
can result from: (1) High 
temperatures creating 
rapid snow melt in the 

mountains, and (2) high 
precipitation levels from 

severe storms. 
For farmland near sea 
level, high winds from 

severe storms can cause 
high waves and storm 

surges creating flooding 
and erosion, especially if 
occurring during a period 
of high tides. This effect 
will be compounded by 

gradually rising sea 
levels. It will also be 

compounded if 
accompanied by the high 

temperature and high 
precipitation events 
mentioned above. 

Historical tide range 
damping between Golden 

Gate and Sacramento. 
(Cayan et al. 2006b) 

 
Projection (  2100) 
(climate models and 

historical data): 
increasing sea level 

trend, # of exceedances 
of 99.99 percentile sea 

level, and coincidence of 
high SLH and low SLP 

(as an indicator for 
storms), for California. 
(Cayan et al. 2008a) 

 
Historical (1993–2008) 
breakdown of California 

crop insurance and 
disaster payments, 

especially by temperature 
and precipitation extreme 

events. (Lobell et al. 
2009a) 

Water: levee 
failure always 

leads to flooding. 
The degree of 

this flooding will 
depend, to some 

extent, on the 
climate factors 
affecting this 

sector. 

Historical 
frequency of 
Sacramento 

river and 
delta levee 

breaks. 
(Cayan et al. 

2006b) 

 

2.1.5.  Energy Generation and Use 
Extreme events can affect energy demand (Franco and Sanstad 2008; Miller 2007), impact 
energy production from hydropower (Medellín-Azuara et al. 2008; Vicuña 2008) and wind, and 
can cause potential disruptions to the production, transmission, and fuel transport 
infrastructures. Potential for disruption of energy supply is particularly high during periods of 
extreme heat, when energy demand increases (for air conditioning, but also to meet needs such 
as pumping water for agricultural uses) and energy transmission infrastructure (e.g., 
transformers) can also be compromised (Miller et al. 2007). Reductions in water availability 
during periods of drought can reduce hydropower generation capacity (Medellín-Azuara et al. 
2008; Vicuña 2008). Wildfires also can damage transmission infrastructure. 

Table 6 summarizes some extreme impact events within the Energy sector and notes driving 
conditions from climate events or from events in other sectors, along with associated transfer 
functions, where known. 



17 

Table 6. Energy sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System 
Transfer 

Functions 

Drivers from Other 
Sectors 

Inter-Sector 
Transfer 

Functions 

Planned or 
unplanned 
electrical 

blackouts/ 
brownouts 

High winds 
associated with 
severe storms 
can blow down 

cables supporting 
high-voltage 
transmission 

capability. High 
temperatures can 
cause premature 

failure in 
transformers and 
other electrical 

distribution 
equipment, as 
well as causing 

electrical demand 
above capacity. 
Severe storms 

can create 
flooding and 

erosion, 
especially if 

occurring during 
high tides, and 
impact coastal 

and Delta energy 
infrastructure. 

This effect will be 
compounded by 
gradually rising 

sea levels.  

Analytic function: 
linear incremental 

response of 
electrical 

demand/deg F (for 
temperatures 

> 82°F), with Gross 
Domestic Product 
(GDP), population 

held constant. 
Linear response to 
population, all else 
equal. (Miller et al. 

2007) 
 

Analytic functions: 
linear formula for 

peak, cubic 
polynomial for 
average total, 
electrical daily 
demand based 
upon average 

maximum daily 
temperature. 
(Franco and 

Sanstad 2006)  
 

Projections (  
2100): percentage 
increase ranges for 
peak and average 

total electrical 
demand. (Franco 

and Sanstad 2006)  

Water: a greatly reduced 
amount of water in the 

storage facilities will have a 
commensurate effect on the 

ability to support 
hydroelectric power 

generation. In addition, the 
water sector may have 

increased energy demands 
to transport water around 

the state in extreme climate 
situations, particularly for 
agricultural uses. These 
factors may affect the 

energy sector's ability to 
meet peak electrical 

demand. 
Ecosystem: severe wildfires 

may destroy high voltage 
transmission capabilities, 
which may, in turn, affect 

the energy sector's ability to 
supply electricity to some 

areas of the state. 
Public Health: increased 

electrical demand to run air 
conditioning during a major 
heat wave may affect the 
energy sector's ability to 

meet peak electrical 
demand. 

 
These inter-sector impacts 

can clearly combine to 
exacerbate the effect upon 

the electric generation 
capability of the state. 

Water Trend:  
precipitation 

implies  inflows 
which implies 

changes to the 
timing and  
 amount of 

electrical energy 
producible from 

hydro. (Vicuna et 
al. 2006) 

 
Projections (2085 

climate model 
and historical 

hydrology, 2050 
& 2020 water 
demands and 
land use) with 

CALVIN 
hydrologic model: 

hydroelectric 
generation 
capacity. 

(Medellin et al. 
2006) 

 
Public Health 

Estimate: 10% 
increase in peak 

electrical demand 
in 2100 from 
increased air 
conditioning 

demand alone. 
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2.1.6. Natural Ecosystems 
Most research assessing the impact of climate change on natural ecosystems does not focus on 
extreme events. Vegetation models are used to project responses to changes in mean climate 
states (Lenihan et al. 2006; Hayhoe et al. 2004). An important exception is the impact of wildfires 
on vegetation regimes, but the ecological impact of changed wildfire regimes is not 
straightforward (Lenihan et al. 2006). There is also qualitative discussion of the potential 
interactions of invasive species, pests, and pathogens with extreme events (Cayan et al. 2006a). 

Table 7 summarizes some extreme impact events within the Natural Ecosystem sector and notes 
driving conditions from climate events or from events in other sectors, along with associated 
transfer functions, where known. 

 

Table 7. Ecosystems sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System 
Transfer 

Functions 

Drivers from Other 
Sectors 

Inter-Sector 
Transfer 

Functions 

Losses of 
biodiver-

sity, 
habitat, 

services. 

High temperatures and/or 
changes in precipitation 
patterns can fall outside 
the tolerance range of 
species, particularly 

endemic species, leading 
to biodiversity loss and 

habitat reduction. 

Mostly qualitative 
discussion of 

shifts in range, 
changes in 

morphology, 
behavior, 

reproduction, and 
effects at 

population, 
community, and 
ecosystem level. 
(Parmesan et al. 
2000; Root et al. 

2003) 

Water: a lack of stored 
water may inhibit the 

ability to support 
controlled releases of 

water, which may have 
a direct bearing on the 

survival of aquatic 
species and the 
preservation of 

wetlands habitats. 
Climate changes may 
exacerbate this effect 

by lengthening the 
season during which 

such releases are 
necessary. 

(none identified 
at this time) 
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2.1.7. Forestry 
Wildfires are projected to increase in California with climate change (Cayan et al. 2006a). There 
are many models that identify a variety of environmental variables that lead to wildfires, such 
as annual maximum temperature, precipitation, winds, and human density. Westerling and 
Bryant 2006) developed a model for wildfires in California based on temperature, precipitation, 
and simulated hydrologic variables. Historical analysis of recent increases in wildfires in the 
West has identified the importance of warmer spring and summer temperatures and an earlier 
snowmelt (Westerling et al. 2006). The combination of high temperatures and dry conditions 
(e.g., low precipitation levels) generally increase wildfire risk, particularly in areas where 
energy rather than fuel availability is the limiting factor (Westerling and Bryant 2006).  

Table 8 summarizes some extreme impact events within the Forestry sector and notes driving 
conditions from climate/weather or from other sectors, along with associated transfer functions, 
where known. 

Table 8. Forestry sector extreme impact events and drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System Transfer 
Functions 

Drivers from 
Other Sectors 

Inter-Sector 
Transfer 

Functions 

Increased 
likelihood 
of major 
wildfires. 

High temperatures and 
low precipitation levels, 

as well as lightning during 
storms or in dry 

conditions, can lead to 
major wildfires, affecting 

biodiversity, habitats, 
water run-off 

characteristics, and 
human life and property.  

Climate and 
multivariate regression 

modeling: Projected 
changes in risk of fires 

>200 hectares in 
various California 

regions. (Westerling 
and Bryant 2006) 

 
Projections (climate 
models  2100) with 

FDBMOD and CFES2 
forestry models: 

expected number of 
wildfires that "escape 

initial attack" in several 
forest units in 

California. (Fried et al. 
2008) 

 
Projections (climate 
models  2100) with 

MCI model: total annual 
area burned in wildfires. 

(Lenihan et al. 2008) 

(none identified 
at this time) 

(none identified 
at this time) 
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2.1.8. Marine/Coastal 
Extremes in sea levels may occur from intense storms, heavy surf, and high tide events (Cayan 
et al. 2006b). Sea level extremes may exceed coastal defenses designed for historical conditions 
and cause coastal flooding and erosion, potentially damaging wetlands and the built 
environment (Cayan et al. 2006b). 

Table 9 summarizes some extreme impact events within the Marine/Coastal sector and notes 
driving conditions from climate events or from events in other sectors, along with associated 
transfer functions, where known. 

 

Table 9. Marine/Coastal Sector Extreme Impact Events and Drivers 

Extreme 
Events w/i 

Sector 

Climate/Weather 
Drivers 

Inter-System 
Transfer 

Functions 

Drivers from Other 
Sectors 

Inter-Sector 
Transfer 

Functions 

Erosion 
and 

flooding 
causing 

evacuation 
and 

property 
damage. 

Excessive stream flows 
can result from: (1) High 
temperatures creating 
rapid snow melt in the 

mountains, and (2) high 
precipitation levels from 

severe storms. 
High winds from severe 
storms can cause high 

waves and storm surges 
creating flooding and 

erosion in coastal areas, 
especially if occurring 
during a period of high 
tides. This effect will be 

compounded by gradually 
rising sea levels. In 

estuaries and river deltas 
it will also be 

compounded if 
accompanied by the high 

temperature and high 
precipitation events 
mentioned above. 

Historical tide 
range damping 

between Golden 
Gate and 

Sacramento. 
(Cayan et al. 

2006b) 
 

Projection (  
2100) (climate 

models and 
historical data): 
increasing sea 
level trend, # of 
exceedances of 
99.99 percentile 
sea level, and 
coincidence of 
high sea level 
height and low 

sea level 
pressure (as an 

indicator for 
storms), for 

California. (Cayan 
et al. 2008a) 

Water: levee failure 
always leads to 

flooding. The degree of 
this flooding will 
depend, to some 

extent, on the climate 
factors affecting this 

sector. 

Historical 
frequency of 
Sacramento 

river and delta 
levee breaks. 
(Cayan et al. 

2006b) 

 



21 

2.2. Case Study of 2006 Heat Wave 
 During the second half of July, 2006, a severe heat wave, both in terms of magnitude and 
duration, affected much of California. Daily and consecutive daily maximum and minimum 
temperature records were broken in many locations (Gershunov and Cayan 2008; Knowlton et 
al. 2008). Gershunov and Cayan (2008) provide a detailed analysis of the specific characteristics 
and synoptic setting of the event. Because of high humidity and other synoptic characteristics, 
the July 2006 event was unprecedented in terms of nighttime (minimum) temperatures, 
simultaneously providing little relief from daytime temperatures and allowing daytime 
temperatures to rise from a warmer starting point. 

Many impacts have been linked to this event, and it is likely that only a subset have been 
formally documented. At least 140 deaths from extreme heat were recorded between July 15 
and August 1, 2006 (CDHS 2007). The highest mortality occurred in coastal areas where 
residents are generally less acclimatized to extreme heat conditions. Beyond mortality, the event 
also has been linked to 16,166 excess emergency room visits and 1,182 excess hospitalizations 
statewide for a variety of conditions, especially in the Central Coast including San Francisco 
(Knowlton et al. 2008). Children (ages 0–4 years) and the elderly (ages  65 years) were at 
greatest risk. Often, individuals from lower income brackets are also more vulnerable to 
extreme heat because they lack access to air conditioning. 

Peak energy use in the state reached an all time high of 50,270 megawatts (MW) (Kozlowski and 
Edwards 2007), causing power outages for 1.5 million electrical customers, primarily due to 
overheating transformers (Bell and Giannini 2006). The extent to which power outages and 
subsequent lack of access to air conditioning contributed to heat-related mortality and 
morbidity is unclear. In some cases fatalities were linked to cases when individuals did not 
switch on working air conditioning at night (Gershunov and Cayan 2008).  

The heat negatively impacted agriculture, especially the dairy and cattle industry, although 
yields from field crops and orchards, as well as the poultry and apiary industries, were also 
affected (Bell and Giannini 2006; Kawamura 2006). Estimated insured agricultural losses were 
$492 million (Lobell et al. 2009a). The heat stress to crops also led to increased water demand for 
irrigation (Kawamura 2006), although the magnitude of this effect has not been quantified. 

Figure 4 summarizes these documented impacts in the context of the framework presented in 
Figure 3. Both direct impacts from extreme temperatures and inter-sector interactions are 
evident. 
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Figure 4. Extreme climate drivers and inter-sector interactions, July 2006 heat 
wave 

 

3.0  Projections of Extreme Events 

3.1. Overview 
Given the lack of a consolidated set of bottom-up definitions of extreme impact events, we 
choose to take a more traditional approach for the main part of this projection study. Our goal is 
to provide a foundation upon which future research can build. A next step, for example, is to 
couple the projections presented here with research related to specific interconnections between 
extreme events and sectoral impacts described above, to better understand the importance of 
these impacts and interactions between sectors. This analysis employs downscaled climate 
projections from six Global Climate Models (GCMs), two emissions scenarios and two 
downscaling methods, produced for the 2008 Public Interest Energy Research (PIER) Scenarios 
Report (Cayan et al. 2008b). Previous assessments of climate change impact projections for 
California have used a smaller subset of climate projections and fewer categories of extreme 
events than are analyzed here. By using this larger suite of projections, we are able to more fully 
characterize the range of projected changes, addressing the issues of consistency or spread 
among projections. 
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First, we compute projections for a set of ten indicators that have been extensively studied in the 
recent literature (Tebaldi et al. 2006), and whose projected behavior from GCM experiments 
provides a ready benchmark for comparison. 

Next, we rely on standard definitions of extremes dictated by Extreme Value Theory (EVT) 
statistics (e.g., Coles 2001), focusing on the characterization of the tail behavior of daily 
precipitation and maximum and minimum temperatures.  

Lastly, we conduct analyses with the goal of characterizing the projected change in frequency of 
events similar in character to specific historical events under a changed climate. 

We perform these analyses at 58 separate grid points extracted from the full set of downscaled 
climate projections. Each grid point is representative of a county in California (closest to the 
county geographical centroid), and the locations are representative of areas of importance from 
an economic, social, and ecological perspective (e.g., major urban areas, Central Valley, Wine 
Country, higher elevation regions, coastal areas).  

3.2. Downscaled Climate Projections for California 
Two statistical downscaling techniques have been applied to climate projections for California, 
the Bias Correction and Spatial Downscaling (BCSD) method (Wood et al. 2004) and the 
Constructed Analog downscaling (CAD) method (Hidalgo et al. 2008). These methods have 
produced a suite of projections for daily temperature and precipitation at a 1/8° grid scale for 
the entire state. Projections have been produced for simulations under a higher and lower 
emissions scenario, Special Report on Emissions Scenarios (SRES) A2 and B1, respectively 
(Nakicenovic et al. 2000). With BCSD, this has been done for six GCMs (NCAR PCM1, GFDL 
CM2.1, CNRM CM3, Max Planck Institute ECHAM5, NCAR CCSM3 and MIROC 3.2 at 
medium resolution), and for CAD this has been done for the first three of the same GCMs 
(Cayan et al. 2008b). Maurer and Hidalgo (2008) compare the ability of these methods to 
reproduce observed temperature and precipitation extremes. They conclude that the CAD 
method produces greater downscaling skill than BCSD for fall and winter low-temperature 
extremes and summer high-temperature extremes. For daily precipitation extremes, both 
methods are limited in their ability to reproduce observed wet and dry extremes. The authors 
note that this is a reflection of the general low skill of GCMs in reproducing daily precipitation 
variability. 

As part of our analysis, we further compare the BCSD and CAD methods’ ability to reproduce 
characteristics and trends in observed temperature and precipitation extremes in the context of 
the analyses outlined above, and we compare analyses of projections produced through both 
downscaling methods. 

3.3. Indicators for Extreme (Impact) Events 
Constructed “climatic indicators” are often developed to represent the climate conditions that 
can cause extreme impact events. We use a set of indicators that have become well known, at 
least in the climate science literature (Frich et al. 2002; Tebaldi et al. 2006). These indicators are 
defined as annual indices, such as the longest run of consecutive dry days in the year, or of 
consecutive days with maximum temperatures above a certain threshold (usually defined with 
respect to the climatological distribution). These indices have been designed with some practical 
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concern in mind. For example, they are arguably mild definitions of extremes and we can expect 
GCM output to be appropriate for constructing them. Because they represent mild definitions, 
we expect the observational record to contain enough cases to allow a robust characterization of 
each indicator’s climatological distribution and trends. They are designed in consideration of 
societal impacts rather than ecosystem vulnerability. Nonetheless they offer a multi-
dimensional picture of changes beyond average conditions, particularly when computed from 
downscaled data that provides insight into potential regional changes. 

In the following tables we list the climate indicators that we use to assess projected changes 
(Frich et al. 2002; Tebaldi et al. 2006). Admittedly, these are still far from an optimal definition of 
extremes in light of the needs of impact assessment studies. In fact, some criticize these 
indicators for their fixed thresholds, questionable impact relevance, problematic statistical 
properties, and biases at the boundaries of the historical period (Zhang et al. 2005; Tebaldi et al. 
2006; Alexander et al. 2006). However we view these indices as a first step toward bridging the 
gap between an abstract definition of extremes and definitions that may be dictated by 
particular concerns. We hope to see such an approach complemented by future research 
reversing this process, i.e., defining relevant extreme-impact thresholds in consultation with 
stakeholders, and defining indicators that directly apply to these impacts. 

 

Table 10. Climatic indicators of temperature extremes and associated impact events 

Climatic Indicator Impact Event 
Frost Days: Number of days in a year with an absolute minimum 
temperature below 0ºC 

Crop and plant death, Insect 
infestation. 

Growing Season Length: Length of time between the first and last five 
consecutive days with mean temperature above 5ºC (41ºF). 

Crop and plant growth 

Warm Nights (and Warm Summer Nights): Percentage of days in the 
year (and in the period May through September) when the minimum 
temperature is above the 90th percentile of the climatological distribution 
for that calendar day. 

Heat-related Illness 

Warmest Three Nights: Warmest spell of three consecutive nights  Heat-related Illness 
Heat Wave Duration: Length of the maximum period of at least five 
consecutive days with a maximum temperature higher by at least 5ºC 
(9ºF) than the climatological norm for that calendar day. Computed only 
over the warm season (May through September) 

Heat-related Illness, Fire 
frequency and intensity, 

Electricity demand 

Hot Spell Duration: Length of the maximum period of at least five 
consecutive days with a maximum temperature higher by at least 5ºC 
(9ºF) than the climatological norm for that calendar day. Computed over 
the entire calendar year. 

Heat-related Illness, Fire 
frequency and intensity, 

Electricity demand 
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Table 11. Climatic indicators of precipitation extremes and associated impact 
events 

Climatic Indicator Impact Event 
Precipitation Intensity: Annual total precipitation divided by the number 
of wet days. 

Floods, Erosion 

Consecutive Dry Days: Maximum number of consecutive dry days. Wildfires, Water availability 
10mm Days: Number of days with precipitation greater than 10 
millimeters (mm). 

Floods, Crop yields 

Heavy Precipitation Fraction: Fraction of total precipitation from events 
exceeding the 95th percentile of the distribution of wet day amounts. 
How much of precipitation comes in heavy events? 

Floods 

Five-Day Precipitation: Maximum five-day precipitation total. Floods 
 

3.4. Indicator Results 
3.4.1. Comparison to Observations 
 
We derived time series for each of the twelve indicators described in Tables 10 and 11 for each 
county (each county-representative grid point, as described above), based on daily observed 
data and downscaled GCM simulations. We computed climatological means for both observed 
data and modeled datasets over the period 1950–2000. In addition, we computed trends for each 
of the indicators, both within the observational period (1950–2000) and over the entire length of 
the simulated datasets (1950–2100). We compare these results across the suite of GCMs, the two 
downscaling methods, and the two SRES scenarios. Note that because we compare across 
downscaling methods, we limit our analysis to the common subset of GCM simulations 
available under both methods. 

Before examining future projections, it is important to investigate whether the downscaled 
model simulations reproduce observed characteristics of these indicators in terms of 
geographical distribution and magnitude. Figures 5 through 9 show maps for an illustrative set 
of five of these indicators: Frost Days, Heat Wave Duration, Warmest Three Nights, 
Consecutive Dry Days, and Precipitation Intensity.1 In the first row of each figure, we compare 
climatological means computed for 1950–2000 observed, the BCSD ensemble mean, and the 
CAD ensemble mean (e.g., the average of the number of Frost Days for each year in the 
observed dataset, compared to that simulated by the BCSD and CAD ensembles). In the second 
row, we compare trends across the same three datasets over the same time period, with solid 
circles indicating statistically significant trends at the 5% level.  

 

 

                                                
1 Similar results for the rest of the indicators are available at  
www.stanford.edu/~mikemas/publications/ Extremes_Report_Figures_Addendum.ppt.  
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Figure 5. Climatological means and trends for frost days, 1950–1999, by county 

Top row, mean values for observed (1950–1999) and downscaled GCM simulations (1950–1999) 
ensemble means (BCSD, center and CAD, right panels). Bottom row trend values computed from the 
same datasets. Filled circles indicate significant trends at the 5% level.  
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Figure 6. Climatological values and trends for heat wave duration, 1950–1999, by 
county  
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A: Like Figure 5, for Heat Wave Duration. B: Frequency of years with at least one Heat Wave. 

 
Figure 7. Climatological values and trends for warmest three nights, 1950–1999, 
by county 

Like Figure 5, for Warmest Three Nights. 
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Figure 8. Climatological values and trends for consecutive dry days, 1950–1999, 
by county 

Like Figure 5, for Consecutive Dry Days. 
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Figure 9. Climatological values and trends for precipitation intensity, 1950–1999, 
by county 

Like Figure 5, for Precipitation Intensity. 

 

Both downscaling approaches closely reproduce the number of Frost Days, Consecutive Dry 
Days, and the temperature of the Warmest Three Nights per year around the state. In general, 
both downscaling approaches somewhat underestimate Heat Wave Duration and the fraction of 
years with at least one Heat Wave, with CAD closer to observed magnitudes and BCSD closer 
to observed frequencies. Both generally reproduce the pattern of relative regional differences in 
Heat Wave Duration. CAD likewise underestimates Precipitation Intensity in some parts of the 
state, while BCSD slightly overestimates in limited regions, but generally reproduces the 
observed pattern. For the other indicators the observed climatological mean for each indicator is 
reproduced quite accurately, both in terms of geographical differences and actual values by the 
ensemble mean of the downscaled GCM simulations, with only one exception. Both methods 
overestimate the mean value of Heavy Precipitation Fraction (the percentage of total 
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precipitation falling in very wet days, defined as days above the 95th percentile of the 1961–
1990 climatological distribution), but they do maintain the geographically differentiated 
features observed. 

When we consider the simulation of trends, the results are more diverse across indicators and 
methods. We summarize in Table 12 the agreement on the sign of the trends and their statistical 
significance. Here we summarize the general findings. When observed indicators show 
widespread significant trends, the ensemble mean of the downscaled simulations correctly 
estimates the direction. The downscaled simulations often, however, tend to “spread” the 
values and significance of the trends smoothly across space, while the observations generally 
show more heterogeneous spatial patterns. This is not surprising, given the statistically 
downscaled nature of these datasets, which may tend to conserve smooth spatial patterns from 
their parent coarse-grid GCM simulations. When the observed indicators do not show 
significant trends, the simulated values do not either. However, the underlying trends for 
precipitation indicators are at times in opposite directions when comparing the two 
downscaling methods’ output. In general, BCSD displays drying tendencies across the state 
over the observed period while CAD suggests wetter conditions. The observed precipitation 
data do not help in resolving this issue, showing a mixed pattern of increasing and decreasing 
trends indicating large natural variability. We will discuss this issue more when considering 
future changes.  

Some of the indicators related to temperature extremes already show within the observed 
period the widespread significant trends in the direction expected under a warming climate 
(e.g., fewer Frost Days, more Warm Nights, and warmer Warmest Three Nights). The 
simulation ensemble means reproduce these overall tendencies and their significance, although 
they generally underestimate the slope of the trends. Overall, simulations of extreme behavior 
related to temperature should have greater confidence due to the agreement between 
downscaling methods and between simulations and observations. Precipitation, as to be 
expected, poses a greater challenge. From the observational viewpoint, no significant trends are 
consistently detected in the California region. Modeled data are in agreement only on the 
absence of a consistent observed signal, but the underlying tendencies towards increasing or 
decreasing precipitation intensity are not consistent.  
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Table 12. Observed 1950–2000 trends in indicators of temperature and precipitation 
extremes and agreement with downscaled model simulations 

Index Observed  20C3M BCSD 20C3M CAD 
Frost Days Decreasing trends with scattered 

significant across state, and 
geographically heterogeneous 

values. 

Decreasing trends, wider 
coverage of significant values 

than observed, more 
homogeneous values, and 

generally smaller in absolute 
value than observed 

Same as BCSD 

Growing 
Season 
Length 

Increasing trends with scattered 
significant values, same patterns 

as Frost Days, fewer overall 
significant values. 

Similar patterns as observed, 
with scattered significant values. 

Same as BCSD 

Hot Spells 
Duration 

Very few and isolated significant 
trends, both increasing and 

decreasing. Likely due to chance. 

More homogeneously increasing 
trends, but very few significant, 

likely random, like obs. 

Same as BCSD 

Heat Wave 
Duration 

Similar to Hot Spells, with both 
increasing and decreasing 

trends, even more obviously due 
to chance. 

Few small increasing trends, 
likely to be significant only by 

chance. 

Same as BCSD 

Warm 
(Summer) 

Nights 

Strong pattern of increasing 
significant trends mainly interior 

and South. 

Fairly uniform coverage of 
increasing significant trends all 
over the state with values lower 

than observed. 

Same as BCSD 

Warmest 
Three 
Nights 

Same as Warm Nights Increasing and significant trends, 
uniformly located all over the 
state, with smaller and more 

geographically homogeneous 
values than observed. 

Same as BCSD 
with generally 

larger values of 
trends. 

Consecutive 
Dry Days 

Mix of non-significant increasing 
and decreasing trends over the 

state. 

Same as obs. Same as obs. 

Precipitation 
Intensity 

Mix of non-significant increasing 
and decreasing trends over the 

state. 

No significant trends. Values are 
mostly negative. 

No significant 
trends. Values are 

mostly positive. 
Days 

w/Precip > 
10mm 

Generally increasing trends but 
very few scattered significant 

values. Likely randomly 
occurring. 

No significant trends. Values are 
mostly negative. 

No significant 
trends. Values are 
mix of positive and 

negative. 
% Precip in 
Very Wet 

Days 

Mix of non-significant increasing 
and decreasing trends over the 

state. 

Same as obs. No significant 
trends. Values are 

mostly positive 
Maximum 5-

day Total 
Precip 

Mix of non-significant increasing 
and decreasing trends over the 

state. 

No significant trends. Values are 
mostly negative. 

No significant 
trends. Values are 
mostly negative. 
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3.4.2. Future Projections of Indicators 
Figures 10 through 14 show future trends under the two scenarios (along the rows) and the two 
downscaling methods (along the columns) for the five illustrative indicators. Similar results for 
the rest of the indicators are available at http://www.stanford.edu/~mikemas/publications/ 
Extremes_Report_Figures_Addendum.ppt. Indicators of temperature extremes tell a very 
consistent story: the trends to be expected in a warming climate are produced almost identically 
by the two methods’ ensemble means: fewer Frost Days, longer Heat Wave Duration and more 
frequent Heat Waves, and warmer Warmest Three Nights. Growing Season and Hot Spell 
Duration also lengthen, and Warm Nights and Warm Summer Nights increase (not shown). The 
trends are all significant across the region, and they generally show an intensifying gradient 
from West to East (from the coast to the interior) with the exception of Warm Nights/Warm 
Summer Nights, where the gradient appears to be more North to South. There are significant 
differences in the magnitude of the trends when comparing SRES B1 and A2, with larger 
changes under the latter, as expected. These findings are in perfect agreement with a multi-
GCM study of the same indices (Tebaldi et al. 2006). That study took a global and continental 
perspective, but the strong agreement of temperature indices allows us to find commonalities 
even at these very different regional scales. 
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Figure 10. Trends in frost days, 1950–2100, by county 

Trends under SRES B1 (left) or SRES A2 (right) computed from downscaled data from 
BCSD (top) or CAD (bottom). Filled circles indicate significant trends at the 5% level. 
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Figure 11. Trends in heat wave duration, 1950–2100, by county  

A: Like Figure 10, for Heat Wave Duration. B: Frequency of years with at least one heat 
wave. 
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Figure 12. Trends in warmest three nights, 1950–2100, by county  

Like Figure 10, for Warmest Three Nights. 
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Figure 13. Trends in consecutive dry days, 1950–2100, by county 

Like Figure 10, for Consecutive Dry Days. 
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Figure 14. Trends in precipitation intensity 1950–2100, by county 

Like Figure 10, for Precipitation Intensity. 
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The picture for precipitation extremes indicators is much less coherent. The two methods 
produce different projections with regard to trends and their statistical significance. 
Consecutive Dry Days is the only indicator that does not relate to changes in precipitation 
intensity. The BCSD simulations indicate significant increases in the length of dry spells, 
confined to the northern part of the state under B1 and more widespread under A2. CAD 
simulations do not attribute any significance to changes under B1, but agree with lengthening of 
dry spells under A2, although with less widespread significance than the other method. 

The remaining four indicators look at various aspects of change in precipitation intensity. 
Precipitation Intensity, representing the average amount of precipitation on a wet day in a 
given year, is the most direct indicator. The two methods here disagree in the ensemble mean 
result. BCSD does not produce significant trends, and hints at diminishing intensity, while CAD 
shows significant increasing trends, especially in the northern half of the state. Similar behavior 
is shown for Heavy Precipitation Fraction. Total Five-Day Precipitation sees better agreement in 
the patterns across the methods, with positive but not statistically significant trends decreasing 
from north to south. Puzzlingly, 10 mm Days, the number of days with precipitation amounts 
exceeding 10 mm, shows consistently decreasing trends, relatively more so for BCSD than CAD. 
In general, BCSD simulations produce trends towards drier conditions and less intensifying 
precipitation than do CAD simulations. 

We are setting the bar high in attempting to detect changes at point locations, but results at this 
scale are arguably more meaningful for impact analysis and local decision-making. These 
indicators would likely show a stronger signal if we averaged the grid point results into a 
regional average. Averaging of indicators' time series across a large region is expected to cancel 
out low frequency “wiggles” and bring out the signal that may exist at a regional level, 
overcoming spatial patchiness and revealing either a decreasing or increasing trend in most 
cases. In fact, an analysis of GCM-derived indicators (without downscaling) in the Western 
region of the United States (California and Nevada) for the same five precipitation indicators 
(not shown) showed significant increasing trends for all but 10mm Days, suggesting that the 
behavior is not an artifact of the downscaling process. Table 13 lists direction and significance of 
projected trends for each index in detail. 

Finally, in Figure 15 we show plots of the actual trajectories for individual models and the 
ensemble mean, for the five illustrative indicators in two example counties: Shasta and Imperial. 
As becomes clear from these graphs, the absolute values of the trends in indicators differ across 
models and methods, but temperature-related indices see agreement in the direction of the 
trend in all cases. This is not the case for precipitation indices, where the ensemble average 
trend is often flat and hides contrasting tendencies in the individual members (some 
simulations project dryer conditions while others project wetter conditions). Such discrepancies 
are also often evident between the two downscaling methods. We choose projections under the 
A2 emissions scenario for this example, with the understanding that projections under B1 
would show even larger discrepancies across models/methods for the precipitation indices.  
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Table 13. Direction and significance of projected trends in Indicators of 
temperature  
and precipitation extremes 

Index 1950–2100 BCSD  
(SRES B1 and A2) 

1950–2100 CAD  
(SRES B1 and A2) 

Frost Days Decreasing trends,  
All significant.  

A2 projections exhibit steeper 
trends than B1 patterns. 

West to east positive gradient 
in the values.  

Same as BCSD 

Growing Season Length Similar geographical pattern 
as Frost Days, with all 

significant positive values.  
 

Same as BCSD 

Hot Spells Duration Increasing trends, more 
significant under A2, west to 

east gradient. 

Same as BCSD, with generally 
larger values. 

Heat Wave Duration Increasing trends, more 
significant under A2, west to 

east gradient. 

Same as BCSD, with generally 
larger values. 

Warm (Summer) Nights Increasing significant trends 
all over the state. 

Same as BCSD but with lower 
positive values 

Warmest Three Nights Increasing and significant 
trends, uniformly located all 

over the state. 

Same as BCSD.  

Consecutive Dry Days Increasing trends, but 
becoming homogeneously 
significant only under A2. 

Increasing trends, but only a 
scatter of significant values 

and only under A2. Values are 
lower than BCSD.  

Precipitation Intensity Non significant, decreasing 
trends.  

Significant increasing trends 
(limited to Northern California 
under B1, all over under A2).  

Days w/Precip. > 10 mm Decreasing trends all over 
the state, significant under 

A2.  

Decreasing trends, with 
scattered significance only 

under A2. 
Percent Precip. in Very 

Wet Days 
No significant trends for 

either scenarios. 
Increasing and significant for 
the northern part of the state 

under B1 and more 
widespread under A2. 

 
Maximum 5-day Total 

Precip. 
No significant trends.  No significant trends.  



42 

 
Figure 15. Range of individual model simulations for il lustrative climate 
indicators in example counties, 1950–2100 
Individual downscaled GCMs and ensemble mean trends for BCSD data (cyan and blue) and Analog 
data (pink and red) for five illustrative indicators, for Shasta (left column) and Imperial (right column) 
counties. 
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3.5. Return Level Analysis 
An intuitive way of characterizing extremes under current and future conditions is through the 
concepts of return level or return period. Such analyses are conducted by applying Extreme 
Value Theory (EVT) to time series of observed data or model simulations. To fit a statistical 
distribution to the extreme values of a climate variable, EVT uses either the maximum values 
over a predefined period (year, season, month) or all the values over a certain threshold (to be 
optimally estimated). A member of a family of parametric distributions (the Generalized 
Extreme Value distribution, or GEV, in the case of maximum values, or the generalized Pareto 
distribution in the case of excess over threshold data) is fitted to these extreme observations. 
Thus, the statistical characterization applies specifically to the large values of the climate 
variable, rather than to its entire climatological distribution (Coles 2001).  

Because of the need to perform this analysis over many locations, variables, and models and for 
both downscaling methods, we chose to extract three-day average maxima and fit GEV 
distributions, rather than using threshold exceedances that would require a case-by-case choice 
of threshold.  

After fitting a GEV distribution to a climate variable (e.g., annual highest maximum 
temperature at a given location as observed over the period 1950–2000), the estimated 
parameters of the GEV distribution determine a functional relation between values of that 
variable and their expected return period. Thus, for a given fit of the GEV, a value x (say 125 
degrees F) of the annual maximum at a given location may be associated with a return period of 
y years (say 100 years), meaning that under the climate conditions represented by the record 
used to fit the distribution one would expect to experience that value x of annual maximum 
only once every y years (e.g., one would expect that the annual maximum would reach 125°F 
only once in a hundred years, or with probability 0.01 in any given year).  

Alternatively, the concept of return level is characterized by fixing a return period, say 100 
years, and determining the value of the extreme that can be expected to recur once in that 
period. The use of parametric statistical distributions also provides a means of characterizing 
confidence intervals around the estimated return values and periods and thus determining the 
significance of the changes projected. 

Of course, any statistical analysis is conditional on the data at hand. Extreme Value Theory 
handles the uncertainty in the fit itself by providing confidence intervals around each 
individual return level curve that is fitted to a given set of records (or model data). Structural 
uncertainties characteristic of climate models’ approximations are addressed here by fitting 
return level curves to an ensemble of climate models simulations, from different GCMs and two 
alternative downscaling methods. These models and methods span a range of structural 
assumptions, and thus our results should bracket a relevant set of alternative future outcomes. 

By comparing return level curves derived from the observed record to those derived from 
model simulations of the same period, we also address the basic necessity of validating these 
models’ ability to reproduce observed extremes behavior.  
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3.6. Return Level Analysis Results 
In the results that follow, we focus on multiple-day extreme events (e.g., annual highest three-
day average maximum/minimum temperature) to address the persistency of extreme 
conditions that are more likely to represent extreme impact events. Results based on daily 
extremes were found to be qualitatively similar (not shown). 

We also focus on temperature extremes. The less coherent signal in precipitation trends found 
in the previous section is consistent with what was found (but not shown here) when applying 
EVT to daily precipitation series and comparing return levels and periods between present and 
future climate conditions. Consistently for two definitions of precipitation extremes (annual 
maximum daily amount and annual maximum three-day total amount), no significant shift in 
the position of the curves could be detected across methods, scenarios, and locations— 
supporting the idea that trends and changes in this region are confounded by either model 
internal variability, inter-model differences, structural defects in models, or some combination 
of all of these (or, of course, that no significant trend is under way). 

Time series of daily minimum and maximum temperature and precipitation from downscaled 
model simulations were analyzed for the 58 locations representative of the 58 counties of 
California in two separate segments: one representative of current climate (1950–2000), and one 
of future conditions (2050–2100). The latter is available under two emission scenarios: SRES A2 
and B1. 

Observed time series at the same 58 locations are also available and can be used to assess the 
ability of the different models/downscaling methods to reproduce the extreme value statistics 
of observed climate at these locations.  

By fitting GEV distributions separately to the two periods 1950–2000 and 2050–2100, we can ask 
several questions about the behavior of annual extremes that have an intuitive and compelling 
interpretation: 

• How is the return period of a given extreme value expected to change, from current to 
future conditions?  

• How does the return value change, for a given return period?  
• Are there geographically differentiated trends?  

 

3.6.1. Current Climate Simulations and Observed Records 
We found good agreement between the return level curves derived from observations and the 
envelope spanned by the two methods’ downscaled simulations. This is true for all counties and 
both of the climate variables that we analyzed: annual high three-day average maximum 
temperature and annual high three-day average minimum temperature.  

Figure 16 shows results for two counties that we chose as representative of two different 
California climate zones (Northern vs. Southern California): Shasta and Imperial.  
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Figure 16. Return level curves for observed and model simulated three-day 
maximum and minimum temperature in example counties, 1950–1999 
Return level curves for maximum (upper row) and minimum (lower row) three-day average 
temperature, estimated on the basis of annual maxima from the period 1950 1999 for Shasta (left 
column) and Imperial (right column) counties. Black solid line is curve estimated from observed 
dataset. Green lines are curves estimated using BCSD, blue lines are estimated using CAD. Dashed 
lines are corresponding 95% confidence intervals. 
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The two panels of each column figure show return level curves for one of two climate variables 
(maximum three-day average high temperature and maximum three-day average low 
temperature) in one county, based on the period 1950–2000. Blue curves are return level curves 
(solid) and confidence intervals (dashed) from the six GCM twentieth-century simulations using 
BCSD. Green curves are from the subset of three GCM twentieth-century simulations using 
CAD. The black lines are estimated from observations. The general message is that for all 
indices and counties the black solid lines are bracketed by the colored lines or very close to their 
envelope. As a whole, therefore, the climate simulations represent the return levels (or periods) 
of the observed climate for these climate variables realistically, and we are justified in taking a 
multi-model, multi-method approach to the projection of future changes. However, the range of 
uncertainty across models and methods is substantial, and therefore we focus less on specific 
return level or return period magnitudes. Rather, we focus on the significance of the change in 
these statistics, as represented by not only the changes in the ensemble mean projections under 
future conditions but in the envelope of uncertainty around them.  

3.6.2. Future Changes in Return Period and Return Levels  
We examine shifts in the curves between current and future periods, under two different 
emissions scenarios. At least four to five decades’ worth of data are needed to fit GEV 
distributions, and we thus present results that lump the second half of the twenty-first century 
together.  

First, we present an overview of projected changes in return period for each county (Figures 17 
and 18), under B1 or A2 for both BCSD and CAD simulations. Colored circles represent the new 
return periods of temperatures that, under current climate, are expected to return only once 
every 100 years (smaller numbers of years associated with warmer colors). The smaller the 
number of years (compared to the current 100-yr period), the more frequently such 
temperatures will be experienced, and the larger the change toward more extreme conditions. 
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Figure 17. Projected return periods of current 100-year return levels, for 
maximum annual three-day mean maximum temperature, by county
Ensemble mean estimates of projected 2050–2100 return periods for current 100-year 
return levels, under the B1 emissions scenario (left column), and the A2 emissions scenario 
(right column). Panels on top row are ensemble means from BCSD downscaled GCM 
simulations, panels in bottom row from CAD. Values of the color scale correspond to the 
new return period of a current 100-year event (e.g., less than ten years for a dark red 
circle). 
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Figure 18. Projected return periods of current 100-year return levels, for 
maximum annual three-day mean minimum temperature, by county  
Ensemble mean estimates of projected 2050–2100 return periods for current 100-year 
return levels, under the B1 emissions scenario (left column), and the A2 emissions scenario 
(right column). Panels on top row are ensemble means from BCSD downscaled GCM 
simulations, panels in bottom row from CAD. Values of the color scale correspond to the 
new return period of a current 100-year event (e.g., less than five years for a dark red 
circle). 
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There is some degree of spatial heterogeneity to the projections, mainly under SRES B1, and one 
can find areas where the frequency of current 100-yr extreme values “only” doubles or triples 
(green to blue dots). Most of the milder changes are located along the coast. However there is a 
large prevalence of deep red colors across the maps for both variables, indicating return periods 
of 10 years or less, and thus at least a ten-fold increase in the frequency of such conditions. The 
agreement of models (not shown here) is stronger under A2 than B1, as is the agreement 
between the two methods. Note that in these figures we are computing return periods only 
from the three GCM simulations that are common to the two downscaling methods, but 
including the additional 3 GCMs available for BCSD does not change the corresponding maps 
(i.e., the ensemble averages) appreciably.  

An alternative way of characterizing the patterns of change is to ask what temperature will 
replace that which is associated with the current 100-year return period. Figures 19 and 20 
display these results, similar maps with circles colored accordingly to temperature values (in 
degrees F) correspond to the 100-yr return level as it is currently estimated and as estimated 
under future conditions during the second half of the twenty-first century under the two 
scenarios. There is very good agreement between the two downscaling methods’ ensemble 
mean projections, both in terms of values and in terms of their regionally diversified 
distribution. Changes are significantly stronger under the A2 scenario, with increases in the 
return level of double digits of degrees F across the entire region.  

 



50 

 
Figure 19. Simulated three-day maximum temperature 100-year return levels, 
1950–1999 and 2050–2099, by county  
100 year return levels of three-day annual maximum temperature (ensemble averages of three GCMs 
as in Figures 17 and 18), for current simulations (1950 1999; left column) and future projections 
(2050 2099) under SRES B1 (middle column) and A2 (right column). BCSD results along the top row, 
CAD results along bottom row. 
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Figure 20. Simulated three-day minimum temperature 100-year return levels, 
1950–1999 and 2050 2099, by county  
100 year return levels of three-day annual minimum temperature (ensemble averages of three GCMs 
as in Figures 17 and 18), for current simulations (1950 1999; left column) and future projections 
(2050 2099) under SRES B1 (middle column) and A2 (right column). BCSD results along the top row, 
CAD results along bottom row. 

 

To provide a measure of the inter-model spread, in Figure 21 we show sets of curves for the 
same two counties (one in each column) and three-day average maximum temperature as 
estimated on the basis of the downscaled simulations by BCSD (top panels) and CAD (bottom 
panels). The interpretation would be the same using return level curves derived for extremes of 
minimum temperatures. We call attention to two sets of comparisons. 
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Figure 21. Individual model simulations of three-day annual maximum 
temperature in example counties, 1950 1999 and 2050 2099  
Return level curves for annual three-day maximum temperatures for Shasta (left column) and 
Imperial (right column) counties. Top row projections for BCSD, bottom row projections for CAD. 
Each panel compares three sets of curves. Black: current climate simulations (1950 1999). Orange: 
B1 (2050 2099). Red: A2 (2050 2099). Shading captures the range of all 95% confidence intervals 
around the individual curves. 
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First, consider a vertical line intersecting the x-axis at 100 years. For most indices/counties the 
set of orange/red curves corresponding to the downscaled future simulations under 
respectively B1 and A2 are situated above the envelope formed by the black curves (estimated 
from the twentieth century segment of the simulation) indicating a significant shift of the return 
levels associated with the 100-yr return period. These figures display the spread of values across 
the methods/GCMs simulation. Again, because of this spread we do not suggest focusing on 
the specific magnitudes calculated, but rather on the significance of the projected shift between 
current and future conditions.2 The significance of this shift is clearly demonstrated by the lack 
of overlap between the two sets of colored (future return levels) vs. black (current return levels) 
solid curves.  

Second, consider a horizontal line that intersects the black curves at their 100-yr return level. 
The corresponding periods along the x-axis corresponding to where the line intersects the 
orange and red curves are the new return periods under future conditions of what is now the 
100-yr return level. In this case too, the colored curves lie to the left of and do not overlap the 
black curves, signaling a significant shift (decrease) in the return period. Here as well the 
ensemble mean curve does not tell the entire story, and the ranges of new return periods can be 
considered substantial. There is nonetheless a clear separation between the envelope of black 
curves and that of the colored curves, meaning that what is now a range of extreme conditions 
currently associated with a given return period will recur considerably more often in the future. 

3.7. Recurrence of Historical Event Magnitudes 
Finally, we conduct an analysis of model projections in order to determine changes in the 
frequency of events similar in magnitude to specific historical extreme events. We focus on two 
temperature-related events: the July 2006 heat wave and the December 1998 freeze. A third 
event involving extreme precipitation is left out because of the failure to identify a robust signal 
of change in the statistics of extreme precipitation through EVT or extreme indices analysis, as 
mentioned in the previous sections. 

The impacts of the 2006 heat wave were discussed in Section 2.2. From December 19 28, 1998, 
an arctic air mass moved over California, leading to a devastating freeze during which 
minimum temperatures fell below 0°C for more than a week, particularly in Central and 
Southern California. Crops, especially citrus, experienced heavy losses. Estimated agricultural 
losses were $682 million (Lobell et al. 2009a). 

The complex make up of actual observed extreme events makes their characterization 
challenging. For the July 2006 heat wave, climatological thresholds corresponding to extreme 
quantiles of both minimum and maximum temperatures (we consider 95th and 99th quantiles) 
were exceeded for many days in a row. Gershunov and Cayan (2008) analyze the event in great 
detail, adding an in-depth characterization of the synoptic conditions leading to and 
maintaining the extreme event. They identify the high night temperatures (minimum daily 
temperatures) as the main culprit for the damaging nature of the event. 

                                                
2 Moreover, the highest temperatures produced through these statistical calculations under the A2 
scenario may not be physically realistic. 
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Here we focus on simple definitions that represent important characteristics of these events. We 
focus on runs of consecutive days (six or more) where daily minimum or maximum 
temperatures consistently exceed the 95th quantile of the climatological distribution in that 
location (“hot spells”), and on runs of consecutive days (seven or more) where daily minimum 
temperatures fall below 0°C (“freezes”). Figures 22 and 23 display the counties within the state 
that met the freeze criterion and the hot spell minimum temperature criterion during these two 
historical events. 

 
Figure 22. Incidence of a seven-day or longer freezing  
spell in winter 1998, by county 

Black dots mark locations experiencing the freezing spell.  
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Figure 23. Incidence of a six-day or longer hot spell with 
minimum temperatures above the 95th percentile of their 
climatological distribution in July 2006, by county 

Black dots mark locations experiencing the hot spell.  

 

We use the same gridded observational dataset that allowed us to compare EVT and indicator 
projections to observations in the main part of this paper. The period covered by the gridded 
data ends at 2000, though, so we also extract National Weather Service (NWS) Cooperative 
Observer Program (COOP) station daily data minimum and maximum temperature data for the 
years 1950–2008 from the National Climatic Data Center (NCDC) website 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/all/. The stations were chosen to be closest to 
the locations of the grid points used to characterize model projections (downscaled) for each of 
the 58 California counties. We want to use time series covering the 2006 event, to make sure that 
our definitions for both observed events reflect actual anomalies in the observed record, which 
they do. 

We first compute spells of freezing temperatures from observed and modeled data, the latter 
from the twentieth century simulations of all models available. We then compute the same 
statistics for the future projections available under the two scenarios, A2 and B1. The aim of the 
analysis is to characterize the change in the frequency of years with at least one freeze as 
defined above (freezing temperatures lasting seven consecutive days or longer). Figure 24 
shows results of this analysis for the A2 scenario for each of the 58 counties, ordered in the 
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figure according to increasing values of observed frequencies (black dots). The dots represent 
observed frequency of freezes in the period 1951–2000, and the black line indicates the range of 
frequencies computed from the twentieth century simulations of the six GCMs available and the 
two downscaling methods. The orange line extends over the range of simulated frequencies for 
the period 2001–2050 and the red line extends over the range simulated for the period 2051–
2100.  

 
Figure 24. Frequency of observed, simulated, and projected freezing spells, 
by county  
Chance per year of freezing spell defined as seven consecutive days or more with minimum 
temperatures below 0°C. Analysis for 58 locations in California representative of the 58 counties. 
Dots represent observed frequencies over the 50 years 1951 2000 (gridded observational 
dataset). Black lines indicate the range of twentieth century simulations (1951 2000) across six 
GCMs and two downscaling methods. Orange and red lines represent ranges of future 
frequencies under SRES A2 for, respectively, 2001 2050 and 2051 2100.  

 
There is overall very good agreement between current climate simulations and observed 
frequencies, with the black lines bracketing the dots in almost all locations. In most cases, we 
also note the strong signal of decrease in frequency of freezing spells emerging by the second 
half of the century (when comparing each red line to its corresponding black line). For most 
locations the red lines do not overlap the black, indicating a significant decrease in the 
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frequency of freezing spells. Under the A2 scenario in the second half of the twenty-first 
century, the lower limit of the projected frequency for many of the 58 locations indicates the 
possibility of these events becoming very rare, with less than one year in every ten experiencing 
a freeze of the same magnitude as it was experienced in 1998. Freezes are particularly damaging 
to the agricultural sector, and therefore we focus further on five counties in which agricultural 
production features prominently in the state’s economy: Napa, Sonoma, Fresno, Kern, and 
Merced. 

Table 14 highlights observed frequencies, current climate simulated ranges, and corresponding 
ranges for the first and second part of the twenty-first century under A2 and B1, which confirm 
in greater detail the general discussion above.  

Table 14. Frequency of at least one freezing spell of seven consecutive days or 
longer for five county locations representative of important areas in the state’s 
agricultural sector, 1950–1999 and 2050 2100 

County Observed 20th C. 
simulations 

SRESB1 
2001 2050 

SRESA2 
2001 2050 

SRESB1 
2051 2100 

SRESA2 
2051 2100 

Napa 0.25 (0.04,0.26) (0.02,0.10) (0.02,0.16) (0.00,0.08) (0.00,0.12) 
Sonoma 0.47 (0.18,0.56) (0.10,0.32) (0.14,0.48) (0.04,0.38) (0.04,0.26) 
Fresno 0.44 (0.12,0.48) (0.10,0.22) (0.04,0.34) (0.02,0.26) (0.00,0.20) 
Kern 0.10 (0.00,0.18) (0.00,0.08) (0.00,0.06) (0.00,0.04) (0.00,0.02) 
Merced 0.55 (0.16,0.56) (0.06,0.32) (0.04,0.40) (0.02,0.32) (0.00,0.26) 

 
We now consider hot spells as observed or simulated, whose characteristics in length and 
intensity lend them to a rather straightforward, if superficial, comparison to the heat wave 
experienced across the entire state in the second half of July 2006. We label this comparison 
superficial since it simply involves temperature statistics, while the full extent and gravity of 
heat wave impacts should involve other measures like humidity, winds, and solar radiation.  

We compute climatological distributions for each calendar day separately by pooling daily 
minimum or maximum temperatures from a five-day window around each date, and from the 
years 1961 through 1990 of the observed records and the GCM simulations. Thus, for each 
calendar day, the climatological quantile is computed on the basis of 150 daily values (five days 
from each of the 30 years). We then extract spells of consecutive days (six or more) where the 
95th quantiles of these climatological distributions were exceeded. The comparison between 
observed and simulated current climate statistics, and between current and future climate 
behaviors is shown in Figure 25, for hot spells of minimum temperature, which can be 
interpreted as nighttime temperature. The 58 county locations are ordered by increasing upper 
limit of the future projected frequency of hot spells (top of the red bars). Figure 26 shows the 
corresponding results for hot spells of maximum temperature. Note that in-depth analyses of 
the 2006 event (Gershunov and Cayan 2008) and others (e.g., Karl and Knight 1997) have 
identified consecutive extremely warm nights as the most damaging periods during a heat 
wave, causing the worst risk to human and animals.  
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Figure 25. Frequencies of observed, simulated, and projected hot spells of 
minimum temperature, by county  
Chance per year of hot spell of minimum temperature defined as six consecutive days or more 
with minimum temperatures above the 95th quantile of climatology, June through August. Analysis 
for 58 locations in California representative of the 58 counties. Dots represent observed 
frequencies over the 50 years 1951 2000 (gridded observational dataset). Black lines indicate the 
range of 20th century simulations (1951 2000) across six GCMs and two downscaling methods. 
Orange and red lines represent ranges of future frequencies under SRES A2 for, respectively, 
2001 2050 and 2051 2100.  
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Figure 26. Frequencies of observed, simulated, and projected hot spells of 
maximum temperature, by county 
Chance per year of hot spell of maximum temperature defined as six consecutive days or more 
with maximum temperatures above the 95th quantile of climatology, June through August. 
Analysis for 58 locations in California representative of the 58 counties. Dots represent observed 
frequencies over the 50 years 1951 2000 (gridded observational dataset). Black lines indicate the 
range of 20th century simulations (1951 2000) across six GCMs and two downscaling methods. 
Orange and red lines represent ranges of future frequencies under SRES A2 for, respectively, 
2001 2050 and 2051 2100.  

 
The results in these two figures are striking in the large predicted increases in the frequency of 
extreme hot spells starting in the first half of this century and intensifying in its second half. 
There is good agreement between the observed and simulated current climate statistics, for 
almost all counties. The range of future frequencies projected by the different GCMs 
downscaled by the two alternative methods is larger than the range of frequencies simulated by 
the twentieth century experiments, suggesting a larger uncertainty among model simulations. 
But in all cases, the projections cover values of 0.5 or larger, and in many counties some of the 
simulations project an extreme event of this kind in every year of the simulation. There is a 
relatively smaller increase in hot spells of maximum temperature compared to minimum 
temperature (very mildly so, however) and in B1 compared to A2 (not shown), but the general 
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picture is of very significant increases in frequency across scenarios, downscaling methods, and 
county location.  

We also compared current and future simulations of hot spells defined as runs of consecutive 
days with minimum (maximum) temperature exceeding the 99th percentile of climatological 
distribution. By definition these are events that would be observed with a frequency of less than 
once in a 100-yr period. The results (not shown) are very similar to what was found for the 
lower thresholds. 

A Note on the Agreement Between Observed and Simulated Hot Spell Frequency 
By defining extremely hot days as those exceeding the 95th quantile of the climatological 
distribution (either observed or modeled), we constrain both the observed and simulated 
historical frequency of such hot days to be on average no higher than 5%. By then computing 
spells of such hot days, however, we are not straightforwardly constraining observed and 
modeled hot spells to appear with similar frequency, as if we were just counting the number of 
exceedances of such a threshold. The good agreement of observed and modeled frequencies of 
at least one such hot spell is one aspect of the verification of the consistency of GCM simulations 
of hot temperature extremes with observed data. 

A more in-depth look at the characteristics of such hot spells is given, for example, by 
computing their average length. Figures 27 and 28 show graphs similar to the previous ones, 
but the quantity along the y-axis is now length in days of hot spells, rather than their frequency 
over the years. 

In most cases the average length of observed hot spells is within the range of hot spell duration 
in current climate simulations, lending further validation to the model results. These figures 
also indicate that the length of such hot spells is projected to increase strongly and significantly 
by the second half of this century. 
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Figure 27. Average length of observed, simulated, and projected hot spells of 
minimum temperature, by county  
Average length of hot spells of minimum temperature, as defined above. Analysis for 58 locations 
in California representative of the 58 counties. Black dots represent observed averages (gridded 
observational dataset, 1951 2000). Black lines indicate the range of 20th century simulations 
(1951 2000) across six GCMs and two downscaling methods. Orange and red lines represent 
ranges of future frequencies under SRES A2 for, respectively, 2001 2050 and 2051 2100.  



62 

 
Figure 28. Average length of observed, simulated, and projected hot spells of 
maximum temperature, by county  
Average length of hot spells of maximum temperature, as defined above. Analysis for 58 locations 
in California representative of the 58 counties. Black dots represent observed averages (gridded 
observational dataset, 1951 2000). Black lines indicate the range of 20th century simulations 
(1951 2000) across six GCMs and two downscaling methods. Orange and red lines represent 
ranges of future frequencies under SRES A2 for, respectively, 2001 2050 and 2051 2100.  
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4.0 Conclusions and Recommendations 
This paper synthesizes existing literature on the impacts of extreme events on seven potentially 
vulnerable sectors in California. In presenting this information, we distinguish between two 
types of transfer functions that can be used to quantify such impacts. First, inter-system transfer 
functions quantify the relationship between extreme climate conditions and sectoral impacts. 
Additionally, impacts in one sector can affect other sectors. Thus, there are also inter-sector 
transfer functions that quantify the relationship between changes in one sector and the resulting 
impacts on a different sector. This exercise summarizes many qualitative and quantitative 
relationships drawn from the literature, and highlights areas where interactions are recognized 
but have not been quantitatively characterized.  

In this context, we also distinguish between extreme climate events and extreme impact events. 
Extreme climate conditions (e.g., temperatures above a given threshold of the climatological 
distribution), do not necessarily induce extreme impacts. Ideally, the definition of extreme 
impact events and subsequent transfer functions linking them to climate conditions would be 
arrived at by analyzing historical events and their impacts, and by involving relevant 
stakeholders and analysts to better quantify the interactions we identify in section 2 and to 
identify thresholds of particular concern for on-the-ground planning. We see this study as 
setting the stage for more formal research in this direction, building from the extensive body of 
literature on the impacts of climate change in California. 

Informed by this exercise, we also produce new projections of changes in the frequency and 
intensity of extreme events in the future across climate models, emissions scenarios, and 
downscaling methods, for each county in California. This analysis employs downscaled climate 
projections from six GCMs, two emissions scenarios (SRES A2 and B1), and two downscaling 
methods (BCSD and CAD), produced for the 2008 PIER Scenarios Report (Cayan et al. 2008b). 
Previous assessments of climate change impact projections for California have used a smaller 
subset of climate projections and fewer categories of extreme events than are analyzed here.  

We evaluate historical and projected changes for a suite of temperature and precipitation-based 
climate indicators, and we conduct a return level analysis to investigate projected changes in 
extreme temperatures. Finally, we include an analysis of the future likelihood of events similar 
in magnitude to specific historical events, such as the July 2006 heat wave. We perform these 
analyses at 58 separate grid points extracted from the full set of downscaled climate projections. 
Each grid point is representative of a county in California, and the locations are representative 
of areas of importance from an economic, social, and ecological perspective (e.g., major urban 
areas, Central Valley, Wine Country, higher elevation regions, coastal areas). 

In general, model simulations using both downscaling approaches reproduce most of the 
characteristics of observed patterns of extreme climate conditions in California. Some 
exceptions, and the range of individual model results, are outlined in Section 3. As a whole, 
however, we conclude that employing this multi-model, multi-method ensemble of climate 
simulations to project future changes in extreme events is justified.  

Changes in extreme events related to high temperatures are found to be very consistent across 
simulations downscaled by both methods. Coherent changes over California suggest significant 
increases in the severity of hot spells (both in length and intensity) and decreases in frost days 
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and—more generally—cold spells. Larger warming is projected inland compared to coastal 
areas. A significant difference in the magnitude of these changes in temperature extremes is 
found when comparing the two scenarios, A2 and B1, suggesting that mitigation would limit 
the severity of these changes.  

For indicators and EVT analyses of precipitation, our inquiries failed to detect a significant 
signal of change, with inconsistent behavior when comparing simulations across different 
GCMs and different downscaling methods. Simulations using BCSD, for example, show a 
tendency toward drier conditions (longer dry spells) while simulations using CAD do not 
exhibit this behavior. Similarly, simulations using CAD indicate widespread significant 
increasing trends in precipitation intensity, which fail to be confirmed when analyzing the 
BCSD simulations. Parallel studies that use larger regional averages suggest a more consistent 
picture of a general lengthening of dry spells and increasing precipitation intensity for this 
region as a whole, but we cannot support the same findings at the local scale represented 
through our grid-point level analyses.  

Lastly, a comparison of current and future expected frequencies of events comparable to 
recently observed extremes (heat wave of July 2006, freezing spell of December 1998) suggest 
significant changes: heat waves similar in length and intensity to that experienced in 2006 will 
become more frequent all across the state, with some simulations suggesting that they will be an 
annual event by the end of this century under a higher emissions scenario. Freezing spells, on 
the other end, are robustly projected to become less frequent all across the state, even in 
locations where now they are a yearly event, becoming as rare as a one in ten-year event or less 
in a large fraction of California.  

We see this research as a first step toward informing more formal vulnerability assessment in 
the context of extreme events in California. Vulnerability is often considered as a function of 
exposure to a stress, sensitivity to that stress, and adaptive capacity to cope with that stress. The 
projections presented in this paper provide information regarding the exposure to extreme 
events in different regions of California, and the presented synthesis of impacts and interactions 
identified in the literature is a first step toward characterizing the sensitivity of specific sectors 
to extreme events. Moving forward, further refinements of information regarding exposure and 
sensitivity must be integrated with assessment of the adaptive capacity of specific sectors, 
regions, and populations, to identify specific vulnerabilities and inform strategies to reduce 
those vulnerabilities. Since patterns of extreme events can chance considerably even under 
lower emissions scenarios, vulnerability assessment in the context of extremes is particularly 
important for informing adaptation strategies. 
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6.0 Glossary 
AT apparent temperature 
AR4 IPCC Fourth Assessment Report 
BCSD bias correction and spatial downscaling 
CAD constructed analog downscaling 
CALVIN An economic-engineering water optimization model 
CCSM3 Community Climate System Model, version 3 
CD day position 
CNRM Centre National De Recherches Météorologiques 
COOP Cooperative Observer Program (COOP) 
DIS days in sequence 
ECHAM5 a general circulation model 
EPA U.S. Environmental Protection Agency 
ER emergency room 
EVT extreme value theory 
GCM global climate model 
GDP gross domestic product 
GEV generalized extreme value 
GFDL Geophysical Fluid Dynamics Laboratory 
IPCC Intergovernmental Panel on Climate Change 
MCI multiplicative competitive interaction  
MW megawatts 
NCAR  National Center for Atmospheric Research 
NWS National Weather Service 
PM particulate matter 
SLH sea level height 
SLP sea level pressure 
SRES Special Report on Emission Scenarios 
SWE/P snow water equivalent / precipitation 
Tx afternoon temperature 
WEAP Water Evaluation And Planning System 
 


